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Abstract: YADA (Yet Another Dsge Application) is a Matlab program for Bayesian estimation

and evaluation of dynamic stochastic general equilibrium and vector autoregressive models. The

purpose of the paper is to show how the program can be extended with new functionality. This

requires that the programmer knows how to access model related information, such as the selected

sample, from physical or virtual memory. The paper shows how such information can be located

and used for extending the functionality of the program. Moreover, it shows how the GUI tools

in YADA can be used and gives a detailed description of the programming conventions that are

followed. The bulk of the paper contains an example extension and shows how that functionality

can be added to YADA.

1. Introduction

YADA is a Matlab program for Bayesian estimation of and inference in Dynamic Stochastic
General Equilibrium (DSGE) and Vector Autoregressive (VAR) models. YADA is developed in
connection with New Area-Wide Model (NAWM) project at the Forecasting and Policy Mod-
elling Division (FPM) [previously in the Monetary Policy Research Division (MPR) and prior to
that in the Econometric Modelling Division (EMO)] of the European Central Bank (ECB); see
Christoffel, Coenen, and Warne (2008). The mathematical details about the algorithms used by
YADA are described in the YADA Manual; see Warne (2025).

The software relies on code made available to the NAWM project by colleagues at central
bank institutions, the software industry and the academic world. In particular, it uses some
functions and ideas developed by Mattias Villani at Sveriges Riksbank. Moreover, it makes
use of AiM (developed by Anderson and Moore at the Federal Reserve) to parse and, option-
ally, solve the DSGE model. It also includes csminwel and gensys, developed by Christopher
Sims, as well as code from Stixbox by Anders Holtsberg, from the Lightspeed Toolbox by Tom
Minka, from Dynare by Michel Juillard and Stephane Adjemian, from the Kernel Density Esti-
mation Toolbox by Christian Beardah, and from kde2d for bivariate kernel density estimation
by Zdravko Botev. Finally, it also makes good use of the coding ideas of Paolo Zagaglia, who
developed dynare2yada when working at Sveriges Riksbank back in 2009.

The purpose of this document is to provide details on how YADA can be extended, while
making sure that the basic principles underlying the YADA code can be followed. To achieve
this I will first introduce the three main data structures that YADA are based on. Since YADA is
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a GUI-based (Graphical User Interface) program two of these structures concern the GUI. The
first variable holds all the handles to the controls on the main dialog. Through these handles
it possible to access (read) or change (write) various properties of the controls, such as if a
control is enabled or disabled, the currently selected value, which control was last clicked on,
etc. This structure is simply called controls, but like every variable in YADA it is a local rather
than a global variable. That is, the name of the variable is only unique to a particular function
(or section of a function) and does not interfere with selected variable names in other functions.
As a rule, YADA does not use global variables and I would strongly advice anyone who wants to
extend YADA to avoid such variables. They simply cause a terrible mess.

The second GUI-related structure contains initialization information about such things as the
name, size, weight and angle of the font for the controls that display text. The initialization
data is, e.g., needed by various dialog functions, such as message boxes, that can be useful for
a user to have access to when extending YADA. This structure is locally called CurrINI.

The third structure contains data needed to work with the DSGE model. This structure, lo-
cally called DSGEModel, is perhaps the most important variable in YADA since all major user
selected settings are stored in it. For example, the matrices with data on the observed (endoge-
nous) variables and the exogenous variables are fields of DSGEModel.

The current document is structured as follows. The graphical user interface is introduced
in Section 2. The focus is here on the controls and CurrINI structures. Next, Section 3 is
concerned with a some useful dialog functions, such as the About and the Query message box
functions, and the TextGUI function for displaying text from, e.g., a text-file. We will return
to these dialog functions in the second half of the document. Section 4 presents the fields
of the DSGEModel structure in detail. Together with the material discussed in the preceeding
section this provides a comprehensive overview of the object on the main dialog of YADA. With
this in mind we can move on to an example of how new functionality can be added to YADA.
This is covered in Section 5 where, among other things, it is shown how to make use of the
initial parameter values, the posterior mode values or draws from the prior or the posterior
distribution such that these values can be used for solving the DSGE model. The section also
presents how to display and store the results from the computations.

2. The Graphical User Interface

2.1. YADA

To start YADA you call the function YADA from the Matlab prompt. This function is located in
YADA’s base directory, i.e., the directory where you installed YADA.1 Just to have a name for it
the base directory can, for instance, be c:\yada.

The file YADA.m controls the basic startup and shutdown sequence in YADA. As a first step
YADA checks if your Matlab version has the required features for YADA to work properly on your
operating system.2 Provided that this is the case, the function appends the YADA directories to
the Matlab path and, accordingly, there is not any need for the user to manually add directories
to the Matlab path. Once the Matlab path is setup for YADA, warning alerts are set to off to
avoid unnecessary clutter in the command window.3

The function that prepends the YADA directories to the Matlab path is called YADAPath. This
function is also located in the base directory. If you wish to add new directories to YADA, it is
recommended that do so either through YADAPath, or, even better, that you create your own
path prepending function and call it from YADA.m.

1 When running YADA the base directory is exactly the same as the working directory in Matlab. That directory is

accessed through the command pwd.

2 Specifically, YADA is compatible with Matlab version 5.3 and later on MS-Windows, while Matlab 7 and thereafter

are needed by YADA on UNIX and Macintosh OS X.

3 YADA has been designed to handle errors internally and display error messages when they are caught. That is,

console operations are for console programs and YADA is not a console program. Nevertheless, since there may be

bugs in the user m-files or, heaven forbid, in YADA, error messages may be displayed in the command window.
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The next step in YADA is to check if the disclaimer and the GNU General Public License has
been accepted by the user. If not, a dialog is displayed where the user is presented with the
conditions for using YADA. The user can choose if he or she wants to accept the disclaimer and
the license or not. If the answer is negative, YADA restores the original Matlab path, restores
the original warning setting, clears the workspace, and shuts down. On the other hand, if
the license and the disclaimer are accepted, the main dialog function YADAGUI is called. The
execution control function YADA now waits until YADAGUI is done, i.e., when you finish the
GUI-based session in YADA.

The YADAGUI function has one input variable called selector, a text string that supports more
than 80 values. When it is first called the value init is given to selector. The initialization
procedure that YADAGUI runs when this value is detected reads certain dialog related initializa-
tion information, checks if the file YADA.ini exists in the base directory and, if found, it reads
the file data. This data is limited to two entries called CurrentModelFile and ModelFiles,
where the latter stores at most 10 paths and names of previously opened DSGE model files. The
former entry keeps the path and name of the last used DSGE model file, which will be automat-
ically loaded if it can be located. Once this step has been completed the main dialog window is
created and user interface controls (or just controls) are placed on this window.

YADAGUI also has an optional output variable which is locally called YADAHandle. Once the
GUI-based session has finished, the handle to the main dialog window is given to YADA so that
it can close this window. Before YADA.m finishes it also deletes all files from the directory
tmp below the base directory,4 restores the original Matlab path, restores the original warning
setting, and clears the Matlab workspace.

2.2. YADAGUI

2.2.1. Controls on the GUI

The main dialog of YADA is displayed in Figure 1. It has three main groups of user interface
controls: menus, a toolbar, and tabs for various settings and options. Most of the GUI-related
functionality in YADA are hidden below the menu items and are called through the supported
menu function and a unique value for the string variable selector. The supported menu func-
tions are located in the menus directory of YADA and have names which directly link them
to a particular menu. For instance, callback functions on the file menu are found in the
FileMenuFunctions file. Some of the most important menu callback functions, such as opening
the help file, are also located on the toolbar. The practical aspects of the GUI are documented
in the help file and will not be discussed here unless it simplifies the presentation of how to
extend YADA.

There are 6 tabs on the main dialog. All these tabs have individual frames and controls
within them. For instance, the DSGE Data tab has 4 frames surrounding controls which hold
the information that determines where the data on the endogenous and exogenous variables is
located, which file contains the prior for the parameters, the location of optional functions for
transforming the parameters, and the location of the AiM model file. Below the tabs there is
an additional object, the status bar, where text information is displayed as the mouse is moved
over the controls.

All supported values for the selector input variable of YADAGUI are cases of a switch state-
ment and only a subset of the code in YADAGUI is therefore executed for a given value. The
value init, mentioned above, is particularly important as it sets up the main dialog. The most
important GUI-related variable that is created through this value is locally called controls, a
structure with handles to all controls on the main dialog. For instance, there are at most 7
menus on the dialog, where at least 6 of the menus are always displayed while the Edit menu
is only supported for version numbers below Matlab 7. The handle to the file menu is given
by controls.filemenu and the parent of this control is the main dialog itself, locally called
maingui. Items on the file menu, such as the Open Model function, have controls.filemenu as

4 YADA copies certain files to this directory when executing user-supplied Matlab functions; cf. Section 5.4.1.

– 3 –

https://www.gnu.org/licenses/


Figure 1. YADA’s main dialog with the Options tab.

the parent. The handles to the items on the file menu are listed in Table 1. The remaining top
level menu data are listed in Tables 2–9.

When you want to have access to the controls structure from a Matlab function, such as the
file with parameters to initialize (see Warne, 2025, Section 17.3), you only need to include two
commands. They are:

maingui = findobj(’Type’,’figure’,’Tag’,’YADA’);

controls = get(maingui,’UserData’);

The first command locates the handle to the main dialog window and lets the variable maingui

hold its value. The second command retrieves the controls structure which is stored in the
UserData property of the window. By reading the file YADAGUI.m you can see to which controls
all handles stored in the controls structure are related. Notice that Matlab is case sensitive to
that, e.g., maingui and Maingui are different variables.

Some of the controls on the main dialog are always enabled and the user can therefore
interact with them. Other controls, however, are only enabled when certain conditions are met.
For example, whenever a particular tool is based on values on the parameters of the DSGE
model, these values as well as the DSGE model must be available as input to YADA. The DSGE
model is made visible to YADA through the AiM model file and the existence of the parametric
solution of the model, i.e., the file compute_aim_matrices.m.

The four categories of parameter values that YADA supports are the following:

(1) Initial values: starting values for the parameters that can be estimated exist and cali-
brated values for all other parameters.

(2) Prior distribution: random draws from the prior distribution of the parameters that can
be estimated exist on disk along with calibrated values for all other parameters.

(3) Posterior mode: the posterior mode of the DSGE model parameters has been estimated
and exist on disk along with calibrated values for all other parameters.
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(4) Posterior distribution: draws from the posterior distribution of the parameters that can
be estimated exist on disk for the current selection of posterior sampling related options,
as well as calibrated values for all other parameters.

Many of the tools in YADA are capable of dealing with all categories of parameter values. For
instance, impulse response functions can be calculated using any one of the above choices. From
the perspective of extending the set of tools in YADA an important issue is therefore how YADA
learns which parameter values is has access to.

2.2.2. Enable and Disable Controls on the GUI

The file YADAEnableControls contains code that address such existential questions using the
input variables DSGEModel and controls. For example, the existence of initial parameter values
relies on the outcome of the test function VerifyPosteriorModeEstimation. This function is
located in the logic directory, one level below the YADA base directory. If the function reports
the answer 1, then initial values are assumed to exist, while the answer 0 means that they do
not.

The only input variable that VerifyPosteriorModeEstimation accepts is DSGEModel, dis-
cussed in more detail in Section 4. The outcome of the test is 1 if

• The AiM parser has been executed with a positive result, i.e., the so called AiM data file
(a mat-file with the variable data from compute_aim_data.m) has been created in the
output directory, the AiM file needed to solve the DSGE model in the output directory
(compute_aim_matrices.m) exists, and the AiM model file exists on disk;

• The data construction file exists on disk;
• The measurement equation file exists on disk; and
• The state variables and state shocks have been selected among the candidates provided

via AiM and are stored in the currently selected DSGE model file (the name of the file
is displayed within brackets in the main dialog title; see Figure 1).

It is noteworthy that the existence of the prior distribution specification file is not tested
here and that the parameter function files are not checked. The former file is not needed
to obtain the initial parameters values if the posterior mode file exists; all such values can
be inferred via the data stored is that file. The parameter function files (updating and ini-
tialization functions) are optional in YADA. Hence, we may think of the test performed by
VerifyPosteriorModeEstimation as being a necessary but not a sufficient condition for hav-
ing access to the initial parameter values. For instance, the posterior mode estimation controls
are only enabled if the prior distribution specification file also exists on disk. Similarly, tools
for annualized data will only be enabled for the initial parameter values when annualization
information has been properly provided via the data construction file; see, e.g., Warne (2025,
Section 17.5.3).

Tools that require the posterior mode values of the estimated parameters are enabled if the
result from the test function VerifyPosteriorModeEstimation is unity and the posterior mode
data file exists on disk. This file is assumed to be located in the directory mode, one level
below the output directory. The name of the file is PosteriorMode-NameOfModel.mat, where
NameOfModel is replaced with the name of the model; see, e.g., the main dialog title in Figure 1
where the name of the model is AnSchorfheideModel.

Similarly, tools that rely on random draws from the prior distribution of the estimated pa-
rameters are enabled if the mat-file with such draws exists on disk. This file is assumed to
exist in the directory priordraws, one level below the output directory and its name should be
PriorDraws-NameOfModel.mat. As above, NameOfModel is replaced eith the name of the model.
The random draws, in turn, are created by the tool Prior Sampling, located on the Actions menu
and on the toolbar, and this tool will only provide the draws when the prior distribution speci-
fication data can be located and verified to be valid.

Finally, some tools make use of draws from the posterior distribution. They are enabled
when the result from the test function VerifyDSGEPosteriorDraws returns unity. This function
is located in the directory data, one step below the YADA base directory and takes 3 input
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variables: DSGEModel, the current Markov chain (chain number 1 here), and controls. It simply
checks if all the files with posterior draws for the user-selected posterior sampling options exist
in the directory rwm, slice, smc or is, depending on the choice of sampler, one level below the
output directory.

2.2.3. Initialization Information

Information about the font properties of the text controls on the various dialog functions in
YADA are stored in a structure which is locally called CurrINI. This structure also holds infor-
mation about print settings for figures, such as the values of the figure properties PaperUnits,
PaperOrientation, PaperPositionMode, PaperType, and InvertHardcopy. To access the struc-
ture from a Matlab function, you need to add the following command once the controls struc-
ture has been defined:

CurrINI = get(controls.filemenu,’UserData’);

The variable is therefore stored in the UserData property of a menu item, i.e., the file menu.
The default settings for most fields in CurrINI are set in InitializeINIFile.m, located in the
subdirectory \gui\initialize. There is currently not any way the user can change these values
inside YADA, but it is, of course, possible to edit this file.

3. Useful Dialog Functions in YADA

The tools in YADA typically need input by the user or require to display information to the user.
For example, the same tool can have both a sample-based and a population-based metric, where
the user should select which one YADA should compute. Furthermore, results may be provided
both graphically and written to file. To meet these and related requirement, YADA has a supply
of dialog functions that can be reused. When extending the set of tools or when attempting to
interpret the code it is important to know how to make use of these functions. Moreover, other
users will typically assume that the behavior of a program is consistent across the tools when
possible and extensions should therefore at least try to follow the conventions used by YADA.
The discussion in this section will therefore concentrate on the dialog functions that are the
most likely to be useful for YADA extensions; see in Section 5.

3.1. The About and Query Message Box Functions

The About message box function is used to display information to the user. Typically, the infor-
mation concerns something that cannot be performed or error information and the user needs
to click on an OK button to close the dialog. The function accepts 6 input variables: TextStr,
ImageStr, NameStr, height, width, and CurrINI. The variable TextStr holds the main text that
will be displayed on the message box. The string variable ImageStr determines which icon will
be displayed on the dialog. This variable accepts 5 different values: information, question,
warning, error or logo. The last value is the default value so that all non-supported values
will lead to the default value. The images themselves are loaded via the function ReadImages,
located in the directory gui one step below the base directory. This function reads the image
data stored in the mat-file yada-images.mat, also located in the gui directory.

The remaining input variables are optional. The NameStr string variable determines the text
in the figure window title of the About dialog which, if missing, is given by About. Similarly,
the height and the width variables provide the height and the width of the dialog, measured in
pixels. The default values are 124 and 292 pixels. When the height value is provided it actually
gives the maximum height of the dialog. After having set up every control on the About dialog,
the function checks which height is needed to display the text variable TextStr. This is achieved
through the Matlab function textwrap. The last input variable is CurrINI, discussed above in
Section 2.2.3, and it contains the information needed to provide the font data for the String

property of the controls on the dialog.
An example of how the About function is used in YADA is shown in Figure 2. In this case the

so called “Poor man’s invertibilty condition” of Fernández-Villaverde, Rubio-Ramírez, Sargent,
and Watson (2007) has been tested to check if the DSGE model can be rewritten as an infinite
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Figure 2. The About dialog.

Figure 3. The Query dialog.

order VAR model. For the An and Schorfheide (2007) model the invertibility condition is not
satisfied; for details, see, e.g., Warne (2025), Section 11.11. The actual call to About is here
given by:

About(txt,’information’,’DSGE Model To VAR Model - Posterior Mode’,...

120,500,CurrINI);

The txt string variable depends on the output variable status from the DSGEtoVARModel func-
tion. A unit value implies that the invertibility condition is satisfied, zero means that the matrix
on lagged state variables has a unit root, while minus unity means that the number of economic
shocks and measurement errors exceeds the number of observed variables.

The Query message box function is used to display a question to the user that only has two
answers. The answer to the question is typically Yes or No, but it is possible to have other an-
swers as well. The function accepts at most 10 variables: TextStr, ImageStr, height, NameStr,
width, FocusStr, CurrINI, ButtonNameStr, ButtonWidth, and ButtonTxtFile. Only the first
3 variables are required. The first 5 and the 7th input variable serve the same purpose as the
identically named variables in the About function. The ImageStr variable accepts two additional
values: exit and delete, yielding an exit and a delete icon.

The FocusStr variable is made use of for Matlab version 7 or later and can either have the
value Yes or No. The selected value determines if the left (Yes) button is given focus (default),
or if the right (No) button has focus.

ButtonNameStr is a cell array of strings that should have 2 or 3 entries. The default values
is Yes and No, but the user can provide other strings with the variable. For instance, the dialog
for displaying the YADA disclaimer uses this variable to give the strings ’I Accept’ and ’I

Don’t Accept’ for the first two entries of ButtonNameStr. A third entry is also valid, but not
required, and will be placed as the text string on a third button in the bottom left corner of the
Query dialog when present. This button is used to display a text-file in the TextGUI dialog when
clicked on. For the YADA disclaimer example the string value is ’View License’.

The 9th input variable is ButtonWidth which provides the width of all buttons. The default
value is 75 pixels and values below this number are not valid. Finally, the text-file that should

– 7 –



be displayed if the third button is shown is given by the variable ButtonTxtFile. The string
should include the full path and name of this file.

The function provides one output variable, locally called answer. The value is given by the
text string on the Yes and No buttons, while the third button has no effect on this.

To examplify, the YADA displaimer dialog uses the following code:

Answer = Query(TxtStr,’logo’,500,’Appropriate Legal Notices for YADA’,...

600,’no’,InitializeINIFile,...

{’I Accept’ ’I Don’’t Accept’ ’View License’},125,...

[pwd ’\gpl.txt’]);

The TxtStr variable is here a string matrix that holds the disclaimer, while the YADA function
InitializeINIFile provides the initialization information from CurrINI that Query needs.
This function is located in the directory gui\initialize, two steps below the YADA base di-
rectory. Finally, the above code shows the only output variable that the dialog function can
provide, the string vector Answer. Its value is equal to the string vector on the button the
user clicked on. For the example above, the two possible values are ’I Accept’ and ’I Don’t

Accept’.
A more typical example of how the Query dialog function is used in YADA is what happens

when the user runs impulse responses for, e.g., the levels data, using draws from the posterior
distribution. In this case the following code is used:

ShockType = ’Individual’;

if length(DSGEModel.ShockGroups)>max(DSGEModel.ShockGroups);

txt = [’Would you like to view plots of impulse responses for ’ ...

’shock groups instead of for the individual shocks?’];

answer = Query(txt,’question’,200,QueryHead,500,’no’,CurrINI);

if strcmp(lower(answer),’yes’)==1;

ShockType = ’Group’;

end;

end;

The resulting Query dialog is shown in Figure 3 provided that the number of shock groups (given
by max(DSGEModel.ShockGroups)) is less than the number of shocks (equal to the length of this
vector). The variable QueryHead is a string vector that takes the value ’Impulse Responses -

Levels Data’ when impulse responses for the levels has been chosen by the user.

3.2. Displaying Text Data with the TextGUI Function

The common tool for displaying large chunks of text data in YADA is the TextGUI function. An
example of a large chunk of text is the GNU General Public License as shown in Figure 4.

The TextGUI function accepts 8 input variables: TextFile, NameStr, position, AxesBoxText,
AxesBoxWidth, CurrINI, DisplayCopy, and CloseSelf, where the last input is optional. The
TextFile variable is either an actual text file or an string matrix. Both types of input hold the
information that should be displayed in the dialog. The input NameStr holds the figure window
title, e.g., ’GNU General Public License’ as in Figure 4.

The position variable is a 1 × 4 vector with non-negative integers providing the position on
screen of the dialog. The entries are the [left, bottom, width, height] positions measured in
pixels.

The TextGUI dialog has one frame and the string vector for the text at the top right corner
of the frame is given by AxesBoxText, while the width of the string vector, in pixels, is equal
to AxesBoxWidth. In fact, the value of AxesBoxWidth does not matter since AxesBox (which
creates the frame) makes sure that width matches what is required to ensure that AxesBoxText
can be displayed. This is achieved by taking the Extent property of the control into account.
The AxesBox function is located in the gui directory.

The next input variable is the by now well known structure CurrINI, while the 7th input
variable is DisplayCopy. The latter is a boolean variable and if it is equal to unity, then TextGUI

will display a Copy button provided that you are using Matlab version 5.x. In that case, the
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Figure 4. The TextGUI dialog.

copy button makes it possible to copy the content of the dialog to the Windows clipboard. If
you have a more recent version of Matlab, you are using Matlab on a unix or a mac computer,
or if DisplayCopy is 0, then TextGUI will not have a copy button in the bottom right corner.

The last input variable is CloseSelf, a boolean variable that is 1 if TextGUI should deal with
closing itself and therefore let the function that has called it continue directly. The alternative
is that it is equal to 0, implying that the function calling it has to wait until the user manually
closes the TextGUI dialog, and this is the default value of CloseSelf.

As an example, the dialog displayed in Figure 4 is created through the following code:

TextGUI([pwd ’\gpl.txt’],’GNU General Public License’,..

[(CurrINI.scrsz(3)-700)/2 (CurrINI.scrsz(4)-400)/2 700 500],...

’License’,40,CurrINI,1);

The field scrsz of CurrINI is given by get(CurrINI.GraphicsRoot,’ScreenSize’), which re-
trieves the screen size property of the root window, i.e., your screen. The value for this property
is

[

1 1 screen-width screen-height

]

.

You can check this property yourself by typing get(groot,’ScreenSize’) at the Matlab prompt,
or for older Matlab versions get(0,’ScreenSize’). From version 2014b and later of matlab,
the groot function should be used instead of 0 in the get call. You may also notice that the
optional CloseSelf is not used in the above call to TextGUI. Hence, the default value of 0 is
given to the variable.

Finally, notice also that the field GraphicsRoot of the structure CurrINI is equal to 0 if the
builtin matlab function groot does not exist, and equal to groot otherwise.

3.3. The WaitDLG and ProgressDLG Functions

When YADA is performing time-consuming calculations it typically provides information about
the status of the computations. There are two functions for providing such information called
WaitDLG and ProgressDLG. Both functions can be updated with new information and the prac-
tise used in YADA is that the latter function provides more frequent updates while the latter
is updated more sparsely. For example, when running the random-walk Metropolis algorithm,
the ProgressDLG is used when the option “Show dialog during optimization and posterior sam-
pling” in the Progress Dialog Selections frame on the Settings tab is check marked. In that case
it is updated for every draw from the proposal density. In contrast, if this option is not check
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Figure 5. The WaitDLG dialog.

marked, the WaitDLG dialog is shown, but is never updated during the random-walk Metropolis
step for a given Markov chain.

The WaitDLG function accepts the 7 input variables TextStr, ImageStr, NameStr, width,
height, CurrINI, and ShowCancel. The TextStr variable is a string matrix with the text that
should be displayed on the dialog, while ImageStr is a string vector that determines which
icon is displayed on the dialog. The latter variable accepts the values information, question,
warning, error, and the default value logo. Furthermore, NameStr is a string vector that
determines the text displayed in the figure window title, whereas width and height hold the
dialog width and height values in pixels. Next, CurrINI keeps the usual font property data for
the dialog and, finally, the optional boolean variable ShowCancel is unity if a Cancel button
should be displayed on the dialog, and the default value zero otherwise.

The WaitDLG dialog shown in Figure 5 is created with the following code:

if IsPosterior==1;

txt = [’Please wait while YADA computes the posterior mean...’];

else;

txt = [’Please wait while YADA computes the prior mean...’];

end;

WaitHandle = WaitDLG(txt,’information’,...

[’Impulse Responses’ PriorHeader ’ - ’ TypeStr ’ Data’],...

500,150,CurrINI,0);

WaitControls = get(WaitHandle,’UserData’);

The boolean variable IsPosterior is unity if posterior draws have been used for the impulse
responses and 0 if prior draws were used. The PriorHeader string depends on IsPosterior

as well and is empty for the posterior draws. The TypeStr string vector supports the values
Original, Annualized and Levels.

The handle to the dialog is the only output variable of the WaitDLG function and is here called
WaitHandle. It is used to retrieve data from the dialog as well as to close it. For example, the
variable WaitControls, stored as the UserData property of the dialog, is a structure that holds
all the handles to the controls on the dialog. This means that it we wish to update the text on
the dialog we do that via the handle to the control that holds the txt data. The field text is
used for this. Hence, we may consider the following:

set(WaitControls.text,’String’,txt);

where txt is here assumed to hold an updated string matrix with the text for the dialog. This
code can, for example, be executed inside a for-loop. To ensure that the dialog is properly
refreshed I would also recommend to add the calls drawnow and pause(0.02) below the set

call.
The final step is to close the WaitDLG dialog. To do so we change the UserData property of

the text control from its original value working to done. The following code will take care of
this:
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Figure 6. The ProgressDLG dialog.

set(WaitControls.text,’UserData’,’done’);

delete(WaitHandle);

The ProgressDLG dialog is based on the Matlab function waitbar. The progress dialog is
initialized by calling it with 2 input variables: x and whichbar. The scalar x is normally set
to 0 since it measures the progress between 0 and 1. The variable whichbar is a structure
with fields name, title, label, facecolor, startfacecolor, bgcolor, edgecolor, stop, clock,
and CurrINI. The name field is equal to a string vector with the figure window title, while
the title field holds a string vector with the title text above the progress-bar. Similarly, the
field label gives the string vector shown direcly below the progress meter. As an example,
see Figure 6 where name starts with Random Walk, title begins with Progress for, and label

with Acceptance.
The fields facecolor and startfacecolor determines the color of the progress-bar when it

has performed 100 percent of the tasks and 0 percent, respectively. The facecolor property of
the underlying patch object is set by these fields and the color is thus determined by a 1 × 3
vector with values between zero and one, representing the degree of red, green and blue. The
transition from startfacecolor to facecolor is handled by ProgressDLG. The bgcolor field
holds the background color of the bar. YADA always uses white, i.e., the 1 × 3 vector [1 1 1].

The color of the edges of the progress meter is determined by the field edgecolor. YADA
always uses black, i.e., it sets edgecolor to [0 0 0]. The stop field is unity if a done button
should be displayed next to the cancel button on the dialog, and 0 otherwise. There is currently
no case where stop is set to unity in YADA.

The field clock is unity if a clock should be displayed on the dialog and 0 otherwise. The
option “Show clock on dialog” in the Progress Dialog Selections frame on the Settings tab deter-
mines if a clock should be shown on the progress dialog or not.

To initialize the progress dialog in YADA the following code can be used:

WaitHandle = ProgressDLG(0,ProgressStructure);

set(WaitHandle,’Color’,get(CurrINI.GraphicsRoot,...

’defaultuicontrolbackgroundcolor’));

The only output variable supported by ProgressDLG is WaitHandle, the handle to the dialog. It
is assumed that the structure ProgressStructure has been defined as discussed above. Updat-
ing of the dialog can be performed via the following code inside a for-loop:

abort = get(WaitHandle,’UserData’);

if strcmp(abort,’cancel’)==1;

break;

else;

ProgressDLG([NumDraws/TotalDraws AcceptanceRatio]);

end;

If the user has clicked on the cancel button, this changes the UserData property value of the
progress dialog itself. Specifically, its value is set to cancel and the for-loop should therefore
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Figure 7. The SelectionDlg dialog.

be terminated immediately. In the event that the cancel button has not been click on, the
dialog receives only the input variable x which is now a 2-dimensional vector where the first
element is a value between 0 and 1 given the degree of progress (number of draws that have
been completed relative to the total number of draws to be performed), and the second element
holds the updated value that should be applied to the label field discussed above, i.e., the
string vector below the progress-bar.

Finally, to close the dialog the code

set(WaitHandle,’UserData’,’done’);

close(WaitHandle);

should be executed. The interpretation of this is similar to the code that closes the WaitDLG

dialog.

3.4. Dialog for Single Popup Selection

In some situations it is necessary that the user chooses a particular value of a single variable
that can take on a large range of values. One suitable control for such a selection issue is the
popup control, i.e., a uicontrol whose Style property is set to popupmenu. The SelectionDlg

dialog in YADA covers such a case. Figure 7 gives an example of how this dialog can look like.
The SelectionDlg function accepts 8 input variables: SelectionOptions, DefaultOption,

SelectionStr, BoxStr, WindowNameStr, CommentsStrMat, CommentNameStr, and CurrINI. The
variable SelectionOptions is a string matrix with all the possible values that the user can
select. The default value is given by DefaultOption, an integer that takes on values between 1
and the number of rows of SelectionOptions.

The string vector SelectionStr gives the text directly above the popup control with the
options that the user can choose between. Next, the string vector BoxStr is equal to the frame
text, while the string vector WindowNameStr is the figure window title.

The next two input variables are typically empty strings and, when not, concern an optional
button that can be used to display the text in the string matrix CommentsStrMat. The fig-
ure window title that is displayed when the button is clicked depends on the string vector
CommentNameStr. The final input variable is the famous CurrINI structure with various initial-
ization data.

The dialog in Figure 7 is produced by the following code:

[action,BreakPeriod] = SelectionDlg(SampleStrMat,ParamScenarioValue,...

’Select scenario start period:’,’Parameter Scenarios’,...

’Posterior Mode Parameter Values’,’’,’’,CurrINI);

The function provides two output variable, locally called action and SelectedOption. The
first is a string vector that can take on the values OK and Cancel based on the button the user
clicked on. The second output variable is an integer value for the selected row in the input
string matrix SampleStrMat. If the user has not changed the popup control data it is equal to
DefaultOption.
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Figure 8. The SelectCondVarShockDLG dialog.

3.5. Dialog for Multiple Entities Selection

It is sometimes useful to be able to select or deselect multiple entities, such as variables or
parameters, from a single dialog. YADA uses such a dialog for selecting the parameters that
are allowed to vary when using draws from the prior and the posterior distributions. It also
uses this type of dialog when selecting which conditioning assumptions to use in a conditional
forecasting exercise.

The function SelectCondVarShockDLG takes one required and 5 additional input variables.
The first input variable is locally called selector, which determines which case function is
executed. The other 5 input variables are required when selector is equal to ’init’, i.e.,
when the dialog is initialized. For all other supported values of selector, these other input
variables are not used.

The 5 additional variables are localled called vartype, infotype, AllVars, positions, and
our old friend CurrINI. The strings vartype and infotype are used to set up the dialog window
title and the frame text. The string matrix AllVars contains all names of variables or parameters
that should be displayed in check boxes on the dialog. The vector positions gives the positions
of the variables or parameters that are selected by default.

The first required output variable is the string vector action which indicates if the user has
clicked on the OK or on the Cancel button of the dialog. The second required output variables is
the vector positions which, like the input variable with the same name, indicates the positions

of the variables or parameters that the user has check marked.5

The dialog in Figure 8 was created with the following code:

[Action,positions] = SelectCondVarShockDLG(’init’, ...

’Autocorrelation Distribution’,’Parameters For’, ...

ParameterNames,positions,CurrINI);

The string matrix ParameterNames holds the names of all the parameters that can be estimated
in its rows. When creating the dialog, the function SelectCondVarShockDLG chooses default
number of columns and rows for the dialog based on the number of parameters. The number of
columns is determined first and is first set to the minimum of the square-root of the number of
parameters rounded upward and 9. Should this number be less than the minimum of 4 and the
number of parameters, the number of columns is set equal to that number. Next, the number
of rows for the dialog is equal to the number of parameters divided by the number of columns
rounded upward.

5 YADA also has an alternative function for multiple entities selection. It is called SetStateVarsShocksDLG and it

primarily differs from the function SelectCondVarShockDLG in that it also gives the names of the selected entities

as an output variable and has this as in input variable. Moreover, the input variable infotype is not supported by

that function.

– 13 –



4. The DSGEModel Structure

In this section I will focus on the fields in the DSGEModel structure. We shall first look at
the fields that concern the user-written input files for the AiM model, the data construction
file, the measurement equations, the prior distribution specification, and additional parameter
functions. Next, we look in more detail at the fields that YADA sets up based on the specific
information in the data construction file, such as the data on the endogenous and exogenous
variables, names of variables, and so on. We then look at the fields of DSGEModel that are related
to AiM, including the selection of state variables and state (or structural) shocks. The sample
selection related fields are discussed in the following section, while the fields that are used
in forecasting are discussed next. The fields concerned with optimization related features are
presented thereafter, before we turn to fields that affect how posterior sampling is performed.
After we give some attention to a number of fields that are connected with graphic selections
we consider fields linked with analysing a Bayesian VAR model with a steady-state prior.

Before we turn to these issues, however, the structure needs to be retrieved. The following
command will take care of this matter:

DSGEModel = get(controls.open,’UserData’);

The open field of the controls structure holds the handle to the Open Model control on the
toolbar. The UserData property of this control holds the DSGEModel structure whose fields are
discussed next.

4.1. Fields in DSGEModel Related to User Files

Most of the fields that are related to user files in YADA are also linked to controls on the DSGE
Data tab on the main dialog. Table 10 lists the fields of the DSGEModel structure that concern
the user files, some additional settings, and the controls on the DSGE Data tab.

First of all, the data construction file, discussed in more detail below in Section 4.2, is stored
as a string in the text control controls.dsge.datafile. The field name for the DSGEModel

structure is here given by DataConstructionFile.
The measurement equation file location data is stored in the field MeasurementEquationFile,

while the prior distribution specification file location is given by the field PriorFile. If the
latter file is an Excel spreadsheet, then the field PriorFileSheet holds the sheet name string.
For models with a system prior, the field SystemPriorFile holds the path and name of the
system prioe file.

Two functions for transforming parameters are given by the fields InitializeParameterFile
and UpdateParameterFile, where the former only computes calibrated parameters and the
latter parameters that are functions of the parameters that can be estimated. The order in
which these two functions are executed can be influenced via the field RunInitializeFirst.
Since the file with parameters to initialize can only be executed when initial values are used for
the parameters that can be estimated, or when the posterior mode estimation routine is started
up, this ordering is only important in some very special cases.

The full path and the name of the AiM model file is stored in the field AIMFile, while the
name of the model is given via the NameOfModel field. The latter is often used to uniquely
identify a given DSGE model directly or its output. In fact, when YADA sets up a candidate
output directory, another field of the DSGEModel structure, it makes use of the NameOfModel

field. Furthermore, the field name of the output directory is OutputDirectory. Additional
fields concerned with the AiM part of YADA are discussed in Section 4.3.

Finally, in case a dynare model file is used as the basic DSGE model equations, the field
DynareModelFile holds the path and name of this file.

4.2. Fields in DSGEModel Related to Observed Data

All fields related to the observed data in the DSGEModel structure except two are read from the
data construction file. Table 11 lists the fields alphabetically.

The most important fields concern the actual data, variable names, and a mapping to the
sample of the data points. Specifically, the field Y is an n × T matrix with the T data points
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for the n observed (endogenous) variables in the rows. The names of the individual variables
are stored in the string matrix, accessible through DSGEModel.VariableNames. The number of
rows of this matrix is equal to n, while the number of columns is equal to the longest name
of an individual variable. For any variable whose name has fewer characters than the longest,
the row is appended with space characters. The dimensions of DSGEModel.Y are stored in two
separate fields to DSGEModel, called n and T. The field YNaNs provides an indicator if Y has
missing observations, represented by NaN, or not. In the former case the field has a value of
unity, while it is zero for the latter case.

Data for the exogenous variables is found in the k × T matrix X, while the field k gives the
number of such variables. The names of the exogenous variables are given in the rows of the
string matrix XVariableNames. In order to perform out-of-sample forecasting, additional data
point for the exogenous variables can be found in the k × Tp matrix DSGEModel.PredictedX.
YADA assumes that the data in this matrix follows directly after the data in DSGEModel.X. If the
data on observed and exogenous variables should also be used for estimating a Bayesian VAR
model with a steady-state prior (see Section 4.12 below or Warne, 2025, Section 14, for more
details), the vectors BVARY and BVARX with unique integer values between 1 and n and 1 and k,
respectively, will determine which variables are included in such a model.

The vector structure Actuals has two subfields, data and title, which can hold alternative
actuals of the observed variables. The data subfield is then an n× Th matrix with Th ≥ T , while
the title subfield is a string vector with a name (or title) of the data in question. Severeal
such alternative datasets may be included and these are setup in the data construction file. A
typical use of such alternative observed data is in a forecasting exercise using real-time data,
where more than one set of actual observations can be relevant when computing, e.g., the
predictive likelihood in density forecasting comparisons; see, e.g., Croushore and Stark (2001)
and Croushore (2011a,b).

Information about which variables can be annualized and how it is achieved is located in
the vectors annual and annualscale. Elements of the former that are unity indicate the corre-
sponding observed variable is already annualized, 4 means that it is annualized by adding the
current and past 3 quarters for an annualized difference, while 12 means that annualization is
achieved by adding the current and previous 11 months of the variable. Similarly, the vector
annualscale holds constants that should be multiplied by the resulting value from the additions
indicated by the elements of annual. For some tools (like impulse responses) it is also useful to
be able to calculate the effect on the levels of the observed variables. The vector levels indi-
cates if a variable is in levels (1) or first differences (0). Individual transformation functions for
the observed variables can be found in the field YTransformation, while joint transformations
may be applied after the individual through the matrix YTransMatrix. Such data is provided
by the user in the data construction file and more details can be found in the YADA Manual; see
Warne (2025, Section 17.5.1).

The original sample date information is stored in 5 string fields: BeginYear and BeginPeriod

for the first data point in the matrix DSGEModel.Y, and EndYear and EndPeriod for the T :th and
last data point, while the field DataFrequency is a string with values a (annual), q (quarterly),
or m (monthly). The BeginYear and EndYear string can be converted to integers via the Matlab
function str2num, with the value of the converted EndYear field being greater than (or equal
to) that of the converted BeginYear field. Similary, the fields BeginPeriod and EndPeriod can
be converted to integers via the same Matlab function. The period entries measure the quarter
number or the month number, depending on the frequency of the data.

When a user wishes to undertake conditional forecasts it is necessary to provide information
on the conditioning assumptions. The general setup for conditional forecasts is discussed in
the YADA Manual (Section 12.2) where a mapping from current and past observed variables
along with initial conditions to the current conditioning assumptions is shown (see also Sec-
tion 17.5.6 of the YADA Manual). The data points for the conditioning assumptions are given
in the m × Tz matrix DSGEModel.Z, where the last observation for the selected sample on the
the observed data appears in a time period prior to period Tz. The names of these variables
are available in the field ZVariablesNames, a string matrix with m rows. The relation between
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current observed variables and current conditioning assumptions is located in the field K1, an
n ×m matrix, while the link between lags of the observed variables and the current condition-
ing assumptions is given by K2. The initial conditions for the relationship between the observed
variables and the conditioning assumptions are found in U, an m× Tz matrix. It is important to
note that the first data point of Z and U is assumed to be from the same calendar date as the
first data point in Y and X. The current choice of conditioning assumptions from Z is given by
the vector ConditionalVariables, while the shocks that are manipulated to ensure that these
assumptions are satisfied is given by the vector ConditionalShocks.

It is also possible to compute conditional forecasts based on assumptions for the (unobserved)
state variables. Moreover, these conditioning assumptions can be combined with the assump-
tions for observed variables. The general setup for such conditioning assumptions is dicussed
in the YADA Manual; cf. Section 13.4. The data for the state variable assumptions are given
by the qz × Tz matrix DSGEModel.Zeta, where the last observation for the selected sample on
the the observed data appears in a time period prior to period Tz. The names of the state
variable assumptions are given by the field ZetaVariableNames, a string matrix with qz rows.
The relation between the current value of the state variables and the current value of the state
variable assumptions is given by K3. The current choice of conditioning assumptions from Zeta

is given by the vector ZetaConditionalVariables, while the shocks that are manipulated to
ensure that these assumptions are satisfied is given by the vector ZetaConditionalShocks.

YADA supports having a zero lower bound on the monetary policy rate; cf. Warne (2025,
Section 3.4). Two of the DSGEModel fields are generated from data contained in the data con-
struction file. They are called ZLBData and ZLBPosition in the DSGEModel structure and are
collected from the subfields Y.ZLBdata and Y.policyrate of the output structure from the data
construction file. The former gives a vector with values of the “zero” lower bound, where having
a vector makes it possible for this lower bound to be time-varying. The latter subfield gives the
position of the monetary policy rate among the observed variables.

The choice of percentiles for plotting various distributions is also given via the data construc-
tion file. In terms of the DSGEModel structure, the field Percentiles is a vector that holds an
even number of elements with values greater than 0 and less than 100, sorted from the smallest
to the largest. These values are used to construct confidende bands when plotting distribu-
tional features of the DSGE model, such a the predictive distributions. If the vector is, e.g.,
given by [5 20 70 90], then YADA creates an 85 percent confidence band using the first and last
elements, and a 50 percent band using the middle two elements.

The two fields related to the observed data that are not read from the data construction file
are ObsVarGroupNames and ObsVarGroups. These are instead stored in the DSGE model file. The
number of observed variable groups is less than or equal to the number of observed variables,
and each variable must belong to exactly one group. The names of the observed variable groups
are located in the field ObsVarGroupNames, a string matrix, while ObsVarGroups is a vector
of length equal to the number of observed variables and whose elements are integer values
between 1 and the number of groups. By default the ObsVarGroupNames is equal to the field
VariableNames, while ObsVarGroups is a vector from 1 to the number of observed variables.

4.3. Fields in DSGEModel Related to AiM

There are a few fields in DSGEModel that are linked with certain AiM data. Most of them are
based on output from parsing of the AiM model file. For example, once the AiM parser has
finished its work and YADA has concluded that parsing may have been successful, it attempts
to execute the function compute_aim_data that the AiM parser writes to the output directory.
If YADA can also run this function successfully it stores the output variables from this function
in a mat-file whose full path and name is given by the field AIMDataFile. Among other things,
the output holds then names of all parameters and all variables that AiM has located in the
AiM model file. Since AiM does not make any distinction between what YADA views as state
variables or as state (structural) shocks, it is necessary for YADA to learn directly from the user
which variables among those located by AiM should be interpreted as state variables, which are
state shocks, and which equations are state equations. The latter equations are those that when
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the model is solved forward expresses the state variables as functions of past state variables and
current shocks.

The selection of such variables and equations is handled via the toolbar or the Actions menu
functions “Set State Variables”, “Set State Shocks” and “Set State Equations”; see, e.g., Table 5.
The names of the selected state variables are stored in the field StateVariableNames, while
those of the state shock are kept in StateShockNames and the names of the state equations
in the field StateEquationNames. These three fields hold string matrices where each name is
given in one row. In addition, the field ShockAliases holds alternative names for the shocks
such that, e.g., if etaR is the name of the shock in StateShockNames, then its alias may be
interest rate shock. Moreover, the selected state variables and shocks have a given position
in the list of all the variables in the AiM model. These positions are stored by YADA in the vectors
StateVariablePositions and StateShockPositions, respectively. Similarly, the positions of
the state equations among all the equations in the AiM model file are stored in a vector called
StateEquationPositions. These three vectors with positions of state variables, equations, and
shocks are used when selecting which elements of the solution matrices (or the structural form
matrices) provided by AiM that YADA should use.

Each state (structural) shock can be linked to a certain group of shocks in YADA. For example,
some shocks in the DSGE model may be demand related, while others concern supply. Shock
groups can be used in YADA with tools such as variance decompositions, impulse responses, and
observed variable decompositions. The structure DSGEModel has two fields where shock group
data are stored. The number of shock groups is less than or equal to the number of state shocks,
and each shock must belong to exactly one shock group. The names of the shock groups are
located in the field ShockGroupNames, a string matrix, while ShockGroups is a vector of length
equal to the number of state shocks and whose elements are integer values between 1 and the
number of shock groups.

The field ModelSolver is an integer that determines which DSGE model solution algorithm
is used. Apart from AiM (see Anderson and Moore, 1985, or Anderson, 2008, 2010), YADA
internally supports the QZ decompositions based approaches of Klein (2000) and Sims (2002).
The default is to use gensys by Christopher Sims, implying that ModelSolver is 3. In addition,
YADA supports external DSGE model solvers provided that they have exactly the same input
and output variables as the Sims and the Klein solvers. The field ModelSolverFile provides the
path and filename of the selected external solver.

The final field in DSGEModel that concerns AiM is AIMTolerance. This integer can be mapped
into the tolerance level that not only AiM but also the other model solving algorithms should
use. The choice of tolerance level affects both the upper bound for the modulus of the roots of
the reduced form solution, and a conditioning number with respect to non-singularity (inver-
sion) and to compute the numerical part of the left invariant subspace of H via the orthogonal-

triangular (qr) decomposition.6 The numerical tolerance is 0.000001 by default. Normally,
there is no need to change this value, but alternative values are supported by YADA through
controls in the Kalman Filter Selections frame on the Settings tab.

4.4. Fields in DSGEModel Related to Sample Selection and the Kalman Filter

Data about the sample to use for estimation of the DSGE model as well as how to initialize
the Kalman filter are also stored in the DSGEModel structure; see Table 13. In YADA these two
features are interlinked since a training sample can be used for the Kalman filter and during
that part of the sample, the value of the log-likelihood function is not affected. The so called
selected sample is made up of both the training sample and the sample used for evaluating the
log-likelihood. By default, the latter sample is equal to the selected sample, while the training
sample is empty.

6 See, e.g., the AiMReducedForm and AiMNumericShift functions for details, or write help cond, help rcond or

help qr at the Matlab prompt. The matrix H is constructed from the Hi matrices presented in, e.g., equation (4.2)

of the YADA Manual; cf. Warne (2025).
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The selected sample is stored in DSGEModel via 8 variables, 4 strings and 4 integers. The start
year is given by the fields SubBeginYear and SubBeginYearValue. The former is a string giving
that actual year, while the latter is an integer giving the row number in YearStrMatrix that is
equal that year. The field YearStrMatrix is a string matrix with all years between the BeginYear

and the EndYear fields that were discussed in Section 4.2. If, for example, BeginYear is ’1980’
and EndYear is ’2008’, then YearStrMatrix has 29 rows. When SubBeginYear is equal to
’1985’ this means that SubBeginYearValue is equal to 6.

Similarly, the fields SubBeginPeriod and SubBeginPeriodValue stores the first period used
in the sample as a string and as an integer, respectively. For this case, all possible period values
are available in the string matrix PeriodStrMatrix. Moreover, the end of the selected sample
is covered via the fields SubEndYear and SubEndYearValue for the year, and by SubEndPeriod

and SubEndPeriodValue for the period of that year. The function that is used for setting up
these variables appropriately is called CreateEstimationSampleValues and is located in the
directory data, one level below the base directory.

The first observation of the sample used for evaluating the log-likelihood function, i.e., the
first period after the training sample, is given by the integer KalmanFirstObservation. This
variable gives the absolute position of that observation in the sample with integer dates 1 to Te,
where 1 is equal to the data point represented by (SubBeginYear,SubBeginPeriod) and Te is
equal to the data point (SubEndYear,SubEndPeriod). When the selected sample is equal to the
full sample of observations, then Te = T .

The Kalman Filter is initialized through the location vector and the 1-step ahead forecast
covariance matrix of the state variables for period 1 of the selected sample. The location value
is by default equal to zero, but variable specific values can be selected. The vector given by
the field InitialStateValues stores the choice of such values, while UseOwnInitialState,
a boolean variable, is unity if the user-selected values should be used, and zero if the initial
location of the state variables is equal to the default zero (steady-state) values.

YADA supports three ways of specifying the choice of initial 1-step ahead forecast covariance
matrix for the state variables. The integer variable in the field UseDoublingAlgorithm is equal

to 1 or 2 if the covariance matrix should be given the unconditional covariance matrix,7 3 if
it should be given by a large constant times the identity matrix, and 4 if exact diffuse initial-
ization should be performed. The first choice means that the long-run matrix is solved via the
state equation using the (slow) analytical vectorization form, while the second choice leads to
using the (fast) numerical doubling algorithm. For the latter case, the fields DAToleranceValue
and DAMaximumIterationsValue determine the tolerance value and the maximum number of
iterations, respectively, that are applied with the doubling algorithm. The third choice for pa-
rameterizing the 1-step ahead forecast covariance matrix of the state variables requires setting
a constant. The field StateCovConst determines the choice of that constant, where the constant
can take on values from 100 to 10,000 thereby providing a diffuse initialization of the Kalman
filter computations.

YADA supports four approaches to computing the value of the log-likelihood function with the
Kalman filter. The first method is the standard or original Kalman filter (Kalman, 1960) which
is discussed in many textbooks on time series analysis; see, e.g., Anderson and Moore (1979),
Durbin and Koopman (2012), Hamilton (1994), and Harvey (1989). The standard filter, where
the 1-step ahead state covariance matrix is updated directly, will in most situations suffice.
However, it is possible that rounding errors and matrices being near to singularity can produce
state covariance matrices that are not positive semidefinite. As a technique for coping with
this difficulty YADA supports square root filtering; see Anderson and Moore (1979, Chapter 6.5)
or Durbin and Koopman (2012, Chapter 6.3). This filter guarantees that the state covariance
matrices are positive semidefinite, but is therefore also slower than the standard filter. Next,
YADA supports the univariate approach of Kalman filtering and smoothing, discussed by, e.g.,
Koopman and Durbin (2000) and Durbin and Koopman (2012, Chapter 6.4), and finally the
so called Chandrasekhar recursions (see Morf, Sidhu, and Kailath, 1974) can be selected for

7 The matrix is not really unconditional since it depends on the parameter values of the DSGE model.
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covariance stationary models with a constant mapping between the state variables and the
observed variables; see also Anderson and Moore (1979, Chapter 6.7). As a consequence,
missing observations are not supported by the Chandrasekhar recursions. The value of the
field KalmanAlgorithm determines which of these four approaches is used when computing the
log-likelihood, where the default is to use the standard filter.

The DSGEModel structure also has two fields that make it possible to allow for unit roots.
The first such field is the boolean variable AllowUnitRoot. If this variable is unity, then YADA
assumes that the DSGE model has unit roots and that any state variable can be subject to such
roots. As a consequence, the 1-step ahead forecast state variance matrix is initialized by a
constant times the identity, i.e., the UseDoublingAlgorithm field is assumed to be 3. The value
of the field AllowUnitRoot is, by default, 0, but its value can be controlled by the user via the
Allow for undefined unit roots option in the Kalman Filter Selections frame on the Settings tab.

A second method for allowing for unit roots is handled via the field UnitRootStates. This
vector holds the positions of the state variables that are unit root processes. To determine those
positions, the user needs to run the Specify Unit Root State Variables tool on the Actions menu;
see, e.g., Table 5. When this vector is not empty, the Kalman filter need not be initialized by
setting the 1-step ahead forecast state variance matrix equal to a constant times the idenity
(unless this has already been selected by the user). Intead, this matrix is initialized by the
selected method for all state variables that are stationary, while only those that have a unit root
are assigned a constant variance and 0 covariance to all other state variables.

Whenever the DSGE model is specified as having unit roots, YADA disables all functions that
requires the “unconditional” covariance matrix of the state variables to exist. Accordingly, tools
such as the observed variable correlations can no longer be executed.

4.5. Forecasting Related Fields in DSGEModel

Some of the fields in DSGEModel concern forecasting and simulation related settings. The rele-
vant fields are listed alphabetically in Table 14.

The forecasting methods are discussed in detailt in Section 12 of the YADA manual; see
Warne (2025). Whenever you run an out-of-sample forecast tool in YADA it simulates paths
for the observed variables. The number of such paths per value of the vector of estimated
parameters is identifiable via the field NumPredPathsValue. The minimum non-unit number of
paths is equal to 100, corresponding to NumPredPathsValue being unity, while the maximum
number of paths is 1,000,000 so that NumPredPathsValue is 185. It is also possible to select just
one path per parameter value which amounts to having NumPredPathsValue being 186!

The selected number of paths is also used when computing sample related statistics, such as
sample-based moments of the observed variables from the perspective of the model. Whenever
data is simulated and more than one draw from the posterior distribution is used, the number of
parameter draws is determined by the field PostDrawsUsageValue. If the selected value for this
field implies, say, 500 draws from the posterior and the selected number of paths per parameter
value is 500, it follows directly that the total number of paths is 250,000.

If the sample mean of the prediction paths should be exactly equal to the population mean of
the forecasts, the boolean variable AdjustPredictionPaths is unity. If the number of paths is
large enough, the sample and population mean will be very close. Hence, the main interest of
this option is when one wishes to estimate the population mean of the predictive distribution.

The maximum number of out-of-sample forecast per path that the user wants to study is
stored in the field MaxForecastHorizon. The value of this field is binding provided that either
the out-of-sample data on the exogenous variables covers the whole forecast sample, or the
model does not have any exogenous variables. When both conditions are violated, the length
of the forecast sample is determined by the number of consecutive data points in the forecast
sample for which data on the exogenous variables exist.

Before attempting to estimate the predictive distribution in YADA, it is possible to define
prediction events. Such events concern the observed variables over the forecast sample and are
defined by a lower and an upper bound for each variable as well as a length of the event. For
instance, a prediction event can be defined for GDP growth such that the number of times it
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is less than or equal to zero for at least two consecutive periods is recorded. This number is
compared with the number of times the event can occur. For example, if the forecast sample
is 8 periods and the total number of prediction paths is 100, then the number of times this
event can take place is 700. While running a predictive distribution estimation tool, the field
RunPredictionEvent is a boolean variable that is unity when the user has selected to run
prediction events, and zero otherwise.

Conditional forecasting in YADA can be performed through three related methods. The first
is to compute values for specific shocks such that the conditioning assumptions are satisfied,
the second is to draws shocks from a normal distribution that has a mean and a covariance
matrix which guarantee that the conditioning assumptions are met, while the relies on a subset
of shocks being drawn from a normal distribution conditional on the remaining shocks that has
a mean and a covariance matrix which ensure that the conditioning assumptions are satisfied.
The field ShockControlMethod indicates which one of these methods the user has opted to use.

Moreover, the user can also choose how the distribution of the state variables in the last
historical time period should be parameterized. The first option is to use a smooth estimate of
the state for that period along with a smooth estimate of the state covariance matrix when only
data on the observed and exogenous variables up until the same time period is used. That is, the
conditioning assumptions are not included in the information set for the smooth estimator. The
second possibility is to include that information for the smoother. The latter method is preferred
from a theoretical perspective, but is more costly from a computation perspective. Moreover,
these two estimators of the first and second conditional moments of the state variables need
not be all that different. The field KsiUseCondData is zero if the first method is chosen and
unity if the second should be used. For both methods, the simulation of paths are initialized
by drawing a value for the state variable in the last period before the forecast sample from a
normal distribution with mean and variance given by the selected method.

4.6. Optimization Related Fields in DSGEModel

The most important optimization related settings in YADA can be changed via controls in the
Optimization frame on the Options tab; see, e.g., Figure 1. The fields in DSGEModel that record
these settings as well as some other posterior mode estimation related settings are shown in
Table 15.

The choice of optimization routine and the selected parameters to target (transformed or
original) is stored in the field MaximizeAlgorithmValue. YADA supports four optimization
routines: csminwel by Christopher Sims, newrat by Marco Ratto and which is included in
Dynare, Dynare’s gmhmaxlik, and fminunc from the Optimization Toolbox. The former ships
with YADA, while the latter can be used provided that the user (i) has the toolbox, and (ii)
has made use of the diff-files that can be downloaded from YADA’s homepage. The selection of
optimization routine can only be changed from the default value csminwel when YADA is able
to locate the necessary files for fminunc.8

The maximum number of iterations for the selected optimizer is determined via the field
OptMaxIterationsValue, while the tolerance level is given through OptToleranceValue.

The inverse Hessian needs to be initialized when csminwel is the selected optimization rou-
tine. The default in YADA is the constant 0.001 times the identity, but other constants can also
be chosen. In addition, it is also possible to use a diagonal matrix where the diagonal elemenst
are given by the sample variance for 5,000 draws from the prior distribution of the parameters
that can be estimated. The field InitializeHessian stores the selected option.

An additional field that concerns csminwel is CsminwelExtraRuns. This integer determines
the maximum number of times that csminwel may be executed after the original optimization
run. Provided that this maximum number of at least equal to 1, the original optimization run has
converged but the gradient is larger than the tolerance level, then YADA can optionally rerun

8 See the Frequently Asked Questions section in YADA’s help file, or have a look at YADA’s Online Help.
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csminwel with the latest values for the parameters as input, while the inverse Hessian is re-
initialized accoridng to the InitializeHessian field. The default value of CsminwelExtraRuns
is 0, but values up to 20 are also supported.

YADA can check the surface of the posterior distribution around the mode; see Warne (2025,
Section 7.2). The field CheckOptimum determines if this tool should be executed in connection
with posterior mode estimation. The user can also decide if the optimum should be checked
for both the original and the transformed parameters. YADA will only check the optimum for
the transformed parameters when the field CheckTransformedOptimum is unity, and both sets
of parameters when it is zero. The controls for making the selection are located in the Tools
frame on the Miscellaneous tab.

The check optimum function uses a grid to select values for the parameters. The width of the
grid is given by the field GridWidth, while the number of points around the mode is determined
via the field NumberOfGridPoints.

During optimization, a wait dialog (see Figure 5) or a progress dialog (see Figure 6) will be
shown. The preferred alternative can be selected in the Progress Dialog Selections frame on the
Settings tab. Since the progress dialog needs to be updated at the beginning of each iteration,
the optimization run is slower under this alternative. The field ShowProgress is unity when
the progress dialog should be shown, while it is zero if the wait dialog should be displayed
instead. An additional item can be shown on the progress dialog, namely, a timer. The field
ShowProgressClock is unity when the user wants to add this clock, while this field does not
affect the behavior of the wait dialog.

The progress dialog can be shown also when running posterior draws, when estimating the
predictive distribution, when using draws from the prior and posterior distributions, etc. The
value for ShowProgress is used for all such situations.

When initializing posterior mode estimation, YADA will ask if the user would like to import
previous parameter values for the DSGE model under rational expectations as well as subject
to adaptive learning. The import files are standard matlab mat-files and are required to hold
certain variables and are best files that YADA has stored previously. One case when this is useful
is when optimization has been cancelled by the user who has selected to save the obtained
results to disk. These results can then be imported at a later time as initial values and used for
optimization. This possibility requires that either csminwel or newrat are used as optimizers.
Another case is during model development and where, say, posterior mode results are available
from a previous model version. This file can then be utilized for initial values when optimizing.
YADA will compare the parameter names and import the values of the common parameters as
well as the inverse Hessian entries from these parameters. The field DSGEImportIVFile covers
the rational expectations case and its value is the location of the imported mat-file, while the
field ALDSGEImportIVFile holds the location of the file for the adaptive learning case.

Finally, in addition to the estimate of the inverse Hessian at the posterior mode that the
optimization routine provides, the inverse Hessian can be estimated using finite differences
after the posterior mode has been located. The field FiniteDifferenceHessian is unity if
YADA should pursue this objective and zero otherwise. This matrix can also be estimated at
the beginning of posterior sampling provided that it should be the basis for the covariance
matrix of the proposal density; see Section 4.7 for details. The step length that the finite
difference estimator should use is determined via the field StepLengthHessian, where a step
length between 0.001 and 1 can be selected.

4.7. Fields in DSGEModel Related to the Posterior

Many of the posterior sampling related settings in YADA can be changed via controls in the
Posterior Sampling frame on the Options tab; see, e.g., Figure 1. The first choice on this dialog
is, not too surprisingly, which posterior sampler to use. YADA currently supports seven MCMC
samplers, such as the random walk Metropolis algorithm, which dates back to the Manhattan
project, as well as the more recently developed sequential Monte Carlo (SMC) sampler. The
field PosteriorSampler is an integer which is 1 for the random walk Metropolis algorithm with
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a normal proposal density; 2 for the slice sampler; 3 for the random walk Metropolis sam-
pler with a Student-t proposal density; 4 for the fixed blocking RWM posterior sampler with
a normal proposal density; 5 for the fixed blocking RWM posterior sampler with a Student-t
proposal density; 6 for the random blocking RWM posterior sampler with a normal proposal
density; 7 for the random blocking RWM posterior sampler with a Student-t proposal density;
8 for SMC with likelihood tempering; 9 for SMC with data tempering; or 10 for IS based on
the MitISEM algorithm. If the third, fifth or seventh option has been selected, then the field
StudenttDegFree is also used. As expected it contains the number of degrees of freedom of
the Student-t density. The fourth and fifth options make use of the number of fixed param-
eter blocks. The field FixedNumParamBlocks keeps track of this integer. The field BlockSize

contains the lower and upper integer values for the number of random parameter blocks.
The options shown in Figure 1 are used by the seven MCMC samplers, while they change

when the SMC with likelihood or data tempering sampler are used; see Figure 9 below. Notice
that two of these options are disabled when the SMC with data tempering sampler has been se-
lected; the reader is invited to guess which two. The presentation below begins with the MCMC
related options, while the turn to the SMC case thereafter. Similarly, the options differ some-
what when the user has opted to utilize the IS (importance sampling) based on the MitISEM
algorithm for estimating the candidate density.

4.7.1. MCMC Samplers

The total number of posterior draws per Markov chain is determined via the value of the field
PosteriorDrawsValue, while the number of draws per chain that are discarded as a burn-in
sample is given via the value for BurnInValue. These burn-in draws are always taken from
the beginning of the Markov chain so that the number of posterior draws that can be used by
various tools in YADA is equal to the total number of draws minus the burn-in draws. In addition
to the prespecified number of draws underlying the actual values of PosteriorDrawsValue

and BurnInValue, the last entry is called Other and, when selected makes it possible for the
user to select some other value for the number of posterior and burn-in draws. The fields
PosteriorDraws and BurnIn reflect such user selected values. When prespecified number of
draws have been selected, these fields are empty.

Running a long Markov chain is often very time consuming. Since there is a risk that the
computations may unexpectedly stop during a Markov chain due to external factors, YADA can
store results for each chain in batches. The number of sample batches per chain is determined
by the field SampleBatchValue. For instance, if the total number of posterior draws for a chain
is 550,000 and the number of sample batches is 10, then YADA will save the draws to disk
sequentially after each additional 55,000 draws. Furthermore, YADA can run more than one
chain during posterior sampling. The number of parallel Markov chains is given via the field
ParallelChainsValue.

The value of the field OverwriteDraws determines if YADA will overwrite previously com-
puted posterior draws or not. To be overwritten the user must (i) have selected to allow the
draws to be overwritten, and (ii) the draws are based on identical settings. The first case is han-
dled via the option “Overwrite old draws” in the DSGE Posterior sampling frame of the Settings
tab. When it comes to the MCMC samplers, the draws are considered to be based on identical
settings if the following six fields are the same:
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PosteriorSampler: The chosen posterior sampler (random walk Metropolis with a nor-
mal proposal density, slice sampler, random walk Metropolis with a Student-t pro-

posal9), fixed blocking RWM sampler with a normal or a Student-t proposal10, random

blocking RWM sampler with a normal or a Student-t proposal11;
NameOfModel: The name of the DSGE model;
InverseHessianEstimator: The chosen estimator of the inverse Hessian that is used for

the covariance matrix of the proposal density;
ParallelChainsValue: The number of parallel Markov chains;
PosteriorDrawsValue: The number of draws from the posterior distribution; and
SampleBatchValue: The number of sample batches to save to disk per Markov chain.

A number of fields in the DSGEModel structure are used for setting up the covariance matrix
of the proposal density. The first such field is InverseHessianEstimator which determines
the user’s choice of estimator of the inverse Hessian. There are 4 generic options: (i) the
inverse Hessian given by the optimization routine (csminwel or fminunc); (ii) a modified inverse
Hessian based on fitting a quadratic function to the log posterior; (iii) the finite difference
estimate of the inverse Hessian; and (iv) a user-determined estimator that can, for instance, be
the estimated covariance matrix of a previously computed posterior sample. If the 4th option is
selected, then the location of the inverse Hessian is given by the field ParameterCovMatrix, a
string with the full path and name of the mat-file where this matrix is located (the name of the
variable that holds the matrix is fixed at ParameterCovarianceMatrix).

The second generic estimator of the inverse Hessian can be computed in two ways. When
fitting a quadratic to the log posterior around the posterior mode, YADA estimates the standard
deviation for a normal distribution such that the normal density is as close as possible in a
mean-square sense to the log posterior values taken from the grid discussed in Section 4.6 when
checking the optimum. The log posterior is in this case computed via a grid for each estimated
parameter around the posterior mode, but where only one parameter at a time is allowed to vary
over the grid while the other parameters are fixed at their posterior mode values. This means
that the log posterior is a conditional distribution and, hence, that the estimated standard
deviation is matched to a conditional density. If the field ModifiedHessian is unity then YADA
computes marginal standard deviations using the correlation structure from the inverse Hessian
that is supplied by the optimization routine. If this field is zero, the YADA disregards the fact
that the estimated standard deviations for the modified Hessian are conditional rather than
marginal.

Given an inverse Hessian, the correlation structure for this matrix can be influenced via
the field MaxCorrelationValue. The value for this field determines the maximum absolute
correlation that the user allows for. This can range from no restriction on the correlations to
0 correlation. To ensure that the inverse Hessian remains positive definite, YADA computes
the ratio between the highest absolute correlation it should allow for and the highest absolute
correlation that it can find in the matrix. The correlation structure is only affected if this ratio
is below unity. In that case, all off-diagonal elements are multiplied by this ratio, while the
diagonal elements are constant.

The covariance matrix of the proposal density for the random walk Metropolis algorithm is
also influenced by a squared scale factor. The value of the scale factor itself is given via the
fields MHInitialScaleFactor and MHScaleFactor when drawing the initial value for a single
chain and for the remainder of a chain, respectively. If the scale factor for initializing a single
Markov chain is 0, then YADA sets the initial parameter value to the posterior mode estimate.
When the number of Markov chains is greater than one, the initial value of the parameters is

9 In the case of the Student-t proposal density, the value of the field StudenttDegFree also matters as it contains

the number of degrees of freedom of the density.

10 For these two posterior samplers, the value of the field FixedNumParamBlocks with the number of parameter

blocks matters.

11 The field BlockSize holds a 1-by-2 vector with integer values that represent the minimum and maximum number

of parameter blocks and is used by the random blocking samplers.
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initialized via another field, namely, RandomWeightValue. This field determines the weight on
random draws relative to the posterior mode values. The field MHScaleFactor is used by both
single and multiple Markov chains once they have been initialized.

The random number generators used by YADA are initialized via the ’state’ property that
the functions rand and randn accept. If the user wants to have a fixed value (equal to 0) for
the state, then the field RandomNumberValue is unity, while a zero value means that the state
is set equal to the integer value sum(100*clock). It should be kept in mind that this value for
RandomNumberValue is used whenever random draws are computed in YADA.

The marginal likelihood can be estimated sequentially directly after posterior sampling or,
once posterior draws exist on disk, at the user’s request. For the latter case, sequential esti-
mation can be performed via tools on the View menu; see Table 3. The field SequentialML

determines if sequential estimation of the marginal likelihood should be undertaken in direct
connection with posterior sampling. Its value is given via the “Compute the marginal likelihood
sequentially” option in the DSGE Posterior Sampling frame of the Settings tab.

Next, the field MarginalLikelihoodValue gives the choice of estimator of the log marginal
likelihood. The user can here choose between the modified harmonic mean estimator (Geweke,
1999), the Chib and Jelizkov estimator (Chib and Jeliazkov, 2001), both, and none.

Sequential estimation based on draws from the posterior distribution requires a suitable sam-
ple. The field SequentialStartIteration determines the starting period and is measured rela-
tive to the draws after the burn-in sample. If this field implies 100 draws and the burn-in sample
is 100, it means that the first sequential estimate uses draws 101 until 200 when it computes a
certain statistic, such as the log marginal likelihood. The increment can be computed from the
field SequentialStepLength. If the corresponding increment is 100, then the second sequential
estimate uses draws 101 until 300, and so on, until all post burn-in sample draws have been
included in the estimate.

The modified harmonic mean estimator of the marginal likelihood requires a sequence of
coverage probabilities. There are three fields in the DSGEModel structure that determine how this
sequence is defined. The field CoverageStart determines the first coverage probability, while
CoverageEnd gives the last coverage probability. The values in between these are determined
through the field CoverageIncrement. For instance, if these fields imply the values 0.1 and 0.9
as the first and the last, while the increment is 0.2, then the coverage probabilities used for
marginal likelihood estimator are (0.1,0.3,0.5,0.7,0.9).

YADA supports 2 methods for selecting draws from the posterior distribution whenever a
subset of all post burn-in sample draws is asked for. If the field RandomizeDraws is unity, then a
subsample of posterior draws are selected randomly from all post burn-in draws. On the other
hand, if this field is zero, then YADA picks a subsample of values from the posterior draws by
letting the draws have equal distance. For example, suppose that the post burn-in sample has
10,000 parameter values and a subsample of 200 values should be selected. Given the first
method, YADA picks the posterior draws determines by the integer values generated by the call
ceil(10000*rand(200,1)). Under the second method, it takes draws with the integer values
1,51,101, . . . ,9951.

The length of a subsample of posterior draws when data is simulated was discussed in Sec-
tion 4.5; see the PostDrawsUsageValue. For many other tools, such as impulse responses, it
is also possible to only use a subset of the posterior draws. The field PostDrawsPercentValue

indicates the percentage of the post burn-in sample that should be used by these tools.
For certain tools it is also possible to allow a subset of the parameters to vary from one

posterior or prior draw to the next. The field ScenarioParameters is a vector which indicates
with 1 that a parameter can vary, while 0 means that it is fixed. When posterior draws are
used, the fixed parameters are given by the posterior mode value, while for prior draws the
fixed parameters are equal to the initial values.

4.7.2. SMC Samplers

For the SMC with likelihood or data tempering algorithms, the number of posterior draws is also
called the number of particles; see Figure 9. The underlying DSGEModel field PosteriorDrawsValue
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is, of course, the same as for the MCMC samplers. At the same time, the SMC with likelihood
tempering sampler does not use burn-in draws and therefore sets such values to zero despite
the possibility that BurnInValue indicates something else.

The number of tempering stages is dealt with through the field TemperingStagesValue. Its
default value is unity which corresponds to Nτ = 100; see Warne (2025, Section 8.4) for details.
The SMC sampler does not consider sample batches like the MCMC samplers. Instead, YADA
stores the results from each tempering stage to disk thus making it possible to recover older
results provided that OverwriteDraws is not activate. This occurs when the user has selected to
overwrite old draws and the following seven fields are the same:

PosteriorSampler: The chosen posterior sampler;
NameOfModel: The name of the DSGE model;
TemperingStagesValue: The number of tempering stages (disabled for SMC with data

tempering);
NumParamBlocks: The number of fixed parameter blocks;
ResamplingAlgorithm: The resampling algorithm for the selection step and takes the val-

ues 1 (multinomial resampling), 2 (stratified resampling), 3 (systematic resampling),
or 4 (residual resampling);

ParallelChainsValue: The number of parallel Markov chains; and
PosteriorDrawsValue: The number of draws from the posterior distribution.

It may also be noted that the bending parameter of the tempering schedule (λ) is recalled via
the field TemperingLambdaValue. The selection of this field is disabled when the SMC with data
tempering posterior sampler has been selected, since it does not influence the behavior of the
sampler. Furthermore, the field ResamplingThresholdValue determines the threshold value of
the effective sample size below which resampling of the posterior draws (particles) takes place.
The default value of this field corresponds to 50 percent of the number of posterior draws.

Turning to the mutation step of the SMC algorithm, the number of Metropolis-Hastings steps
per particle is given from the field SMCNumMHSteps. Its default value is unity, but values up to
100 are supported. The mixing weight for the proposal density (α) is determined from the field
MixedDistWeightValue, while the initial value of the scale factor for the proposal density (c∗)
is recovered from the field SMCInitialScaleFactor. Finally, the target acceptance rate (pα) is
directly linked to the field TargetAcceptanceRateValue.

4.8. Importance Sampling based on the MitISEM algorihtm

The posterior sampling controls available on the Options tab when the user has selected impor-
tance sampling (IS) based on the MitISEM algorithm are displayed in Figure 10. The number
of sample batches are greyed out (disabled) since there is no need to store posterior draws
sequentially when the for-loop is avoided.

There are six new controls on the Posterior Sampling frame for IS based on MitISEM. The
tolerance for the coefficient of variation criterion of the algorithm is equal to 0.10 by default,
as in Hoogerheide, Opschoor, and van Dijk (2012), and the underlying DSGEModel field is given
by CoVToleranceValue. The second new control determines the maximum number of Student-
t mixture components for the candidate density and this entry is 5 by default. Its value is
determined from the field ISMaxMixCompValue of the DSGEModel structure.

When the algorithm is initialized, the number of degrees of freedom of the Student-t den-
sity needs to be determined by the user. The default value is 1 and is handled by the field
ISInitialDF. When the algorithm considers multiple mixtures, each added mixture needs to
be intitialized. The share of draws and IS weights to initialize the added Student-t component
in terms of location and scale parameters is handled by the field ISWeightShareValue. The
default value corresponds to α = 0.1; see Warne (2025, Section 8.5.2.3). The added Student-t
density also requires an initial value for the number of degrees of freedom, determined via the
DSGEModel field ISAddedDF which defaults to 1, while the share attached to the added density
for thre joint mixture is determined by the field ISAddedMixWeightValue. The default value is
corresponds to setting πH+1 = 0.1; see Warne (2025, Section 8.5.2.3).
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Figure 9. The Posterior Sampling frame on the Options tab in YADA for SMC
sampling algorithms.

4.9. Graphic Selection Related and Miscellaneous Fields in DSGEModel

Table 17 lists the fields that can best be linked with graphic selections. In Section 4.3 the fields
ShockGroups and ShockGroupNames linking individual state (structural) shocks to groups of
shocks and the names of the shock groups, respective, were introduced. These shock groups are,
for instance, used by the observed variable decomposition tool; see Warne (2025, Section 11.8).
When displaying the outcome of such an exercise, YADA used different colors to distinguish the
groups from each other and individual shocks from other shocks that belong to the same group.

The field ShowEstimationLog allow the user to decide if the estimation log on the Output tab
of the main YADA window should be updated with selected informtion when running estimation
routines. This behavior can be influenced by unchecking the box on the Output tab just above
the estimation log listbox. By default, this option is checked, reflecting that the estimation
log can usually be updated during, e.g., posterior mode estimation. However, updating the
estimation log implies that the ListboxTop value of the listbox control needs to be reset once
the number of rows exceeds the height of the listbox. Updating this value requires that the
listbox is redrawn each time and matlab is not always able to support this. This bug or feature
has a known workaround reported by MathWorks, but it still does not always work. In my
experience, in large models and on some computers the lisbox simply refuses to be redrawn
and the outcome is that YADA appears to be stuck. A simple workaround to this issue is simply
not to update the text string in the listbox. The Output tab has a checkbox where the user
can determine if YADA should show information in the estimation log or not. By default, this
option is checked and the estimation log can be updated, while unchecking it ensures that the
estimation log is not updated and remains empty.

The field ShockGroupColors gives a matrix with 3 columns and G rows, where G is equal to
the number of shock groups. Each row of this matrix is an RGB-triple (red-green-blue) with
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Figure 10. The Posterior Sampling frame on the Options tab in YADA for IS
based on the MitISEM algorithm.

values between 0 and 1 that determines the color of a certain shock group.12 For example,
if the second row is equal to [1 0 0], the color for the second shock group is red. The field
ObsVarGroupColors is defined in a similar manner based on the number of observed variable
groups.

When plotting individual shocks that belong to the same shock group, YADA uses a spectrum
of colors which is constructed via the field ShockColors. This field holds a matrix with as many
rows as shocks and 3 columns, representing the RGB values.

The length of the impulse responses and variance decompositions is determined from the
value of the field IRHorizon. Integer values between 1 and 50 years are supported in YADA.
When distributional features of a tool are plotted, the colors for the confidence bands are com-
puted from a base color that is stored in the field ConfidenceBandBaseColor. Depending on the
number of bands, YADA computes a constant between 0 and 1 that are multiplied by the base
color, where each constant is greater than 0 and less than 1. Wider confidence bands typically
have a darker shade of the base color than narrower bands. The exact values of these weight are
computed from the number of bands. For example, if 3 confidence bands should be computed,
the weights are 1/4, 2/4, and 3/4 for the bands. If the bands are computed from the value
[5 15 25 75 85 95] for the Percentiles field (see Table 11), the 90 percent confidence band
has color equal to 1/4 times the ConfidenceBandBaseColor value, while 2/4 is the constant
used for the 70 percent band, and 3/4 for the 50 percent band. The method for computing the
confidence bands is determined by the field ConfidenceRegionMethod. By default, YADA uses
the equal tails method, but it is also possible to make use of highest probability density bands;
see Warne (2025, Section 8.4) for details.

12 These values translate to the integer scale 0-255 (= 28), such that x = 200/255 ≈ 0.7843 on the 0-1 scale is

identical to 200 on the 0-255 integer scale.
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Densities of the marginal prior distributions for the parameters that can be estimated can
be computed via two methods. The field PriorKernel is unity (zero) if a kernel (grid) density
estimator should be used. For the kernel density case, the field KernelDensityValue indi-
cates through an integer which estimator the user prefers, while KernelDensityEstimator is a
string that identifies the selected estimator. If the grid estimator is used, the grid for the prior
density is constructed from the GridWidth and NumberOfGridPoints fields when possible (see

Table 15).13

Densities of the marginal posterior distribution are estimated based on the method implied
by the value of the field PosteriorDensityValue. YADA supports 4 different methods:

(1) Gaussian;
(2) Silverman-type with Sköld-Roberts correction (see Silverman, 1986, and Sköld and

Roberts, 2003);
(3) Sheather-Jones bandwidth (Sheather and Jones, 1991); and
(4) Bump killing bandwidth.

All methods are based on a Gaussian kernel; see Sköld and Roberts (2003) for details. The first
two methods are reasonably fast, whereas the remaining are much slower.

A number of fields in DSGEModel that do not belong to any easily identifiable group are listed
in Table 20. Forecast error variance decompositions in YADA require that a Riccati equation
is solved for the 1-step ahead steady-state covariance matrix of the state variables. Since the
approach in YADA is based on iterations when attempting to solve this equation, two fields deal
with the maximum number of iterations and the tolerance level. The former is determined via
the RiccatiMaxIteration and the latter through RiccatiToleranceValue; see Warne (2025,
Section 11.5) for details.

The driver functionality in YADA supports two fields, DriverFunctions and RunScriptFile.
The former holds the selected functions to run sequentially, while the latter gives the path and
name of the matlab script file to run.

Two fields are related to settings used by the Recent & Past and Sample-Split decompositions.
The RecentPastLag is an integer that determines how many lags there are until past shocks for
each time period. The default value is 1, which implies that all lagged shocks belong to the
group of past shocks for the former type of decomposition. Similarly, the SampleSplitPeriod

determines the number of time periods from the end of the sample until the past sample ends
when using the latter type of decomposition. The default value is 1, which means that the
sample-split occurs just before the last period of the sample. New values for these fields can be
selected when running the respective decomposition type.

Analyses that take the zero lower bound on the nominal monetary policy rate into account
make use of three fields in the DSGEModel structure, beyond the two fields covered in Sec-
tion 4.2. First of all, the field REqPosition is needed to extract the monetary policy rule from
the set of DSGE model equations, while the field RtildePosition determines the location of the
monetary policy rate among the set of state variables. Finally, the field ZLBSampleT determines
the length of the prediction sample over which the zero lower bound may be binding.

There are four fields in DSGEModel that are used by the permanent shock analysis; see Warne
(2025), Section 11.17 for details. The field TargetVariablePosition gives the location of the
target variable for the permanent shock, where the latter is captured by a unit root process. This
location is selected by the user among all the state variables in the DSGE model. Furthermore,
the permanent shock is only introduced in deviation from the target variable in the target or
policy equation. The latter is typically given by the monetary policy rule in the DSGE framework,
but in principle any one of the model equations can be selected. The field TargetEqPosition

13 The kernel density estimators of the prior densities that YADA uses are obtained from the Kernel Density Estimation

Toolbox by Christian Beardah. The files in YADA come from version 1.3 of the toolbox, but unfortunately only an

older version (1.0) of the kernel density estimation toolbox is available for download. Additional documentation on

how to use the toolbox is found at the website of the electronic journal Internet Archaeolgy. In particular, see the

article The Archaeological Application of Kernel Density Estimates by Christian Beardah and Michael Baxter in issue

1 of this journal.
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holds the integer value of this equation among all the available state equations in the AiM
file. Furthermore, the field TargetShockValue determines the absolute size of the permanent
shock in terms of the permanent shock variable. For example, a value of 0.25 means that the
permanent shock variable increases by 0.25. Similarly, a negative value means that it decreases
by the selected amount. Finally, the user may be interested to examine the responses to the
observed variables relative to the long run response of one of the observed variables. The field
ResponseDenominatorPosition reflect the position of that variable. For example, the user may
want to consider a permanent shock to inflation in the monetary policy rule and examine the
responses to output, consumption, etc. relative to the long run response in observed inflation.
The long run is here measured by the last period response in observed inflation.

Parameter scenarios is a tool that can be used to analyse how the data or the estimated shocks
are influenced by changes in parameters over a certain sample. The field ParameterScenario

is a vector which indicates if parameters should be changed (unity) or not (zero), while the
alternative values of the parameters that the user has selected are stored in a mat-file on disk.
The field ParameterScenarioValue is an integer that translates into the start period for the
scenario.

Finally, the field MonteCarloFilterDraws holds an integer that determines the default num-
ber of prior draws to use when applying Monte Carlo filtering; see Ratto (2008) and Sec-
tion 11.14 in Warne (2025) for details on the topic. Monte Carlo filtering is used to examine
which parameters are important for obtaining a unique and convergent solution of the DSGE
model. Since the analysis makes use of an asymptotic test (Kolmogorov-Smirnov), the number
of draws from the prior should to be sufficiently large to allow for reliable estimates of the cu-
mulative distribution functions of the case of a unique and convergent solution as well as of the
case of either indeterminacy or the lack of a stable solution.

4.10. DSGE-VAR Related Fields in DSGEModel

The fields in the DSGEModel structure that are specifically used for estimating and analysing
DSGE-VAR models are presented in Table 18. The DSGE-VAR models that YADA support are
described in Warne (2025, Section 15); see also Del Negro and Schorfheide (2004, 2006, 2009)
and Del Negro, Schorfheide, Smets, and Wouters (2007).

The λ hyperparameter measures the degree of misspecification of the DSGE model. When
λ = ∞, then a VAR approximation of the DSGE model is used, where the VAR parameter values
are fully determined by the first and second population moments of the observed variables
according to the DSGE model. At the other extreme, λ = 0, lies the unrestricted VAR model.
The DSGEModel field Lambda holds a vector with the values of λ that should be considered by
YADA. It may be noted that YADA requires λT , where T is the sample size of the data, to be
an integer. When this product is not an integer, YADA rounds it to an integer using the ceil

function, i.e, upward rounding.
YADA supports both marginal and joint posterior mode estimation of DSGE-VARs. The former

case means that posterior mode estimation is based on the likelihood of the data conditional on
the DSGE model parameters, i.e., the likelihood one obtains once the VAR parameters have been
integrated out of the product between the likelihood function of the VAR and the prior of the
VAR parameters conditional on the DSGE model parameters (see Del Negro and Schorfheide,
2004, equation A.2). The marginal posterior of the DSGE model parameters seen through the
VAR is propertional to the product of this marginal likelihood and the prior of the DSGE model
parameters. The latter type of posterior mode estimation uses the product between the the
likelihood function of the VAR and the joint prior for the VAR and DSGE model parameters
(see Warne, 2025, equation 15.35). To allow the user to handle subsets of the λ hyperparam-
eter during posterior mode estimation of DSGE-VARs, the DSGEModel field MarginalLambda is
a vector that holds the positions in Lambda of the λ values that the user wishes to consider for
marginal posterior mode estimation. The vector JointLambda serves the same purpose for the
case of joint posterior mode estimation.

The field DSGEVARShocks is a vector that determines which of the structural shocks in the
DSGE model that should also be used as structural shocks for the DSGE-VAR. First of all, if
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the number of DSGE model shocks is equal to the number of observed variables, YADA will
automatically pick these. Measurement errors are not considered as candidate structural shocks.
Second, if the number of structural shocks exceeds that number of observed variables, then
YADA will by default pick the n first structural shocks (with n being the number of observed
variables). The user can change the selected subset of shocks to use for the DSGE-VAR by
running the Set DSGE-VAR Shocks callback function on the DSGE-VAR menu; see Table 6. Third,
if the number of structural shocks is less than the number of observed variables, then YADA will
disable all DSGE-VAR tools that require structural shocks.

Finally, fields determining the lag order of the DSGE-VAR and possible stationarity require-
ments for posterior draws are shared with the Bayesian VAR and are therefore discussed in the
next section.

4.11. Adaptive Learning Related Fields in DSGEModel

The fields in the DSGEModel structure related to estimating and analysing a DSGE model with
expectations formed through adaptive learning rather than with rational and model consis-
tent expectations are shown in Table 19. The type of adaptive learning mechanism that YADA
supports is described in Warne (2025, Section 17); see also Slobodyan and Wouters (2012).

A key factor for the adaptive learning versions of the DSGE model that YADA can work
with concerns the determination of the forward looking variables in the model. These will
at the maximum be all the variables that appear in expectation terms. The user is free to
choose which ones to utilize, while the remaining ones will be replaced with model consistent
expectations. If the selection of forward looking variables is inconsistent with the structure
of the model, then YADA will let the user know during the selection process. For example,
an exogenous shock process cannot be selected as a forward looking variable if it appears in
expectation in the structural form of the model. The reason is that this variable cannot support
both the exogenous process (perhaps and AR(1)-process) and a perceived law of motion. The
field ForwardVariablePositions holds the positions among all state variables of the forward
looking variables. Furthermore, the names of the forward looking variables are stored in the
field ForwardVariableNames.

The adaptive learning mechanism that YADA supports is based on Kalman filter learning
where the perceived law of motion for the forward looking variables in the model is either the
built-in system or a user defined system. The built-in belief system is the default setting and is
constructed such that for each forward looking variable it is assumed that these expectations are
given by a constant and two own lags. When this case is selected by the user, the BeliefSystem

field in DSGEModel takes the value 1. The alternative is a user defined belief system and YADA
supports any such system which includes a constant and any one of the lagged state variables of
the model. A maximum of two lags is supported. For this case the BeliefSystem field is equal
to 2.

When a user defined belief system has been selected it involves a user-written matlab func-
tion which supports certain input variables and provides an output variable with certain prop-
erties. The selected matlab function for this user defined belief system is stored in the field
BeliefSystemFile to DSGEModel. An example of such a function is provided in YADA for the An
and Schorfheide model. Specifically, the function must support three input variables given by
the string matrices for the deterministic variables of the model, a string matrix with the names
of the state variables, and a string matrix with the names of the forward looking variables. The
required output variable is a structure with fields m giving the maximum number of lags of the
perceived law of motion. Since the perceived law of motion can have different lags for differ-
ent forward looking variables, this maximum is the largest value among these laws of motion.
The field Name gives the name of the perceived law of motion, e.g., VAR if the perceived law
of motion is a VAR. The last field of the output structure is G, a cell array of f matrices that
determines which state variables appear in each individual perceived law of motion of the f
forward looking variables.

The Kalman filter setup for learning about the coefficients of the perceived law of motion is
based on three free parameters. The coefficients on the deterministic and lagged state variables

– 30 –



in the perceived law of motion (see equation 17.8 in Warne, 2025) are assumed to follow a first
order VAR process. The matrix on lagged coefficients is assumed to be diagonal with common
persistent parameters, ρ; see Warne (2025, Section 17.1.2). Two additional free parameters are
involved in the adaptive learning model. These are given by σr and σε and they are related to
the covariance matrix of the initial value of the Kalman filter for the belief coefficients and the
covariance matrix of the innovation process for the VAR process of the belief coefficients; see
Section 17.2 of Warne (2025) for details.

The three free parameters are by default taken from the file DefaultBeliefSystemPrior.xls

which is located in the sub-directory learning\data in YADA. In that file, the ρ parameter is
an estimated parameter with a standard uniform prior and has initial value 0.9. Similarly,
the scalar parameters σr and σε, which are required to be positive, are calibrated and set
equal to 0.1 and 0.01, respectively. These parameters can also be determined by the user
through a user-defined prior file for the belief parameters. The fields BeliefPriorFile and
BeliefPriorFileSheet of DSGEModel can store values for the preferred file and file-sheet for
that purpose. The names of the parameters, however, are restricted and the same names as in
the default file must be used. That is, ρ is given by rhoAL, σr by sigmarAL, and σε by sigmaeAL.
Whether these parameters should be estimated or calibrated is up to the user, and all prior
distributions that are supported for the model parameters are also supported for the adaptive
learning specific free parameters. Finally, and most important, do not edit the default belief
system prior file as it will be overwritten when a new version of YADA is installed on top
of the old. The An and Schorfheide model contains an example for this which is located in
example\AnSchorfheide\data.

The model solvers supported under rational expectation include the possibility of using a user
written solver. This feature is also available under adaptive learning, where the user written
solver file can be selected via Options on the Learning menu; see Table 7. The DSGEModel field
AdaptiveLearningModelSolverFile stores the path and the full name to this solver file.

The regular model solver under adaptive learning is located in the sub-directory learning

and is called AdaptiveLearningSolveDSGEModel.m. This file takes a total of nine input variables
and provides three output variables. The four input variables Hstar0, Hstarlag, Hstar1f and D

are identical to the similarly named matrices in equation (17.5) of the YADA Manual; see Warne
(2025). The following input variable is Gtilde which is described in Section 17.2.2 and provides
a mapping from the stacked vector of state and deterministic variables to a vectorization of
the variables included in the perceived law of motion. Furthermore, the function uses Kgf, a
commutation matrix of dimension gf × gf , where f is the number of forward looking variables
and g is the sum of the number of deterministic and lagged state state variables in the perceived
laws of motion for each forward looking variable. Next, the integers m and k reflecting the
maximum number of lags in the perceived laws of motion and the number of deterministic
variables. Finally, the input variable betatt is required, a vector with g elements holding the
Kalman update estimates (or some fixed values) of the belief coefficients. The user written
model solver file must accept the same nine input variables and, in addition, the three input
variables StateVariableNames, StateEquationNames and StateShockNames.

The output variables are given by Mt1, Ft1 and Bt1, matrices of dimensions r × k, r × r and
r×q, with the solution of the adaptive learning system, i.e., the actual law of motion; see Warne
(2025, Section 17.3).

The Options menu has two additional items. The first among these concerns the use of
smooth estimates or update eastimate for the second lag of the state variables when running
the Kalman filter for the belief coefficients. As explained in Warne (2025, Section 17.4), the
Kalman filter for the belief coefficients uses estimates of the state variables since these are not
observed. If the perceived law of motion has m = 2 lags (the maximum allowed in YADA),
then technically we should use the (t − 2|t − 1) values for the second lag, i.e., the smoothed
value. However, from discussing this matter with one of the authors, the paper Slobodyan
and Wouters (2012) actually uses the update estimate of the state variables instead, i.e., the
(t − 2|t − 2) value. With this in mind, the field NoSmoothedStatesForBeliefs to DSGEModel
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allows the user to consider both cases. In order words, the value 1 means that the update
estimate is used, while the value 0 leads to the smoothed estimate.

The last item concerns the treatment of updating of the beliefs out-of-sample. The default
behavior is to assume that belief coefficients are fixed and that learning therefore only occurs
once new information is available. The alternative behavior is to assume that agents of the
economy are awhare of their learning mechanism and projects future values of their belief co-
efficients using the Kalman filter forecast equation. The DSGEModel field FixedBeliefsForProj

stores information about the user choice on these two choices, where the default value is 1.

4.12. Bayesian VAR Related Fields in DSGEModel

A number of fields in the DSGEModel structure are related to settings for estimating a Bayesian
VAR model with a steady-state prior; see Table 21. The BVAR model that YADA supports (see
Warne, 2025, Section 14) can be thought of as a generalization of the BVAR developed by Villani
(2009).

The mean and the standard deviation of the marginal prior distribution for the steady-state
parameters of the VAR are given by an m-file whose full path and name are provided by the field
SteadyStatePriorFile. The lag order of VAR and DSGE-VAR model can be computed directly
from the field BVARLags, while the field StationaryVAR determines if the posterior draws of
these models are required to be consistent with stationarity or not. YADA supports 3 general
prior distributions for the parameters on the lagged endogenous variables of the VAR model.
The field PriorType determines which type of prior should be applied: (1) Minnesota-style
prior; (2) normal conditional on covariance matrix; and (3) diffuse.

If PriorType is 1, the marginal prior for the parameters on lagged endogenous variables is
proper. The mean of the prior distribution is determined by the values implied by the fields
PriorDiffMeanValue and PriorLevelMeanValue. The former can be used to find the mean of
parameters on the first own lag for variables that are in first differences, while the latter serves
the same purpose for variables that are in levels. The covariance matrix matrix is a standard
prior covariance matrix for a Minnesota prior, where the field OverallTightnessValue makes it
possible to determine the overall tightness hyperparameter. Similarly, CrossEqTightnessValue
is the field used to find the desired cross equation tightness hyperparameter, while the harmonic
lag decay hyperparameter is given through the field HarmonicLagDecayValue.

When the field PriorType takes the value 2, then the marginal prior for the parameters on
lagged endogenous variables is proper if the marginal prior of the residual covariance matrix
is proper. This is governed through the field OmegaPriorType, which is 1 when the residual
covariance matrix has a diffuse marginal prior, and 2 when this matrix has an inverse Wishart
marginal prior. In YADA the diffuse prior is given by the determinant of the residual covariance
matrix to the power of a constant and is therefore improper, while the inverse Wishart prior is
proper.

The normal conditional on the covariance matrix prior has a conditional mean which is
determined via the fields PriorDiffMeanValue and PriorLevelMeanValue. The conditional
covariance matrix depends on the fields OverallTightnessValue and HarmonicLagDecayValue.

If the residual covariance matrix has an inverse Wishart prior (OmegaPriorType is 2), YADA
needs values for the matrix with location parameter (called A), as well as an integer value for
the degrees of freedom parameter. The latter is determined by the value taken by the field
WishartDFValue, while the former depends on the WishartType field. The A matrix is given by
the maximum likelihood estimate of the residual covariance matrix when WishartType is 1, and
by a constant times the identity when WishartType is 2. The constant, in turn, is determined
by the field VarianceTightnessValue.

5. Adding Tools to YADA

In this section we shall discuss how you can add your own tools to YADA. To this end it is
assumed that the tools will be available on a new menu and with your own callback functions.
To illustrate the callback functions we consider the hypothetical case of spatial distortions. For
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this tool, we consider the 4 types of parameter values that can be used: initial values, posterior
mode values, draws from the prior as well as from the posterior distribution. The final issue
that will be discussed is the presentation of the results, both written to a text file and displayed
in a graph. All the example functions discussed in this section are available in the project

directory in YADA.
Before we turn to these matters, we need to consider where all new code will be stored. I

recommend that you use a directory directly below the YADA base directory. The name of this
directory can, for example, be project. To ensure that this directory is found by Matlab while
YADA is running, one approach is to prepend it to the Matlab path in the YADAPath function.
The following line of code in that function will take care of this matter:

path([pwd ’\project’],path);

This line may, e.g., appear directly above the line where the aim directory is prepended (tem-
porarily) to the Matlab path. In what follows, I assume that all files related to your own tools

are stored in this directory, or in some other directory that appears on the path used by YADA.14

5.1. Menu Controls

The first step is to decide which label to use for the menu. The label should be just one word
and below it will be Project. To allow for direct keyboard access to the menu via the Alt key the
“&” sign is used before the letter P (since this letter is free).15

Moreover, the location of the menu needs to be selected. A natural place for a new menu is
between the BVAR menu and the Help menu. To find this place, open YADAGUI.m with a text
editor and search for:

%

% 7. BVAR menu

%

controls = BVARMenuControls(maingui,controls);

%

% 8. Help Menu

%

controls = HelpMenuControls(maingui,controls);

Tt is recommended that you add all your menu related code in a separate m-file, like the
menu created through the code in HelpMenuControls.m. Let us call this file ProjectMenu.m

and let us also assume that it takes 2 input variables and provides 1 output. The input variables
can be called maingui and controls, while the output variable is controls. The following code
is therefore added in YADAGUI.m directly below the call to the BVAR menu and above the call to
the Help menu function:

if FileExist([pwd ’\project\ProjectMenu.m’])==1;

controls = ProjectMenu(maingui,controls);

end;

The code first checks if the file ProjectMenu.m exists in the directory project directly below
the YADA base directory. If the file exists, then the FileExist function gives its output variable
status the value 1; otherwise status is set to 0 and the ProjectMenu function is not executed.16

The input variable maingui is the handle to YADA’s main dialog window and this window is
the so called Parent of the Project menu. Since the structure controls includes handles to all

14 YADA does not change the Matlab path permanently. Before it closes the original Matlab path is restorded. I

recommend that this principle is also followed when you add your own tools to YADA.

15 YADA makes use of the letters F (File menu), E (Edit menu for version 6 or earlier), V (View menu), T (Tools

menu), A (Actions menu), D (DSGE-VAR menu) B (BVAR menu), and H (Help menu). To access a menu via the

keyboard the Alt key should be pressed before the letter.

16 The FileExist function is included in the YADA distribution. You will find it in the filesystem directory, directly

below YADA’s base directory.
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controls on the YADA window via its fields, it is here assumed that you will extend this structure
with handles to your own menu controls.

5.1.1. Controls and Handles on the Project Menu

Assuming that you have created the file ProjectMenu.m in the project directory, the top of this
file may include the following lines:

function controls = ProjectMenu(maingui,controls)

%

% handle to the Project menu

%

controls.projectmenu = uimenu(’Parent’,maingui, ...

’Label’,’&Project’, ...

’Tag’,’ProjectMenu’);

%

% end of ProjectMenu.m

%

The first line defines the file as a Matlab function whose name is ProjectMenu. The input
variables are specified within parentheses after the function name, while the output variable is
given before the equality sign.17

The field projectmenu is not used by YADA for the controls structure and may therefore be
taken by your own menu. With these changes you will see that the Project label has been added
to the menubar in YADA; see, e.g., Figure 11 below.

The next step is to add items to the Project menu. In what follows we shall consider a project
tool that we call “Spatial Distortions”. How these entities are related to the data or the DSGE
model need not concern us here. For convenience, however, we shall simply think of them as a
function of the observed variables and the parameters of the DSGE model.

To add the spatial distortion tool to the Project menu we include the following code below
the handle to the menu in ProjectMenu.m:

%

% handle to the spatial distortions tool on the project menu

%

controls.project.spatdist.parent = ...

uimenu(’Parent’,controls.projectmenu, ...

’Label’,’&Spatial Distortions’, ...

’Tag’,’SpatialDistortionsMenuParent’);

The label of the controls is Spatial Distortions, where the line under the S indicates that this is
the key for accessing the menu item through the Alt+P combination, i.e., Alt+P+S selects the
Spatial Distortions tool from the Project menu. Since the Parent property is given by the handle
to the Project menu, the control appears on this menu.

Let us assume that we can compute this tool for the 4 sets of parameter values that YADA
supports. For each set of parameter values we add a handle to the Spatial Distortions menu
item. The following code takes care of this:

%

% handle to initial parameter values for spatial distortions tool

%

controls.project.spatdist.initialvalues = ...

uimenu(’Parent’,controls.project.spatdist.parent, ...

’Label’,’&Initial Values...’, ...

’Enable’,’off’, ...

17 If more than one output variable is supplied by a function, they should appear within brackets before the equality

sign and each output variable is separated from the next by a comma, e.g., [a,b,c] for the 3 output variables a, b,

and c.
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Figure 11. The Project menu.

’Callback’,’ProjectFunctions spatdist_init_values’, ...

’Tag’,’SpatialDistortionsMenuInitialValue’);

%

% handle to prior distribution for spatial distortions tool

%

controls.project.spatdist.prior = ...

uimenu(’Parent’,controls.project.spatdist.parent, ...

’Label’,’P&rior Distribution...’, ...

’Enable’,’off’, ...

’Callback’,’ProjectFunctions spatdist_prior_dist’, ...

’Tag’,’SpatialDistortionsMenuPrior’);

%

% handle to posterior mode values for spatial distortions tool

%

controls.project.spatdist.postmode = ...

uimenu(’Parent’,controls.project.spatdist.parent, ...

’Label’,’&Posterior Mode...’, ...

’Enable’,’off’, ...

’Separator’,’on’, ...

’Callback’,’ProjectFunctions spatdist_post_mode’, ...

’Tag’,’SpatialDistortionsMenuPosteriorMode’);

%

% handle to posterior distribution for spatial distortions tool

%

controls.project.spatdist.posterior = ...

uimenu(’Parent’,controls.project.spatdist.parent, ...

’Label’,’Posterior &Distribution...’, ...

’Enable’,’off’, ...

’Callback’,’ProjectFunctions spatdist_post_dist’, ...

’Tag’,’SpatialDistortionsMenuPosterior’);

The 4 controls above are all children of the spatial distribution control through the Parent

property. The controls will appear in the same order as they are read by Matlab, i.e., the
Initial Values control first, followed by the Prior Distribution control, the Posterior Mode control
and, finally, the Posterior Distribution control. Notice that the posterior mode control has the
property Separator set to ’on’. This means that a separator line will be displayed on the menu
above the posterior mode control.

The 4 controls all have the Enable property set to ’off’. On the spatial distortions submenu
they will therefore be disabled or, in common geek, “greyed out”. YADA uses the convention
that menu items that can execute a Callback routine are disabled unless that function can
be computed. For example, the Spatial Distortions tool that uses the posterior mode of the
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estimated parameters is disabled unless the posterior mode has been computed and can be
located by YADA. This issue is covered in Section 5.1.2.

Notice that the above controls on the Spatial Distortions submenu all have a specified value
for the Callback property. The routine executed when the user clicks on a menu item is a
Matlab function or command expressed as a string. For example, the string

ProjectFunctions spatdist_post_mode

calls the ProjectFunctions function with its only required input variable set to the value
spatdist_post_mode. This function and its input variable are discussed in Section 5.2. For
now we notice that a unique value is used for each set of parameter values. The values of the
input variable have been selected so that one can identify the tool and the selected parameter
value. For all we know, the function ProjectFunctions can cover other tools beside spatial
distortions. For instance, it may also deal with complex tools such as temporal or interphasic
rifts, or even spatial flexures.

5.1.2. Determining the Enable Property

Setting the Enable property of a control to ’on’ (enabled) or ’off’ (disabled) is achieved by
applying the set command for the handle to the control. Hence, the problem is really when a
control should be enabled or disabled.

First, however, we need to decide where the code that takes care of this issue should be
executed. YADA has a large chunk of code at the end of YADAGUI.m that tests which controls to
enable and to disable. While it is possible to make use of these features, I would recommend
to add the tests to a separate Matlab function. The main reason for this recommendation is
that YADA is developing with new features being added (and perhaps some old features being
removed).

Let us therefore assume that the function VerifyProjectMenu.m exists in the project di-
rectory. Its sole purpose is to test if controls (menu items) on this menu should be enabled
or disabled. This function can be assumed to take the structures DSGEModel and controls for
input and returns no output variables. This means that the following line needs to be added at
a suitable place in YADAGUI.m:

VerifyProjectMenu(DSGEModel,controls);

A suitable place is, for instance, directly below the call to YADAEnableControls (Section 2.2.2),
i.e., below the code:

YADAEnableControls(DSGEModel,controls);

The call to VerifyProjectMenu should be made every time a new DSGE model is loaded
into YADA or new parameter values are available. This means that VerifyProjectMenu needs
to be executed by the FileMenuFunctions file and one suitable place is directly below the call
to YADAEnableControls. In addition, the ActionsMenuFunctions file in the menus directory
can also affect the parameter types that are available and it is therefore recommended that
VerifyProjectMenu is called when callback functions from the Actions menu are executed. Fur-
thermore, it is adviced that the file containing all callback functions from the project function,
ProjectFunctions also calls the VerifyProjectMenu function; see Section 5.2. As an alterna-
tive to adding VerifyProjectMenu calls to all these files, it is possible to simple call the function
at the end of YADAEnableControls, located in the gui directory. This ensures that the controls
on the Project menu are enabled and disabled just like the controls on YADA’s own menus and
is therefore the recommended approach.

For the Initial Values menu item to be enabled it is required that the mode of the posterior
distribution can (potentially) be estimated. The function VerifyPosteriorModeEstimation,
located in the logic subdirectory, performs this task. It takes the DSGEModel structure for input

and returns a value of 0 or 1 for its output variable status.18 A value of 1 is returned if posterior

18 This function checks that (i) the AiM parser has been run successfully; (ii) the data construction file exists; (iii)

the measurement equation file exists; and (iv) the state shocks and state variables have been selected from the set

of potential variables through the AiM data. To test if the AiM parser was successfully executed, the function looks
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mode estimation may be attempted and 0 otherwise. This means that we can write the following
code in the VerifyProjectMenu function:

if VerifyPosteriorModeEstimation(DSGEModel)==1;

set(controls.project.spatdist.initialvalues,’Enable’,’on’);

else;

set(controls.project.spatdist.initialvalues,’Enable’,’off’);

end;

to determine if the Initial Values menu item for Spatial Distortions should be enabled or dis-
abled.

Next, the Prior Distribution menu item can be enabled when the user has already computed
draws from the prior distribution via the Prior Sampling tool on the toolbar or on the Actions
menu (see Table 5). The following code in VerifyProjectMenu tests if these data exist and
performs the correct action based on its finding:

if FileExist(DSGEModel.SystemPriorFile)==0;

PriorDrawsFile = FixFilePath([DSGEModel.OutputDirectory ...

’\priordraws\PriorDraws-’ DSGEModel.NameOfModel ’.mat’]);

else;

PriorDrawsFile = FixFilePath([DSGEModel.OutputDirectory ...

’\priordraws\PriorDraws-SystemPrior-’ DSGEModel.NameOfModel ...

’.mat’]);

end;

if FileExist(PriorDrawsFile)==1;

set(controls.project.spatdist.prior,’Enable’,’on’);

else;

set(controls.project.spatdist.prior,’Enable’,’off’);

end;

The output directory for the file with the draws from the prior distribution is given by the
subdirectory priordraws of the output directory for the current model; see Table 10. The name
of the file then depends on the NameOfModel string as well as on the use of a system prior.
The default behavior in YADA is to let the output directory be a subdirectory to the directory
where the AiM model file is located. The name of that subdirectory is equal to the string
DSGEModel.NameOfModel. Finally, the function FixFilePath creates an operating consistent file
path.

To test if the posterior mode has already been estimated, YADA checks if the file with the
posterior mode results exists on disk or not. This file is located in the subdirectory mode of the
output directory for the current model. This means that the code can be formulated as:

ModeFile = FixFilePath([DSGEModel.OutputDirectory ...

’\mode\PosteriorMode-’ DSGEModel.NameOfModel ’.mat’]);

if FileExist(ModeFile)==1;

set(controls.project.spatdist.postmode,’Enable’,’on’);

else;

set(controls.project.spatdist.postmode,’Enable’,’off’);

end;

It may be noted that the existence of the file with posterior mode results is a necessary condition
for being able to use these parameter values. But whenever the callback routine for posterior
mode parameters values is executed, it needs to verify that the relevant information is actually

for the existence of the AiM data file through the string DSGEModel.AIMDataFile; see Table 12. In addition, the

function checks if the AiM model file (DSGEModel.AIMFile; see Table 10) and the file compute_aim_matrices.m

exist. Notice that VerifyPosteriorModeEstimation does not check if the prior distribution specification file exists

or not. The explanation is that YADA can read all the prior distribution data directly from that file when the posterior

mode has been estimated. On the other hand, if neither the prior distribution specification file nor the posterior

mode results file exists, then the initial values are unknown and, hence, the function will not be able to deliver the

results for the spatial distortions.
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availble from that file. YADA does not perform this task when it decides if a control should be
enabled or disabled, but leaves it for later.

The final control on the Project menu for the Spatial Distortions tool that we should test is
the one concerning draws from the posterior distribution. For this objective the YADA function
VerifyDSGEPosteriorDraws, located in the subdirectory data to YADA’s base directory, can be
used. This function takes 3 input variables: (i) the DSGEModel structure, (ii) a valid value for the
number of parallel Markov chains (CurrentChain), and optionally (iii) the structure controls.
If the last input is not provided, the function attempts to determine the value of this variable by
using the trick from Section 2.2.1. For the second input variable the value 1 should always be
possible and, hence, we can express the test as:

if VerifyDSGEPosteriorDraws(DSGEModel,1,controls)==1;

set(controls.project.spatdist.posterior,’Enable’,’on’);

else;

set(controls.project.spatdist.posterior,’Enable’,’off’);

end;

These examples serve as necessary conditions when testing if a certain control that uses
parameter values should be enabled or not. Some tools in YADA rely on observed variables
being expressed in levels, in simple annualization form (by adding quarters or months), or
through the transformation functions in the field YTransformation of the structure DSGEModel;
see Table 11. The test for computing levels is to compare the sum of DSGEModel.levels to
DSGEModel.n. If the formar is smaller than the latter, then some variables should be viewed
as first difference variables and levels effects for some tools, such as impulse responses, may
be determined through accumulation and it therefore makes sense to enable a tool that deals
with levels data. The case of annualization can be tested through DSGEModel.annual. If the
maximum of this vector is greater than unity, then at least one obsereved variable can be annu-
alized. Finally, the transformation case can be tested by checking if the YTransformation field
is empty or not.19

5.2. A General Callback Function

The four controls for the spatial distortion tool that were introduced in the Section 5.1.1 share
a common callback routine called ProjectFunctions. This function accepts at least one input
variable, a string, that we may locally call selector. Following the practise used above, let us
assume that ProjectFunctions.m is located in the project directory.

Since each call routine has different value for the selector input variable, we need to make
sure that all these values are supported by the function. Since ProjectFunctions should not
provide any output variables, the function can at first be as follows:

function ProjectFunctions(selector)

%

% collect some important data structures

%

maingui = findobj(’Type’,’figure’,’Tag’,’YADA’);

controls = get(maingui,’UserData’);

CurrINI = get(controls.filemenu,’UserData’);

DSGEModel = get(controls.open,’UserData’);

if MatlabNumber<7;

lasterr = ’’;

19 If an additional test of data transformations is desired, the function VerifyDataTransformation, located in the

subdirectory data of YADA’s base directory, can be applied. It accepts 3 input variables: (i) the VariableNames string

matrix (which could be any matrix with names of variables that should be transformed); (ii) the Transformation

structure (e.g., YTransformation); and (iii) the CheckAll boolean variable. The last input variable implies that the

function tests if all required fiels are available when it is unity, and only a subset when it is zero; see the internal

documentation of this function for details. The function gives one output variable called status: it is unity if the

test accepts the transformation data, and zero otherwise.
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end;

%

switch selector

case ’spatdist_init_values’

%

% initial parameter values

%

case ’spatdist_prior_dist’

%

% prior distribution values

%

case ’spatdist_post_mode’

%

% posterior mode values

%

case ’spatdist_post_dist’

%

% posterior distribution values

%

end

%

set(controls.open,’UserData’,DSGEModel);

set(controls.filemenu,’UserData’,CurrINI);

%

% make sure that controls are enabled and disabled as they should

%

YADAEnableControls(DSGEModel,controls);

VerifyProjectMenu(DSGEModel,controls);

%

% end of ProjectFunctions.m

%

The first step is to collect the YADA structures that may be useful for various computations,
i.e., DSGEModel, CurrINI, and controls. Next, the switch command is used with its case

calls that depend on the value of the input variable selector. Finally, if any changes to the
DSGEModel and CurrINI structure have been made, we store the revised value in the UserData

property of the controls where YADA expects to find them.
Before we move on to using different parameter values for the callback routines, it is worth-

while to mention another convention in YADA. Namely, while one tool is running YADA prevents
others from being executed. The following code, for each case call above, makes sure that a
tool can only be executed when, so to speak, YADA is not doing anything else.

if get(controls.about,’UserData’)==0;

set(controls.about,’UserData’,1);

drawnow;

%

% do many computations and then reset

%

set(controls.about,’UserData’,0);

end;

The about field of the controls structure gives the handle to the About button on the toolbar of
YADA’s main dialog window. Whenever the value of its UserData property is zero, then YADA
is not doing anything else, while a value of unity means that it is busy.

– 39 –



5.3. Using Parameter Values

To solve the DSGE model it is necessary to have some values for the model parameters. As
mentioned in Section 2.2.1, YADA supports four categories of parameters values: initial values,
posterior mode values, prior and posterior draws. Below I will show how such values can be
accessed through Matlab code.

5.3.1. Initial Parameter Values

The initial parameter values are determined by the prior distribution specification file and, if
present, the file with parameters to initialize. The former is given by DSGEModel.PriorFile

and the latter by DSGEModel.InitializeParameterFile; see Table 10. If the posterior mode
has been estimated, the mat-file with these estimates also contains the initial values of the
parameters that can be estimated. In fact, it is possible to retrieve all required information
about initial parameter values from the posterior mode results file. The code presented below
will take this into account.

The convention in YADA is to check if the posterior mode results exists on disk also when
running a tool for the initial parameter values. When these results do not exist on disk, then
YADA asks the user if the tool should be run before the mode has been estimated. This is the
only form of “nagging” that YADA supports and is used mainly to remind the user that the initial
values may not provide good guidance about the model’s behavior. The following code provides
a simple test of “to nag or not to nag” as well as taking the user’s choice into account:

ModeFile = FixFilePath([DSGEModel.OutputDirectory ...

’\mode\PosteriorMode-’ DSGEModel.NameOfModel ’.mat’]);

if FileExist(ModeFile)==1;

answer = ’Yes’;

else;

txt = [’Are you sure you want to compute spatial distortions before’ ...

’ running the posterior mode estimation routine?’];

answer = Query(txt,’question’,150, ...

’Spatial Distortions - Initial Values’,500,’no’,CurrINI);

end;

if strcmp(lower(answer),’yes’)==1;

%

% user is willing to run spatial distortions

%

end;

Provided that the posterior mode file does not exist on disk, a Query dialog is displayed with
the question in the string txt, with a Yes and a No button (where the No button has focus when
the code is run under Matlab version 7 or later). The width of the dialog is 500 pixels, while
the maximum height is 150 pixels; see Section 3.1 for details on the Query dialog function.

Provided that the answer variable is ’Yes’, the next step is to check the status for the ini-
tial parameter values. The function InitializeDSGEModelSimulation, located in the directory
data below YADA’s base directory, is used for this purpose and it takes the structures DSGEModel
and CurrINI for input. The following code presents an example where the minimum number
of output variables is accepted:

[InitStatus,theta,thetaPositions,ModelParameters] = ...

InitializeDSGEModelSimulation(DSGEModel,CurrINI);

The InitStatus variable is unity if all parameter related input files are specified correctly,
and zero otherwise. The input files are specified correctly when (i) the prior distribution spec-
ification file is valid; (ii) AiM has been successfully parsed and the DSGE model has a unique
convergent solution at the initial values; (iii) the measurement equation file can be executed
without error; and (iv) the optional files with parameters to initialize and to update can be
executed without error.
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The function VerifyPriorData deals with the first issue and is discussed in some detail in
Warne (2025, Section 7.4.1). The second part of the test is examined by trying to load the
file DSGEModel.AIMDataFile and by either checking if either the function AiMSolver returns
returns a proper mcode value and the corresponding matrices can be properly rewritten as a
state equation via AiMToStateSpace, or if the function KleinSolver or SimsSolver provides a
proper mcode value; see Section 3.4.2 until 3.4.5 of Warne (2025). Which DSGE model solver
test is conducted depends on the value of the field ModelSolver in the DSGEModel structure;
see Table 12.

The InitializeDSGEModelSimulation function provides 4 required and 6 optional output
variables. Apart from the boolean variable InitStatus the other required outputs are theta

(a vector with the initial values for the parameters to be estimated), thetaPositions (a vector
structure of the same dimension as theta and where thetaPositions(i).parameter gives the
name of the parameter in the i:th position of theta), and ModelParameters (a structure whose
fields have names equal to the parameters of the DSGE model).

Provided that InitStatus is unity we can safely use the initial parameter values to solve
the DSGE model and use it for the spatial distortions tool. However, if this boolean vari-
able is zero simply because the prior distribution specification file is missing it is still possible
to run the tool provided that we can collect all the information about the prior distribution
from the posterior mode file. Accordingly, the following code can be added below the call to
InitializeDSGEModelSimulation:

if (InitStatus==0)&(FileExist(DSGEModel.PriorFile)==0);

if FileExist(ModeFile)==1;

ErrorStr = ’’;

if MatlabNumber>=8.0;

try;

ModeData = load(ModeFile);

catch ME;

ErrorStr = [’Unable to load the file "’ ModeFile ...

’". Message caught is: ’ YADALastError(ME)];

end;

else;

try;

ModeData = load(ModeFile);

catch;

ErrorStr = [’Unable to load the file "’ ModeFile ...

’". Message caught is: ’ YADALastError];

end;

end;

if isempty(ErrorStr)==1;

theta = ModeData.theta;

thetaPositions = ModeData.thetaPositions;

ModelParameters = ModeData.ModelParameters;

ModelParameters = ThetaToModelParameters(ModelParameters, ...

theta,thetaPositions);

InitStatus = 1;

else;

About(ErrorStr,’error’, ...

’Spatial Distortions - Initial Values’, ...

200,500,CurrINI);

end;

end;

end;

if InitStatus==1;
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%

% we can now try to compute the spatial distortions

%

end;

The code first checks if the reason for the zero value of InitStatus is a missing prior file,
and if so tests if the posterior mode file exists on disk. Given that this file indeed exists where it
should, the code attempts to load the mat-file data using a try-catch to allow it to capture an
error message if it is not successful. Given that the data was loaded without error, the needed 4
variables theta until InitStatus can be determined; otherwise an error message with an error
icon is displayed in an About dialog; see Section 3.1 for details.

Notice also that the function ThetaToModelParameters is called. This ensures that the
ModelParameters structure uses the values in theta for the parameters that can be estimated.
If the function SolveDSGEModel is eventually used to solve the DSGE model, the call to the
former function is actually superfluous since it is performed by the latter.

The three variables theta, thetaPositions and ModelParameters are needed when YADA
solves the DSGE model. As already mentioned, the function InitializeDSGEModelSimulation

can also provide values for 6 additional variables. These variables can also be retrieved from
the VerifyPriorData function and are locally called:

thetaDist: a vector of the same dimension as theta which indicates via integer values
the prior distribution of a parameter.

PriorDist: a structure with fields that have names corresponding to the selected prior
distributions of the parameters that can be estimated. That is, the field names are beta,
gamma, normal, invgamma, truncnormal, uniform, student, cauchy, logistic, gumbel,
and pareto. Each field is a matrix with the parameters of the prior. For example,
PriorDist.gamma is a matrix with 3 columns with the mean, standard deviation and
lower bound of the gamma prior in the columns provided that at least one parameter is
assumed to have a gamma prior, and is otherwise an empty matrix.

ParameterNames: a structure with field names all, calibrated, beta, gamma, normal,
invgamma, truncnormal, uniform, student, cauchy, logistic, gumbel, pareto, and
estimated. Each one of these fields provides a string matrix where the rows give names
of parameters as they have been detected by YADA. For example, the string matrix
ParameterNames.estimated is created by YADA such that the i:th row gives the name
of the i:th element of theta.

thetaIndex: a vector of the same length as theta that indicates the type of transformation
that should be applied to a parameter to ensure that its support is the real line. The
value 0 means that no transformation is necessary (normal, student-t, Cauchy, logistic,
or Gumbel prior); the value 1 means that the natural logarithm transformation should
be applied to a parameter (gamma, inverse gamma, left truncated normal, or Pareto
prior); while 2 (beta prior) and 3 (uniform prior) indicate logit transformations should
be applied to the same element of theta.

UniformBounds: a matrix with 2 columns and number of rows equal to the length of
theta. The row values gives the lower and the upper bound for parameters that are
transformed with a logit function.

LowerBound: a vector of the same length as theta where lower bounds are given for pa-
rameters that are transformed with the natural logarithm.

It is also possible to load the 6 variables from the file with the posterior mode results, where
they have the same names, e.g., we can let PriorDist be given by ModeData.PriorDist. For
details about these additional variables, see Warne (2025, Section 7.4.1) and the internal doc-
umentation of VerifyPriorData or InitializeDSGEModelSimulation.
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5.3.2. Posterior Mode Values

The discussion in the previous section has already informed us about how data from the poste-
rior mode file can be retrieved. Specifically, the following code attempts to retrieve the variables
theta, thetaPositions, and ModelParameters:

ModeFile = FixFilePath([DSGEModel.OutputDirectory ...

’\mode\PosteriorMode-’ DSGEModel.NameOfModel ’.mat’]);

ErrorStr = ’’;

if MatlabNumber>=8.0;

try;

ModeData = load(ModeFile);

catch ME;

ErrorStr = [’Unable to load the file "’ ModeFile ...

’". Message caught is: ’ YADALastError(ME)];

end;

else;

try;

ModeData = load(ModeFile);

catch;

ErrorStr = [’Unable to load the file "’ ModeFile ...

’". Message caught is: ’ YADALastError];

end;

end;

if strcmp(ErrorStr,’’)==1;

theta = ModeData.thetaMode;

thetaPositions = ModeData.thetaPositions;

ModelParameters = ModeData.ModelParameters;

%

% we can now try to compute spatial distortions

%

else;

About(ErrorStr,’error’, ...

’Spatial Distortions - Posterior Mode’, ...

200,500,CurrINI);

end;

Notice that there is no need to call ThetaToModelParameters here since the ModelParameters

structure was last updated with the posterior mode values. Moreover, if some of the 6 vari-
ables thetaDist, PriorDist, ParameterNames, thetaIndex, UniformBounds, or LowerBound are
needed by some calculation of the tool, then these can be loaded via the ModeData structure.

5.3.3. Prior Distribution

Apart from loading previously computed draws from the prior distribution, it is necessary to
collect certain variables that are needed when we wish to solve the DSGE model. The conven-
tion in YADA is to check from which sources the prior distribution information can be read. In
the event that both the prior distribution specification file and the posterior mode results file
exist on disk, YADA will ask the user which of these sources should be used. If only one exists,
then YADA attempts to retrieve the prior information from that source.

Assuming that we only need the data in theta, thetaPositions, and ModelParameters, the
following code deals with these matters:

ModeFile = FixFilePath([DSGEModel.OutputDirectory ...

’\mode\PosteriorMode-’ DSGEModel.NameOfModel ’.mat’]);

if FileExist(ModeFile)==1;

ErrorStr = ’’;

if MatlabNumber>=8.0;
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try;

ModeData = load(ModeFile);

catch ME;

ErrorStr = [’Unable to load the file "’ ModeFile ...

’". Message caught is: ’ YADALastError(ME)];

end;

else;

try;

ModeData = load(ModeFile);

catch;

ErrorStr = [’Unable to load the file "’ ModeFile ...

’". Message caught is: ’ YADALastError];

end;

end;

if strcmp(ErrorStr,’’)==1;

if FileExist(DSGEModel.PriorFile)==1;

txt = [’Would you like to use the prior information ’ ...

’stored in the posterior mode results file "’ ...

GetFilename(ModeFile) ’"? If you answer ’’No’’, ’ ...

’YADA will reread the prior file "’ ...

GetFilename(DSGEModel.PriorFile) ’".’];

answer = Query(txt,’question’,200, ...

’Spatial Distortions - Prior’,500,’no’,CurrINI);

else;

answer = ’Yes’;

end;

if strcmp(lower(answer),’yes’)==1;

InitStatus = 1;

theta = ModeData.theta;

thetaPositions = ModeData.thetaPositions;

ModelParameters = ModeData.ModelParameters;

else;

[InitStatus,theta,thetaPositions,ModelParameters] = ...

InitializeDSGEModelSimulation(DSGEModel,CurrINI);

end;

else;

InitStatus = 0;

About(ErrorStr,’error’, ...

’Spatial Distortions - Prior’, ...

200,500,CurrINI);

end;

else;

[InitStatus,theta,thetaPositions,ModelParameters] = ...

InitializeDSGEModelSimulation(DSGEModel,CurrINI);

end;

It may be noticed that the code does not call ThetaToModelParameters. The reason is that
the ModelParameters structure needs to be updated for each draw of the original parameters
(θ) from the prior distribution and, hence, that step should be taken care of by the function that
computes the spatial distortions.

The next step is to load the draws from the prior distribution. The following code deals with
this matter:

if InitStatus==1;

if FileExist(DSGEModel.SystemPriorFile)==0;
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PriorDrawsFile = FixFilePath([DSGEModel.OutputDirectory ...

’\priordraws\PriorDraws-’ DSGEModel.NameOfModel ’.mat’]);

else;

PriorDrawsFile = FixFilePath([DSGEModel.OutputDirectory ...

’\priordraws\PriorDraws-SystemPrior-’ DSGEModel.NameOfModel ...

’.mat’]);

end;

PriorData = load(PriorDrawsFile);

thetaDraws = PriorData.thetaDraws;

NumPriorDraws = size(thetaDraws,2);

end;

The matrix with draws from the prior distribution, thetaDraws, has as many rows as the length
of theta, while the number of columns is equal to the number of draws from the prior. The
ordering of the parameters in thetaDraws is the same as the ordering of the parameters in
theta.

5.3.4. Posterior Distribution

When draws from the posterior distribution are used by a tool, the typical situation in YADA is
that only a subset of all post burn-in sample draws are used. Not only does this speed up the
computation, but the loss in numerical precision is often small when using, say, every hundreth
draw of the 500,000 draws that may be available. Naturally, the loss of numerical precision
depends on what we are interested in. If the key aspect of the exercise is a tail-event, then more
draws may be needed.

It is often the case that YADA needs to know the names of the estimated parameters when it is
computing a tool. For example, the ModelParameters structure can only be updated with new
values of the estimated parameters if the fields of this structure that represent the estimated
parameters can be properly linked to the elements of the vector of values for the estimated
parameters. The following code tries to collect 4 variables from the posterior mode results file:

ModeFile = FixFilePath([DSGEModel.OutputDirectory ...

’\mode\PosteriorMode-’ DSGEModel.NameOfModel ’.mat’]);

ErrorStr = ’’;

if MatlabNumber>=8.0;

try;

ModeData = load(ModeFile);

catch ME;

ErrorStr = [’Unable to load the file "’ ModeFile ...

’". Message caught is: ’ YADALastError(ME)];

end;

else;

try;

ModeData = load(ModeFile);

catch;

ErrorStr = [’Unable to load the file "’ ModeFile ...

’". Message caught is: ’ YADALastError];

end;

end;

if strcmp(ErrorStr,’’)==1;

theta = ModeData.thetaMode;

thetaPositions = ModeData.thetaPositions;

ModelParameters = ModeData.ModelParameters;

ParameterNames = ModeData.ParameterNames.estimated;

%

% prepare for using draws from posterior
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%

else;

About(ErrorStr,’error’, ...

’Spatial Distortions - Posterior’, ...

200,500,CurrINI);

end;

Apart from the usual variables theta, thetaPositions and ModelParameters, we here also
collect a string matrix with the names of all parameters that can be estimated. These names
can be used to allow the user to consider the impact of parameter uncertainty based on a subset
of these parameters.

The next step is to check if the user has multiple Markov chains to choose from. The conven-
tion in YADA is to let the user select which chain to make use of when multiple chains are avail-
able. The code below checks how many parallel Markov chains the user has selected in the Poste-
rior sampling frame on the Options tab. The DSGEModel field of interest is ParallelChainsValue
(see Table 16).

ChainsStr = get(controls.posterior.chains,’String’);

NumChains = str2num(StringTrim(ChainsStr( ...

DSGEModel.ParallelChainsValue,:)));

if NumChains>1;

ChainsStr = ’’;

for i=1:NumChains;

ChainsStr = strvcat(ChainsStr,[’Posterior chain number ’ ...

int2str(i)]);

end;

[action,CurrChain] = SelectionDlg(ChainsStr,1, ...

’Select the posterior draws chain to load’, ...

’MCMC Chain Selection’,’Spatial Distortions’, ...

’’,’’,CurrINI);

else;

CurrChain = 1;

action = ’ok’;

end;

The String property of the control controls.posterior.chains holds a string matrix with the
possible number of Markov chains the user can select between. The selected number of chains
is determined in the next line. If the number of chains (NumChains) is equal to 1, then the only
possible chain is selected by default. When there are more than one chain, a selection dialog is
presented; see, e.g., Section 3.4 for details on SelectionDlg. The selected chain is given by the
variable CurrChain, whose default value is 1.

Since the selection dialog has both an OK and a cancel button, the user can actually quit the
tool at this stage. This following code allows for this behavior by testing which button the user
clicked on:

if strcmp(lower(action),’cancel’)==0;

%

% check if the posterior draws exist

%

if VerifyDSGEPosteriorDraws(DSGEModel,CurrChain,controls)==1;

%

% load the data

%

end;

end;

The function VerifyDSGEPosteriorDraws, located in the data directory, is called with the
input variables DSGEModel, CurrChain and controls when the user has clicked on the OK
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button of the selection dialog. This function checks if the posterior draws for the current

user settings20 exist on disk in the directory rwm, one level below the base output directory
DSGEModel.OutputDirectory: the function returns unity for its boolean output variable status

when all the files with the posterior draws exist on disk, and zero if at least one such file is miss-
ing.

Given that the files with the posterior draws indeed exist, the next step is to load the data
from these file. The code below performs this action:

[PostSample,thetaPostSample,LogPost,AcceptedDraws,NumBurnin,Weights] = ...

LoadDSGEPosteriorDraws(DSGEModel,CurrINI,CurrChain);

NumDraws = length(LogPost);

clear(’PostSample’,’LogPost’,’AcceptedDraws’);

thetaPostSample = thetaPostSample(NumBurnin+1:NumDraws,:);

NumDraws = NumDraws-NumBurnin;

drawnow;

The function LoadDSGEPosteriorDraws, located in the data directory, collects data for the se-
lected Markov chain and provides this in terms of 6 output variables. The matrix PostSample

contains the draws for the transformed parameters, while thetaPostSample has the draws of
the original parameters. The number of rows of these matrices is equal to the total num-
ber of posterior draws, while the number of columns is equal to the length of theta. The
vector LogPost has the value of the log posterior for each draw from the posterior, while
AcceptedDraws is a vector that keeps track of the number of accepted draws at each stage in the
chain. The integer NumBurnin gives the number of burn-in draws that should be discarded from
the posterior. Finally, the vector Weights is either empty or contains the normalized weights
from the SMC with likelihood tempering posterior sampler. It is assumed below that only the
theta draws are needed and, hence, the other potentially big matrices are cleared from mem-
ory.

The last step is the selection of a subsample of the post burn-in sample posterior draws. This
step only applies to the MCMC posterior samplers and not to SMC samplers, i.e., it is only used
when DSGEModel.PosteriorSampler is less than or equal to 7.

There are two approaches for determining the size of the subsample in YADA. The first is
used when data are simulated from the model and the second in all other situations. If we
assume that spatial distortions should be performed for simulated data the DSGEModel field
PostDrawsUsageValue is used to determine the subsample size; see Table 14. The following
code can then be used:

PostDrawsUsageStr = get(controls.posterior.postdrawsusage,’String’);

NumPostDrawsUsage = min(str2num(strrep(StringTrim(PostDrawsUsageStr( ...

DSGEModel.PostDrawsUsageValue,:)), ...

’,’,’’)),NumDraws);

%

% get the draws to use

%

if DSGEModel.RandomizeDraws==0;

DrawFreq = round(NumDraws/NumPostDrawsUsage);

SelectDraws = (1:DrawFreq:NumDraws);

if length(SelectDraws)+1==NumPostDrawsUsage;

SelectDraws = [SelectDraws NumDraws];

elseif length(SelectDraws)>NumPostDrawsUsage;

SelectDraws = SelectDraws(1:NumPostDrawsUsage);

end;

thetaPostSample = thetaPostSample(SelectDraws,:);

else;

20 The current user settings for posterior sampling matters are discussed in Section 4.7.
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if DSGEModel.RandomNumberValue==1;

rand(’state’,0);

else;

rand(’state’,sum(100*clock));

end;

thetaPostSample = thetaPostSample(ceil(rand(NumPostDrawsUsage,1) ...

*NumDraws),:);

end;

The first line simply collects the string matrix with the maximum number of draws that the
user can choose among. The second line extracts the value that the user has selected and sets
the size of the subsample to the minimum of this value and the total number of available post
burn-in sample draws.

Given the size of the subsample, the code thereafter checks if the draws in the subsample
should be picked randomly or not. If the DSGEModel field RandomizeDraws is zero, the selected
draws are separated by a common distance (DrawFreq) and start from the first post burn-in
draw. In contrast, if the selected draws should be picked randomly, the code generates integer
values between unity and the number of post burn-in draws. The uniform random number
generator is here first initialized using the user preference regarding having a fixed or a variable
state; see Table 16.

If the second method is used, then the DSGEModel field PostDrawsPercentValue determines
the size of the subsample. In this case a percentage value of the post burn-in sample is consid-
ered. The code can now be expressed as:

UseDraws = KeepPosteriorDraws(DSGEModel, ...

controls.posterior.usepostdraws,NumDraws);

if length(UseDraws)<NumDraws;

thetaPostSample = thetaPostSample(UseDraws,:);

end;

The function KeepPosteriorDraws, located in the data directory, provides the positions of the
draws that should be used. This function picks the draw positions in the same way as the
code for the first method, except that the size of the subsample is determined by the value of
PostDrawsPercentValue and if the user has opted for 100 percent, then UseDraws is simply the
sequence 1, 2 until NumDraws.

5.4. Tool Computations: Spatial Distortions

For a tool such as spatial distortions, YADA uses the convention that separate Matlab functions
are written for single and for multiple parameter values. An important reason is that it is
convenient to store the results for multiple values to disk for future reuse, while results for
a single parameter value can typically be computed very quickly and, thus, do not need to be
stored in that manner. I will therefore first discuss the single parameter value case (initial values
or posterior mode values) before moving to the multiple parameter values (prior or posterior
draws).

5.4.1. Single Parameter Value

The function for computing spatial distortions for a single parameter value is assumed to be
located in the project directory and to be called DSGESpatialDistortionsTheta. The naming
convention used for tools is that the name clearly indicates the type of tool that the function
computes, prepended by DSGE or BVAR depending on which type of model they can be used by,
and appended by Theta when single parameter values are considered. For simplicity we shall
let this function accept a minimum number of input variables, given by theta, thetaPositions,
ModelParameters, DSGEModel, and CurrINI. Furthermore, the minimum number of output vari-
ables is also assumed and we shall let them be called SpatDist, a required output with the
results on spatial distortions, and the optional outputs status and kalmanstatus. The op-
tional output variables are only used when theta has the initial parameter values. In that case,
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status reports if the DSGE model has a unique convergent solution or not, while kalmanstatus

indicates if the Kalman filter can be executed successfully.
The top of the spatial distortions function is therefore written:

function [SpatDist,status,kalmanstatus] = ...

DSGESpatialDistortionsTheta(theta,thetaPositions, ...

ModelParameters,DSGEModel,CurrINI)

% DSGESpatialDistortionsTheta: Computes spatial distortions

% for a single value of theta

%

% USAGE:

.

.

.

%

% initialize output

%

SpatDist = [];

if nargout==1;

%

% copy files to the tmp directory for posterior mode values

%

[stat,msg] = CopyFile([GetPath(DSGEModel.AIMDataFile) ...

’compute_aim_matrices.m’],[pwd ’\tmp’]);

[stat,msg] = CopyFile(DSGEModel.MeasurementEquationFile, ...

[pwd ’\tmp’]);

if FileExist(DSGEModel.UpdateParameterFile)==1;

[stat,msg] = CopyFile(DSGEModel.UpdateParameterFile, ...

[pwd ’\tmp’]);

end;

if FileExist(DSGEModel.SystemPriorFile)==1;

[stat,msg] = CopyFile(DSGEModel.SystemPriorFile, ...

[pwd ’\tmp’]);

end;

%

% check if we should copy model solver file

%

if DSGEModel.ModelSolver==4;

if FileExist(DSGEModel.ModelSolverFile)==1;

[stat,msg] = CopyFile(DSGEModel.ModelSolverFile, ...

[pwd ’\tmp’]);

end;

end;

else;

status = 1;

kalmanstatus = 0;

end;

Particular care is taken in YADA to ensure that functions are individually documented, using
a certain style, and with a great level of detail. This not only facilitates future work on the
function, but also helps other users to see what a given function needs, does and provides.

The output variables are initialized with default values before the actual tool code is executed.
The required output variable, SpatDist, is empty and therefore makes it easy for code that calls
the function to determine if it has completed its task or not. Furthermore, the code assumes
that the only the required output variables should be supplied for posterior mode values, while
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in the case of the initial values also the optional output variables need to be provided. For
the initial values, the Matlab function for solving the DSGE model has already been copied to
the tmp directory. The measurement equation file and, when used, the file with parameters to
update have also been copied to this directory.21 For posterior mode values there is no guarantee
that these files exist in that directory and, hence, the code copies the files to that location.22 The
CopyFile function takes care of file copying, ensuring that old entries in the tmp directory are
overwritten. Note that there is no need to call FixFilePath for the input variables which are
used by CopyFile; it handles operating system consistent paths internally.

YADA has a function that can be used to solve the DSGE model, rewrite the AiM generated
solution into the state equation, and provide the state-space representation by running the
measurement equation. The function, which is aptly called SolveDSGEModel (located in the
tools directory), needs data from AiM. The following code tries to load data from the mat-
file DSGEModel.AIMDataFile (see Table 12) and report any problems should the data not be
available:

%

% load the AIMData file

%

ErrorStr = ’’;

if MatlabNumber>=8.0;

try;

AIMData = load(DSGEModel.AIMDataFile);

catch ME;

ErrorStr = [’Unable to load the file "’ DSGEModel.AIMDataFile ...

’". Message caught is: ’ YADALastError(ME)];

end;

else;

try;

AIMData = load(DSGEModel.AIMDataFile);

catch;

ErrorStr = [’Unable to load the file "’ DSGEModel.AIMDataFile ...

’". Message caught is: ’ YADALastError];

end;

end;

if isempty(ErrorStr)==0;

if nargout>1;

status = 0;

kalmanstatus = 0;

end;

About(ErrorStr,’information’,’YADA - Bad MAT File’,120,500,CurrINI);

return;

end;

The function SolveDSGEModel takes 6 input variables: DSGEModel, theta, thetaPositions,
ModelParameters, AIMData, and OrderQZ. The first 4 input variables are also inputs for the
function DSGESpatialDistortionsTheta, the fifth input variable is obtained above, while the
last input is a boolean whcih is unity if ordqz is a built-in Matlab function and zero otherwise.
This variable is located as a field in the CurrINI structure. As a precaution it may be useful to
call the DSGE model solution routine with try-catch code. The following takes this approach
and also makes use of the 6:th and only optional output variable from this function:

ErrorStr = ’’;

if MatlabNumber>=8.0;

21 The copy operations are performed inside the InitializeDSGEModelSimulation function; see Section 5.3.1.

22 As already mentioned in Section 2, the YADA function deletes all files from the tmp directory before it finishes.
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try;

[A,H,R,F,B0,mcode,ErrMsg] = SolveDSGEModel(DSGEModel,theta, ...

thetaPositions,ModelParameters, ...

AIMData,CurrINI.OrderQZ);

if isempty(ErrMsg)==0;

ErrorStr = [’YADA caught an error when trying to solve ’ ...

’the DSGE model. Message caught is: ’ ErrMsg];

end;

catch ME;

ErrorStr = [’YADA caught an error when trying to solve ’ ...

’the DSGE model. Message caught is: ’ ...

YADALastError(ME)];

end;

else;

try;

[A,H,R,F,B0,mcode,ErrMsg] = SolveDSGEModel(DSGEModel,theta, ...

thetaPositions,ModelParameters, ...

AIMData,CurrINI.OrderQZ);

if isempty(ErrMsg)==0;

ErrorStr = [’YADA caught an error when trying to solve ’ ...

’the DSGE model. Message caught is: ’ ErrMsg];

end;

catch;

ErrorStr = [’YADA caught an error when trying to solve ’ ...

’the DSGE model. Message caught is: ’ ...

YADALastError];

end;

end;

if isempty(ErrorStr)==0;

About(ErrorStr,’error’,’YADA Error’,CurrINI.scrsz(4)-50,500,CurrINI);

drawnow;

return;

end;

[B0,KeepVar] = RemoveRedundantColumns(B0);

The matrices A, H and R come from the measurement equation file, while F and B0 deter-
mine the state equation; see, e.g., Warne (2025, Section 3). The mcode variable is particularly
important here since it holds the key information about the properties of a possible solution
of the DSGE model at theta. The last line in the above code calls RemoveRedundantColumns

which, to no big surprise, examines a matrix and removed columns with zeros (or with num-
bers arbitrarily close to zero). Using this function is important if the structural shocks need
to be estimated since this requires that B0 has full column rank. Moreover, the second output
variable from the function, KeepVar, gives the non-zero column numbers for the original B0.
This variable is useful whenever the model is solved for multiple parameter values since further
calls to RemoveRedundantColumns can be avoided.23

When the call to the spatial distortions function includes the optional output variables, we
should let status be equal to mcode. The following code takes care of this and, when mcode is
not unity, a message is displayed with the type of AiM solution problem that has been detected:

23 The shocks vt = B0ηt = ξt − Fξt−1 can always be estimated once the state variables, ξt, have been estimated via

either the Kalman updater (t|t) or the Kalman smoother (t|T). Provided that the q × q matrix B′
0B0 has full rank

q, the structural shocks, ηt, are uniquely determined from vt and B0. The function SolveDSGEModel does not test if

B0 has full column rank. A typical situation where B0 indeed has rank less than q occurs when the user has fixed

a standard deviation parameter to zero in, say, the prior distribution specification file, but has not deselected the

corresponding shock via the Set State Shocks function on the Actions menu.
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if nargout>1;

status = mcode;

if mcode~=1;

if mcode==2;

mcodeStr = ’Roots are not correctly computed by real_schur.’

elseif mcode==3;

mcodeStr = ’Too many big roots.’;

elseif mcode==35;

mcodeStr = ’Too many big roots, and q(:,right) is singular.’;

elseif mcode==4;

mcodeStr = ’Too few big roots.’;

elseif mcode==45;

mcodeStr = ’Too few big roots, and q(:,right) is singular.’;

elseif mcode==5;

mcodeStr = ’q(:,right) is singular.’;

elseif mcode==61;

mcodeStr = ’Too many exact shiftrights.’;

elseif mcode==62;

mcodeStr = ’Too many numeric shiftrights.’;

elseif mcode==7;

mcodeStr = ’Infinite or NaN values detected.’;

elseif mcode==8;

mcodeStr = [’The function "compute_aim_matrices" returns ’ ...

’complex numbers.’];

elseif mcode==-1;

mcodeStr = ’No stable solution.’;

elseif mcode==-2;

mcodeStr = ’Too many large generalized eigenvalues.’;

elseif mcode==-3;

mcodeStr = ’Too few large generalized eigenvalues.’;

else;

mcodeStr = ’Return code not properly specified.’;

end;

if DSGEModel.ModelSolver==1;

SolverStr = ’AiM’;

elseif DSGEModel.ModelSolver==2;

SolverStr = ’Klein’;

elseif DSGEModel.ModelSolver==3;

SolverStr = ’Gensys’;

elseif DSGEModel.ModelSolver==4;

SolverStr = [’Own algorithm (’ ...

GetName(DSGEModel.ModelSolverFile) ’)’];

end;

txt = [’The ’ SolverStr ’ solver provided the return code: ’ ...

int2str(mcode) ’, i.e., "’ mcodeStr ’"’];

About(txt,’information’,[’YADA - ’ SolverStr ’ Solver Error’], ...

200,500,CurrINI);

return;

end;

end;

Since YADA allows for a time-varying measurement matrix H, the time dimension of the
matrix is covered by a third dimension. The length of this dimension must at least be equal to
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the number of time series observation in DSGEModel.Y, the matrix with data on the observed
(endogenous) variables. A simple test of this requirement can be formulated as:

if length(size(H))==3;

if size(H,3)<DSGEModel.T;

ErrorStr = [’The number of time periods for the time-varying ’ ...

’measurement matrix H (’ int2str(size(H,3)) ’) is ’ ...

’less than the number of observations (T = ’ ...

int2str(DSGEModel.T) ’). YADA has therefore ’ ...

’aborted from the spatial distortions.’];

About(ErrorStr,’error’,’Error - Measurement Equation’, ...

200,500,CurrINI);

return;

end;

end;

If we assume that the spatial distortions tool is a function of the data, we need to make
sure that the user selected sample settings are satisfied. The first step is to obtain the positions
of the first and the last observation in the selected sample in relation to the full sample that
is available in DSGEModel.Y. YADA has a function called CreateSubSample for obtaining this
information. The following code runs this function and collects the positions of the first and the
last observation in the integer variables FirstPeriod and LastPeriod

[FirstPeriod,LastPeriod] = CreateSubSample(DSGEModel);

The position FirstPeriod marks period 1 for the Kalman filter, while KalmanFirstObservation

(a field in DSGEModel) is equal to the first period after the training sample when FirstPeriod

is period 1. This means that the effective sample for the data on the observed variables is:

Y = DSGEModel.Y(:, ...

FirstPeriod+DSGEModel.KalmanFirstObservation-1:LastPeriod);

The final issue to consider for a single parameter value tool is the Kalman filter. YADA sup-
ports Kalman filtering and smoothing function that allow for unit roots, a time-varying matrix
with coefficients on the state variables in the measurement equations, missing observations
based on the standard Kalman filter and smoother as well as the square root versions thereof;
see Warne (2025, Section 5) for details.

In the event that the Kalman filter needs to be applied, it is important to note that YADA al-
lows for user input values when initializing the filter. The DSGEModel field InitialStateValues

has the values for all possible state variables, while the field UseOwnInitialState indicates if
these values should be used by the current selection of the state variables instead of the default
zero values. The following code takes care of this and can be executed before the Kalman filter
is called;

r = length(DSGEModel.StateVariablePositions);

if DSGEModel.UseOwnInitialState==1;

if length(DSGEModel.InitialStateValues)==size(AIMData.endog,1);

InitStateVector = DSGEModel.InitialStateValues( ...

DSGEModel.StateVariablePositions);

else;

InitStateVector = zeros(r,1);

end;

else;

InitStateVector = zeros(r,1);

end;

The vector InitStateVector now contains the initial values for the set of selected state vari-
ables.
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5.4.2. Multiple Parameter Values

It was mentioned in Section 4.7 that it may be of interest to allow only some parameters to
vary across draws from the posterior, while others are fixed at, say, the posterior mode. This
is not really kosher from a sampling perspective since the posterior draws are generated from
the joint posterior distribution of all parameters and we thereafter replace the values for some
parameters with fixed values. What we instead should have had access to are draws from a
conditional posterior distribution for a subset of the parameters given the parameters that are
fixed.24 In fact, this means that when we take draws from the joint posterior and replace the
values for some parameters with the posterior mode values, then some of the manipulated
draws of theta will probably not be compatible with a unique convergent solution of the DSGE
model.

Still, provided that the number of fixed parameters is low relative to the length of theta,
this caveat need not be all that important. The following code shows how to choose both the
parameters to fix and the parameters that can vary from one draw to the next.

if (isempty(DSGEModel.ScenarioParameters)==1)| ...

(length(DSGEModel.ScenarioParameters)~=length(theta));

DSGEModel.ScenarioParameters = ones(1,length(theta));

end;

positions = DSGEModel.ScenarioParameters .* (1:length(theta));

positions = positions(positions>0);

%

[PosAction,positions] = SelectCondVarShockDLG(’init’, ...

’Spatial Distortions’,’Parameters For’, ...

ParameterNames,positions,CurrINI);

if (strcmp(lower(PosAction),’ok’)==1)&(isempty(positions)==0);

DSGEModel.ScenarioParameters = zeros(1,length(theta));

DSGEModel.ScenarioParameters(positions) = ones(1,length(positions));

%

% continue with the next step

%

elseif isempty(positions)==1;

txt = [’You didn’’t select any parameters that should be varied ’ ...

’for the estimation of the spatial distortions distribution.’];

About(txt,’information’,’Spatial Distortions’,150,500,CurrINI);

end;

The function SelectCondVarShockDLG was already discussed in Section 3.5. Notice that the
vector positions contains only integer values equal to the positions of the selected parameters.
By default this involves all the parameters that can be estimated as indicated by the first test
regarding the field ScenarioParameters of the DSGEModel structure. Furthermore, the code
also ensures that at least one of these parameters is selected by the user.

5.4.2.1. Testing for Spatial Distortions Results on Disk

Before a tool is executed for multiple parameter values the convention in YADA is to test if the
tool has already been run, i.e., if the results from the tool can be located below the output
directory. Let us therefore assume that the function SpatDistExist has been written for this
purpose and is given by the file SpatDistExist.m in the directory project. This file may, for
instance, have the following code:

function status = SpatDistExist(DSGEModel,SelectedParameters, ...

NumDraws,TotalDraws,CurrChain,IsPosterior)

% SpatDistExist: Tests if spatial distortions results exist

24 That is, if θ = (θ1, θ2) and θ2 = θ̄2 is fixed, the density we should have sampled from is the conditional density for

θ1 given θ2.
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% on disk

%

% USAGE:

.

.

.

%

% initialize output

%

status = 0;

%

% fix the information needed to setup the file names

%

SelParamStr = strrep(num2str(SelectedParameters),’ ’,’’);

NumFiles = ceil(NumDraws/min(NumDraws,1000));

for ThisSave=1:NumFiles;

if IsPosterior==1;

file = FixFilePath([DSGEModel.OutputDirectory ’\spatdist\DSGE-SD-’ ...

DSGEModel.NameOfModel ’-’ int2str(CurrChain) ’-’ ...

SelParamStr ’-’ int2str(ThisSave) ’-’ int2str(NumFiles) ...

’.’ int2str(NumDraws) ’-’ int2str(TotalDraws) ’.mat’]);

else;

file = FixFilePath([DSGEModel.OutputDirectory ...

’\spatdist\DSGE-SD-Prior-’DSGEModel.NameOfModel ’-’ ...

SelParamStr ’-’ int2str(ThisSave) ...

’-’ int2str(NumFiles) ’.’ int2str(TotalDraws) ’.mat’]);

end;

if FileExist(file)==0;

return;

end;

end;

status = 1;

%

% end of SpatDistExist.m

%

This function has one output variable which is locally called status. The spatial distortion
results exist on disk when this variable is unity. On the other hand, the function returns with
status being zero if at least one of the files with results is missing.

In case the results already exist, the convention in YADA is to let the user decide if the old
results should be reused or if new results should be computed. The following code takes care of
this when posterior draws are used:

%

% continue with the next step

%

if SpatDistExist(DSGEModel,DSGEModel.ScenarioParameters, ...

size(thetaPostSample,1),NumDraws,CurrChain,1)==1;

txt = [’YADA has located results for the spatial distortions ’ ...

’on disk. Would you like to use these results?’];

answer = Query(txt,’question’,150,’Spatial Distortions’,500, ...

’no’,CurrINI);

else;

answer = ’No’;

end;
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When the string answer is equal to ’No’, the spatial distortions should be recomputed, while
the value ’Yes’ means that the code should skip this operation and move directly to the step of
loading the results from disk.

In the event that the multiple parameter values are draws from the prior distribution, the
code can instead be expressed as:

%

% continue with the next step

%

if SpatDistExist(DSGEModel,DSGEModel.ScenarioParameters, ...

NumPriorDraws,NumPriorDraws,1,0)==1;

txt = [’YADA has located results for the spatial distortions ’ ...

’on disk. Would you like to use these results?’];

answer = Query(txt,’question’,150,’Spatial Distortions’,500, ...

’no’,CurrINI);

else;

answer = ’No’;

end;

The value of CurrChain is irrelevant for prior draws, while the value of the input variable
IsPosterior is zero. Furthermore, the input variables NumDraws and TotalDraws are here
equal since the convention in YADA is to use all prior draws.

5.4.2.2. Spatial Distortions Tool For Multiple Parameter Values

The function that computes spatial distortions for multiple parameter values is assumed to be
called DSGESpatialDistortions. As usual, this function is located in the project directory,
below YADA’s base directory. The top of this function can, e.g., be given by:

DoneCalc = DSGESpatialDistortions(theta,thetaSample,thetaPositions, ...

ModelParameters,SelectedParameters,IsPosterior, ...

TotalDraws,CurrChain,DSGEModel,CurrINI)

% DSGESpatialDistortions: Computes spatial distortions using multiple

% values of theta, and saves them to disk.

%

% USAGE:

.

.

.

%

% intialize output

%

DoneCalc = 0;

%

% determine which parameters should be updated

%

ScenarioParameters = SelectedParameters .* (1:length(theta));

ScenarioParameters = ScenarioParameters(ScenarioParameters>0);

SelParamStr = strrep(num2str(SelectedParameters),’ ’,’’);

%

% copy files to the tmp folder

%

[stat,msg] = CopyFile([GetPath(DSGEModel.AIMDataFile) ...

’compute_aim_matrices.m’],[pwd ’\tmp’]);

[stat,msg] = CopyFile(DSGEModel.MeasurementEquationFile, ...

[pwd ’\tmp’]);

if FileExist(DSGEModel.UpdateParameterFile)==1;
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[stat,msg] = CopyFile(DSGEModel.UpdateParameterFile, ...

[pwd ’\tmp’]);

end;

if FileExist(DSGEModel.SystemPriorFile)==1;

[stat,msg] = CopyFile(DSGEModel.SystemPriorFile,[pwd ’\tmp’]);

end;

%

% check if we should copy model solver file

%

if DSGEModel.ModelSolver==4;

if FileExist(DSGEModel.ModelSolverFile)==1;

[stat,msg] = CopyFile(DSGEModel.ModelSolverFile,[pwd ’\tmp’]);

end;

end;

%

% load the AIMData file

%

ErrorStr = ’’;

if MatlabNumber>=8.0;

try;

AIMData = load(DSGEModel.AIMDataFile);

catch ME;

ErrorStr = [’Unable to load the file "’ DSGEModel.AIMDataFile ...

’". Message caught is: ’ YADALastError(ME)];

end;

else;

try;

AIMData = load(DSGEModel.AIMDataFile);

catch;

ErrorStr = [’Unable to load the file "’ DSGEModel.AIMDataFile ...

’". Message caught is: ’ YADALastError];

end;

end;

if isempty(ErrorStr)==0;

About(ErrorStr,’information’,’YADA - Bad MAT File’,120,500,CurrINI);

return;

end;

%

% create the output directory

%

stat = MakeDir(DSGEModel.OutputDirectory,’spatdist’);

if stat~=1;

if ispc==1;

txt = [’YADA was for some reason unable to create the directory "’ ...

DSGEModel.OutputDirectory ’\spatdist". The computation of ’ ...

’spatial distoritions has therefore been aborted.’];

else;

txt = [’YADA was for some reason unable to create the directory "’ ...

DSGEModel.OutputDirectory ’/spatdist". The computation of ’ ...

’spatial distoritions has therefore been aborted.’];

end;

About(txt,’information’,’YADA - Directory Creation Problem’, ...

180,500,CurrINI);
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return;

end;

The function only provides one output variable, the boolean entity DoneCalc which indicates
if all the calculations were completed or not. This variables is initialized at the top of the func-
tion code. Thereafter, some standard procedures follow where the location for the parameters
that are allowed to vary is determined as well as a string that is used in the name of the files with
the spatial distortion results, Matlab m-files are copied to the tmp directory, AiM related data is
collected, and a directory for storing spartial distortion results is (when necessary) created.

The next step is to check if the DSGE model can be solved at the fixed vector theta which
is expected to hold either the initial values of the posterior mode values. The code is therefore
almost identical to the single parameter value code in Section 5.4.1:

%

% try to solve the model at theta

%

ErrorStr = ’’;

if MatlabNumber>=8.0;

try;

[A,H,R,F,B0,mcode,ErrMsg] = SolveDSGEModel(DSGEModel,theta, ...

thetaPositions,ModelParameters, ...

AIMData,CurrINI.OrderQZ);

if isempty(ErrMsg)==0;

ErrorStr = [’YADA caught an error when trying to solve ’ ...

’the DSGE model. Message caught is: ’ ErrMsg];

end;

catch ME;

ErrorStr = [’YADA caught an error when trying to solve ’ ...

’the DSGE model. Message caught is: ’ ...

YADALastError(ME)];

end;

else;

try;

[A,H,R,F,B0,mcode,ErrMsg] = SolveDSGEModel(DSGEModel,theta, ...

thetaPositions,ModelParameters, ...

AIMData,CurrINI.OrderQZ);

if isempty(ErrMsg)==0;

ErrorStr = [’YADA caught an error when trying to solve ’ ...

’the DSGE model. Message caught is: ’ ErrMsg];

end;

catch;

ErrorStr = [’YADA caught an error when trying to solve ’ ...

’the DSGE model. Message caught is: ’ ...

YADALastError];

end;

end;

if isempty(ErrorStr)==0;

About(ErrorStr,’information’,’YADA - Error Message’, ...

CurrINI.scrsz(4)-50,500,CurrINI);

return;

end;

if mcode~=1;

if mcode==2;

mcodeStr = ’Roots are not correctly computed by real_schur.’

elseif mcode==3;
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mcodeStr = ’Too many big roots.’;

elseif mcode==35;

mcodeStr = ’Too many big roots, and q(:,right) is singular.’;

elseif mcode==4;

mcodeStr = ’Too few big roots.’;

elseif mcode==45;

mcodeStr = ’Too few big roots, and q(:,right) is singular.’;

elseif mcode==5;

mcodeStr = ’q(:,right) is singular.’;

elseif mcode==61;

mcodeStr = ’Too many exact shiftrights.’;

elseif mcode==62;

mcodeStr = ’Too many numeric shiftrights.’;

elseif mcode==7;

mcodeStr = ’Infinite or NaN values detected.’;

elseif mcode==8;

mcodeStr = [’The function "compute_aim_matrices" returns ’ ...

’complex numbers.’];

elseif mcode==-1;

mcodeStr = ’No stable solution.’;

elseif mcode==-2;

mcodeStr = ’Too many large generalized eigenvalues.’;

elseif mcode==-3;

mcodeStr = ’Too few large generalized eigenvalues.’;

else;

mcodeStr = ’Return code not properly specified.’;

end;

if DSGEModel.ModelSolver==1;

SolverStr = ’AiM’;

elseif DSGEModel.ModelSolver==2;

SolverStr = ’Klein’;

elseif DSGEModel.ModelSolver==3;

SolverStr = ’Gensys’;

elseif DSGEModel.ModelSolver==4;

SolverStr = [’Own algorithm (’ ...

GetName(DSGEModel.ModelSolverFile) ’)’];

end;

txt = [’The ’ SolverStr ’ solver provided the return code: ’ ...

int2str(mcode) ’, i.e., "’ mcodeStr ’"’];

About(txt,’information’,[’YADA - ’ SolverStr ’ Solver Error’], ...

200,500,CurrINI);

return;

end;

%

if length(size(H))==3;

if size(H,3)<DSGEModel.T;

ErrorStr = [’The number of time periods for the time-varying ’ ...

’measurement matrix H (’ int2str(size(H,3)) ’) is ’ ...

’less than the number of observations (T = ’ ...

int2str(DSGEModel.T) ’). YADA has therefore ’ ...

’aborted from the spatial distortions.’];

About(ErrorStr,’error’,’Error - Measurement Equation’, ...

200,500,CurrINI);

return;
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end;

end;

%

% store the state-space values for backup

%

AOrig = A;

Horig = H;

ROrig = R;

FOrig = F;

B0Orig = B0;

%

[B0,KeepVar] = RemoveRedundantColumns(B0);

%

% make sure that theta is not overwritten

%

thetaOrig = theta;

%

% initialize index for saving

%

NumDraws = size(thetaSample,1);

SaveAfterDraws = min(NumDraws,1000);

NumFiles = ceil(NumDraws/SaveAfterDraws);

Notice that the number of values of theta is given by the rows of thetaSample and that the the
code should save results to disk after at most 1000 such values.25

Before the code starts the real work on spatial distortions, it may be appropriate to set up the
data with its sample settings, and to test run the Kalman filter and smoother functions at theta.
Assuming that all such matters have been taken care of, the next step is to write the code for
a loop over the draws in thetaSample. The convention in YADA is to either display a progress
dialog or a wait dialog during such a loop. Which one is displayed depends on the user’s settings
regarding the progress dialog in the Progress Dialog Selections frame on the Settings tab; see also
Table 15.

The following code initializes a few variables that are used by the loop and creates the
progress or the wait dialog:

%

% begin the loop

%

PriorHeader = ’’;

if IsPosterior==0;

PriorHeader = ’ - Prior’;

end;

abort = ’’;

LastDraw = 0;

MeanEstimationTime = 0;

ThisSave = 0;

SptlDstrtns = [];

%

% check if we should setup a progress dialog

%

if DSGEModel.ShowProgress==1;

ProgressStructure.title = [’Progress for ’ int2str(NumDraws) ...

’ parameter draws’];

25 The convention in YADA is to save the results after each value of theta when the results of a tool makes use of

simulated data. For tools that do not require simulation, the results can effectively be saved less often.
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ProgressStructure.facecolor = CurrINI.ProgressFaceColor;

ProgressStructure.startfacecolor = CurrINI.ProgressStartFaceColor;

ProgressStructure.edgecolor = CurrINI.ProgressEdgeColor;

ProgressStructure.bgcolor = CurrINI.ProgressBGColor;

ProgressStructure.stop = 0;

ProgressStructure.clock = DSGEModel.ShowProgressClock;

ProgressStructure.label = ’Mean estimation time:’;

%

ProgressStructure.name = [’Spatial Distortions Distribution’ ...

PriorHeader];

ProgressStructure.CurrINI = CurrINI;

WaitHandle = ProgressDLG(0,ProgressStructure);

set(WaitHandle,’Color’,get(CurrINI.GraphicsRoot, ...

’defaultuicontrolbackgroundcolor’));

drawnow;

else;

txt = [’Please wait while YADA computes the distribution of the ’ ...

’spatial distortions. Computations started at: ’ ...

StringTrim(datestr(now,14))];

WaitHandle = WaitDLG(txt,’information’,[’Spatial Distortions ’ ...

’Distribution’ PriorHeader],500,150,CurrINI,0);

WaitControls = get(WaitHandle,’UserData’);

end;

The variable SptlDstrtns is, e.g., a structure that holds the results for each value of theta that
is used for the spatial distortions within the current output file.

The basic bulding block of the for-loop is considered next.

for it=1:NumDraws;

LastDraw = LastDraw+1;

if DSGEModel.ShowProgress==1;

abort = get(WaitHandle,’UserData’);

if strcmp(abort,’cancel’)==1;

break;

else;

ProgressDLG([it/NumDraws MeanEstimationTime]);

end;

end;

%

% Solve the model for the current parameter vector

%

theta(ScenarioParameters) = thetaSample(it,ScenarioParameters)’;

tic;

[A,H,R,F,B0,status] = SolveDSGEModel(DSGEModel,theta, ...

thetaPositions,ModelParameters, ...

AIMData,CurrINI.OrderQZ);

if status~=1;

%

% use backup values of state-space model

%

A = AOrig;

H = HOrig;

R = ROrig;

F = FOrig;

B0 = B0Orig;
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end;

B0 = B0(:,KeepVar);

%

% do a bunch of complex computations

%

.

.

.

%

% store the results in the SptlDstrtns structure

%

SptlDstrtns(LastDraw).SpatDist = SD;

%

% measure average computation time

%

MeanEstimationTime = (((it-1)/it)*MeanEstimationTime)+((1/it)*toc);

%

% check if we should save to disk

%

if (LastDraw==SaveAfterDraws)|(it==NumDraws);

ThisSave = ThisSave+1;

LastDraw = 0;

%

% set up the file name and then save

%

if IsPosterior==1;

file = FixFilePath([DSGEModel.OutputDirectory ...

’\spatdist\DSGE-SD-’ DSGEModel.NameOfModel ’-’ ...

int2str(CurrChain) ’-’ SelParamStr ’-’ int2str(ThisSave) ...

’-’ int2str(NumFiles) ’.’ int2str(NumDraws) ’-’ ...

int2str(TotalDraws) ’.mat’]);

else;

file = FixFilePath([DSGEModel.OutputDirectory ...

’\spatdist\DSGE-SD-Prior-’ DSGEModel.NameOfModel ’-’ ...

SelParamStr ’-’ int2str(ThisSave) ’-’ ...

int2str(NumFiles) ’.’ int2str(TotalDraws) ’.mat’]);

end;

save(file,’SptlDstrtns’);

%

% restore the data structure

%

SptlDstrtns = [];

end;

drawnow;

end;

The first step in the loop is to check if a progress dialog is shown. If so, the dialog is either
updated with the current sample number for the parameter values relative to the total number of
parameter values and the average computation time for the spatial distortions, or the execution
of the for-loop is stopped. The latter occurs when the Cancel button on the progress dialog has
been pushed during the previous for-loop iteration, resulting in the UserData property of the
dialog being set to the string ’cancel’.

Next, the entries of the parameter vector theta that can vary across the parameter values
are updated with the values for the current sample number. Based on these values the code
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attempts to solve the DSGE model. If there does not exist a unique convergent solution, a
backup solution is provided. Once the solution of the DSGE model is available, the code can
perform the necessary computations for the spatial distortions. The variable SD is computed
during this step and, for expositional reasons, it is assumed to be a matrix with n rows and r

columns. In the last part of the loop, the code checks if the results should be stored to disk or
not.

Before the function DSGESpatialDistortions exits, we need to make sure that the progress
or wait dialog is closed and that DoneCalc is set to unity if all the computations have been
performed:

%

% close the wait dialog

%

if DSGEModel.ShowProgress==1;

if ishandle(WaitHandle)==1;

set(WaitHandle,’UserData’,’done’);

close(WaitHandle);

drawnow;

pause(0.02);

end;

else;

set(WaitControls.text,’UserData’,’done’);

delete(WaitHandle);

drawnow;

pause(0.02);

end;

%

% check if we have computed all output

%

if strcmp(abort,’cancel’)==0;

DoneCalc = 1;

end;

Notice that DoneCalc is set to unity when the abort variable is not equal to ’cancel’, i.e., when
the Cancel button on the progress dialog has not been pushed.

We are now at the stage where the code for calling the function DSGESpatialDistortions can
be expressed. If the multiple values for theta are given by draws from the posterior distribution,
the following code can be used:

if strcmp(lower(answer),’yes’)==1;

DoneCalc = 1;

else;

DoneCalc = DSGESpatialDistortions(theta,thetaPostSample, ...

thetaPositions,ModelParameters, ...

DSGEModel.ScenarioParameters,1,NumDraws,CurrChain, ...

DSGEModel,CurrINI);

end;

Similarly, when the draws are taken from the prior distribution, the call to the spatial distortions
function can be replaced with:

DoneCalc = DSGESpatialDistortions(theta,thetaDraws’, ...

thetaPositions,ModelParameters, ...

DSGEModel.ScenarioParameters,0,NumPriorDraws,1, ...

DSGEModel,CurrINI);

Notice that the matrix with multiple parameters is here transposed to ensure that the rows hold
the multiple theta values.
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5.4.2.3. Computing Distribution Results for the Spatial Distortions Tool

Once the spatial distortions have been calculated for each value of parameter vector theta, the
convention in YADA is to turn to the distributional aspects of the results. This means that the
data need to be read from disk, sorted, and stored in temporary output variables. It is assumed
below that this task is performed by the function DSGESpatDistDistribution.

It is assumed that the output variable from this function is given by the structure SpatDist

which has three fields: Mean, Quantiles, and ShortestConfidence. The first field holds, as the
name suggests, the mean of the spatial distortions, while the second field is a vector structure
of length equal to the number of quantiles and with subfields Mean and percent. The former
gives a particular quantile value of the spatial distortions, while the latter is the percentile value
of the quantile in the range between 0 and 100. The third field is a structure of length equal
to half the number of percentiles. It has fields UpperBound and LowerBound that hold upper
and lower bound, respectively, for the shortest confidence bands. In addition, it has the field
percent that holds the percentage point value of the band.

The following code initializes the output from the function:

function SpatDist = DSGESpatDistDistribution(DSGEModel,CurrINI, ...

SelectedParameters,NumDraws,TotalDraws, ...

CurrChain,IsPosterior,Weights)

% DSGESpatDistDistribution: Computes the mean, quantiles and shortest

% confidence bands of the spatial distortions

%

% USAGE:

.

.

.

%

% determine parameters

%

SelParamStr = strrep(num2str(SelectedParameters),’ ’,’’);

NumFiles = ceil(NumDraws/min(NumDraws,1000));

NumQuants = length(DSGEModel.Percentiles);

if isempty(Weights)==1;

Weights = ones(NumDraws,1);

end;

%

if IsPosterior==1;

file = FixFilePath([DSGEModel.OutputDirectory ...

’\spatdist\DSGE-SD-’ DSGEModel.NameOfModel ’-’ ...

int2str(CurrChain) ’-’ SelParamStr ’-1-’ ...

int2str(NumFiles) ’.’ int2str(NumDraws) ’-’ ...

int2str(TotalDraws) ’.mat’]);

else;

file = FixFilePath([DSGEModel.OutputDirectory ...

’\spatdist\DSGE-SD-Prior-’ DSGEModel.NameOfModel ...

’-’ SelParamStr ’-1-’ int2str(NumFiles) ’.’ ...

int2str(TotalDraws) ’.mat’]);

end;

%

SDData = load(file);

[n,r] = size(SDData.SptlDstrtns(1).SpatDist);

%

% initialize output

%
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SpatDist.Mean = zeros(n,r);

for i=1:NumQuants;

SpatDist.Quantiles(i).Mean = zeros(n,r);

SpatDist.Quantiles(i).percent = DSGEModel.Percentiles(i);

end;

for i=1:(NumQuants/2);

SpatDist.ShortestConfidence(i).UpperBound = zeros(n,r);

SpatDist.ShortestConfidence(i).LowerBound = zeros(n,r);

SpatDist.ShortestConfidence(i).percent = DSGEModel.Percentiles( ...

NumQuants-i+1)-DSGEModel.Percentiles(i);

end;

PriorHeader = ’’;

if IsPosterior==0;

PriorHeader = ’ - Prior’;

end;

The number of spatial disortions is here equal to n times r. For each such statistic there are
NumDraws values. Let us assume that n is equal to the number of observed variables while r

is equal to the number of state variables. The marginal distribution of the spatial distortions
for the pair (i,j) with i=1,...,n and j=1,...,r is the object of interest. This distribution is
estimated by sorting the spatial distortions for each pair (i,j). The following code provides
the outer and inner loop for the computation spatial distortions distribution and sets up a wait
dialog for displaying progress:

%

% setup a wait dialog

%

txt = [’Please wait while YADA computes the mean spatial ’ ...

’distortions as well as percentile values. The data are ’ ...

’loaded sequentially from disk and it may therefore take ’ ...

’some time. Current pair: ’ ...

StringTrim(DSGEModel.VariableNames(1,:)) ’,’ ...

StringTrim(DSGEModel.StateVariableNames(1,:)) ’.’];

WaitHandle = WaitDLG(txt,’information’,[’Spatial Distortions’ ...

PriorHeader],500,200,CurrINI,0);

WaitControls = get(WaitHandle,’UserData’);

drawnow;

pause(0.02);

%

for i=1:n;

for j=1:r;

%

% update the wait dialog

%

txt = [’Please wait while YADA computes the mean spatial ’ ...

’distortions as well as percentile values. The data are ’ ...

’loaded sequentially from disk and it may therefore take ’ ...

’some time. Current pair: ’ ...

StringTrim(DSGEModel.VariableNames(i,:)) ’,’ ...

StringTrim(DSGEModel.StateVariableNames(j,:)) ’.’];

set(WaitControls.text,’String’,txt);

drawnow;

%

% load the results

%
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.

.

.

end;

end;

%

% close the wait dialog

%

set(WaitControls.text,’UserData’,’done’);

delete(WaitHandle);

drawnow;

pause(0.02);

The next step within the inner loop is to load all the spatial distortions for the pair (i,j).
The following code takes care of this and stores the results for this pair in the variable Temp:

%

% load the results

%

Temp = zeros(NumDraws,1);

CurrSaves = 0;

for ThisSave=1:NumFiles;

if IsPosterior==1;

file = FixFilePath([DSGEModel.OutputDirectory ...

’\spatdist\DSGE-SD-’ DSGEModel.NameOfModel ’-’ ...

int2str(CurrChain) ’-’ SelParamStr ’-’ int2str(ThisSave) ...

’-’ int2str(NumFiles) ’.’ int2str(NumDraws) ’-’ ...

int2str(TotalDraws) ’.mat’]);

else;

file = FixFilePath([DSGEModel.OutputDirectory ...

’\spatdist\DSGE-SD-Prior-’ DSGEModel.NameOfModel ’-’ ...

SelParamStr ’-’ int2str(ThisSave) ’-’ int2str(NumFiles) ...

’.’ int2str(TotalDraws) ’.mat’]);

end;

SDData = load(file);

NumSaves = length(SDData.SptlDstrtns);

for s=1:NumSaves;

Temp(CurrSaves+s,1) = SDData.SptlDstrtns(s).SpatDist(i,j);

end;

CurrSaves = CurrSaves+NumSaves;

drawnow;

end;

The final step is to compute the mean or some other location statistic (median or mode) and
the percentiles that are defined in the DSGEModel field Percentiles:

%

% compute the mean

%

SpatDist.Mean(i,j) = (1/NumDraws)*sum(Temp.*Weights);

%

% sort the results

%

Temp = sort(Temp);

%

% determine the quantiles

%
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for l=1:NumQuants;

if DSGEModel.Percentiles(l)<50;

QuantVal = ceil((DSGEModel.Percentiles(l)/100)*NumDraws);

else;

QuantVal = floor((DSGEModel.Percentiles(l)/100)*NumDraws);

end;

SpatDist.Quantiles(l).Mean(i,j) = Temp(QuantVal,1);

end;

YADA determines confidence (or error) bands directly from the percentiles. If the vector
DSGEModel.Percentiles has 4 elements, then YADA compute one confidence band using the
outer values of the vector and a second using the inner values. The percentiles are always sorted
and hence, if the first and the last values are 5 and 95, a 90 percent equal-tail confidence band
is computed from these percentiles. An alternative approach is to compute, say, a 90 percent
confidence bands such that the distance between the upper and the lower bound for a given
coverage probability is as short as possible; see, e.g., Bernardo and Smith (2000, Appendix B,
Section 3.2). Such bands are often called shortest confidence bands.26

The following code computes the upper and the lower bound of the shortest confidence
bands:

for l=1:floor(NumQuants/2);

%

% determine number of elements in confidence band

%

ConfDraws = floor((SpatDist.ShortestConfidence(l).percent/100)*NumDraws);

%

UpperBound = Temp(ConfDraws,1);

LowerBound = Temp(1,1);

for k=2:NumDraws-ConfDraws+1;

if (Temp(ConfDraws+k-1,1)-Temp(k,1))<(UpperBound-LowerBound);

UpperBound = Temp(ConfDraws+k-1,1);

LowerBound = Temp(k,1);

end;

end;

%

% store the shortest confidence bands

%

SpatDist.ShortestConfidence(l).UpperBound(i,j) = UpperBound;

SpatDist.ShortestConfidence(l).LowerBound(i,j) = LowerBound;

end;

The number of confidence bands is equal to half the length of the Percentiles field. YADA
does not currently calculate shortest confidence bands, but this may change in the future.

The marginal distribution of the spatial distortions can now be called by the functions that
use posterior and prior draws of the theta parameters. The following code performs this task
for the posterior draws:

if DoneCalc==1;

%

% compute the marginal distributions for posterior

%

SpatDist = DSGESpatDistDistribution(DSGEModel,CurrINI, ...

DSGEModel.ScenarioParameters, ...

26 A related approach is concerned with highest probability density regions. Such credible regions have the property

that (i) the probability that a value is an element of the region is equal to 1 − α (a 100(1 − α) percent region), and

(ii) the density value for any element in the region is greater than or equal to the density value for all elements that

do not belong to the region.
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size(thetaPostSample,1),NumDraws,CurrChain,...

1,Weights);

%

% check if user wants to save results to disk

%

end;

Similarly, if the draws are taken from the prior distribution we may use the following example:

if DoneCalc==1;

%

% compute the marginal distributions for prior

%

SpatDist = DSGESpatDistDistribution(DSGEModel,CurrINI, ...

DSGEModel.ScenarioParameters, ...

NumPriorDraws,NumPriorDraws,1,0,[]);

%

% check if user wants to save results to disk

%

end;

Once these results have been computed by the function for multiple parameter values, we can
turn to the last issue. Namely, to display and save the results from the spatial distortions
exercise.

5.5. Displaying Results

The convention is YADA is to ask the user if the results should be saved to disk. If the user
answers in the positive, then the results are saved in a mat-file while access to these data is
made available through a Matlab script that YADA writes in an m-file. This script gives direct
access to all the variables that have been saved to the mat-file.

The following code gives an example how this can be achieved for the posterior draws:

%

% ask if we should save results to disk

%

txt = [’Would you like to save the mean, the quantiles, and the ’ ...

’shortest confidence band of the spatial distortions to file?’];

answer = Query(txt,’question’,140,’Save - Spatial Distortions’,500, ...

’no’,CurrINI);

if strcmp(lower(answer),’yes’)==1;

SelParamStr = strrep(num2str(DSGEModel.ScenarioParameters),’ ’,’’);

YNames = DSGEModel.VariableNames;

StateVariableNames = DSGEModel.StateVariableNames;

%

file = FixFilePath([DSGEModel.OutputDirectory ’\SpatialDDist-’ ...

DSGEModel.NameOfModel ’-’ int2str(CurrChain) ’-’ ...

SelParamStr ’.’ int2str(NumDraws) ’-’ ...

int2str(TotalDraws) ’.mat’]);

save(file,’YNames’,’StateVariableNames’,’SpatDist’);

%

mfile = FixFilePath([DSGEModel.OutputDirectory ’\SDDist’ ...

DSGEModel.NameOfModel int2str(CurrChain) SelParamStr ...

int2str(NumDraws) int2str(TotalDraws) ’.m’]);

fid = fopen(mfile,’wt’);

%

% write code for m-file

%
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fprintf(fid,[’%%\n%% load the data in ’ GetFilename(file) ’\n%%\n’]);

fprintf(fid,’DataStruc = load(’’%s’’);\n’,GetFilename(file));

fprintf(fid,[’%%\n%% string matrix with the names of the ’ ...

’observed variables\n%%\n’]);

fprintf(fid,’YNames = DataStruc.YNames;\n’);

fprintf(fid,[’%%\n%% string matrix with the names of the ’ ...

’state variables\n%%\n’]);

fprintf(fid,’StateVariableNames = DataStruc.StateVariableNames;\n’);

fprintf(fid,’%%\n%% structure with spatial distortions results\n%%\n’);

fprintf(fid,’SpatDist = DataStruc.SpatDist;\n’);

fprintf(fid,’%%\n%% Add your own commands below\n%%\n\n\n’);

fprintf(fid,’%%\n%% Created by YADA on %s\n%%\n’,datestr(now,0));

fclose(fid);

%

% display a dialog with information

%

txt = [’The spatial distortions data have been saved to the file "’ ...

GetFilename(file) ’" in the directory "’ GetPath(file) ...

’". The file contains 3 entries: YNames (string matrix ’ ...

’with the names of the observed variables), ’ ...

’StateVariableNames (string matrix with the names of the ’ ...

’state variables), and SpatDist (structure with data on ’ ...

’mean, quantiles, and shortest confidence bands). To ’ ...

’access this data you may run the Matlab script file "’ ...

GetFilename(mfile) ’".’];

About(txt,’information’,’Spatial Distortions’,200,500,CurrINI);

end;

Notice that if draws from the prior distribution had been used for the computations, only the
names of the two files would need to be different.

There are two basic approaches to display results from an exercise such as the spatial dis-
tortions. The evidence may be written to a text file and then displayed on screen through the
TextGUI function; see Section 3.2. The alternative is to plot the results in graphs. The conven-
tion in YADA for the latter case is to allow the user to select which variables to plot and, when
applicable, which sample to show.

5.5.1. Writing Results to a Text File

The custom in YADA when writing results to a text file is to have a separate function take care
of this issue. Once this function has been executed, YADA checks if the text file exists on disk
and if it is located the code instructs the TextGUI function to display the content of the file.
The output from the spatial distortions exercises that have been discussed above for single and
multiple values of the parameters theta is assumed to be available as the variable SpatDist.
For the single value case this is simply a matrix with n rows and r columns, representing the
distortions for the n observed (endogenous) variables as measured by the r state variables.
For the multiple parameter values case this variable is instead a structure with fields Mean,
Quantiles and ShortestConfidence. The function that writes the results to disk needs to
either take the different cases into account, or there needs to be one such function per case.
Below I will discuss the first possibility.

Let us therefore assume that the function that writes the spatial distortions to disk is called
PrintSpatialDistortions and that it exists in the usual directory, i.e., in project directly
below YADA’s base directory. The following code is located at the top the file:

function PrintSpatialDistortions(DSGEModel,CurrINI,SpatDist, ...

SelectedParameters,NumDraws, ...

TotalDraws,CurrChain,IsPosterior)
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% PrintSpatialDistortions: writes the results on spatial distortions to

% a text file

%

% USAGE:

.

.

.

%

% determine the file name

%

if NumDraws==1;

if IsPosterior==1;

file = FixFilePath([DSGEModel.OutputDirectory ’\SpatDist-’ ...

DSGEModel.NameOfModel ’-PosteriorMode.txt’]);

else;

file = FixFilePath([DSGEModel.OutputDirectory ’\SpatDist-’ ...

DSGEModel.NameOfModel ’-InitialValues.txt’]);

end;

else;

SelParamStr = strrep(num2str(SelectedParameters),’ ’,’’);

if IsPosterior==1;

file = FixFilePath([DSGEModel.OutputDirectory ’\SpatDist-’ ...

DSGEModel.NameOfModel ’-’ int2str(CurrChain) ’-’ ...

SelParamStr ’-’ int2str(NumDraws) ’.’ ...

int2str(TotalDraws) ’.txt’]);

else;

file = FixFilePath([DSGEModel.OutputDirectory ’\SpatDistPrior-’ ...

DSGEModel.NameOfModel ’-’ SelParamStr ’-’ ...

int2str(NumDraws) ’.txt’]);

end;

end;

Through the input variables NumDraws and IsPosterior we can determine if we have single
or multiple parameter values and if the values are related to the posterior mode or the initial
values, or the posterior distribution or the prior.

The basic formating of the output file in YADA is as follows:

%

% open the output file

%

fid = fopen(file,’wt’);

%

fprintf(fid,[’*******************************************************’ ...

’*************************\n’]);

fprintf(fid,[’* ’ ...

’ *\n’]);

fprintf(fid,[’* S P A T I A L D I S T O R T I O ’ ...

’N S *\n’]);

fprintf(fid,[’* ’ ...

’ *\n’]);

fprintf(fid,[’*******************************************************’ ...

’*************************\n\n’]);

%

% initializing the formatting of output numbers.

% we usually apply the 12.6f format.

– 70 –



%

prt_val = [’%’ num2str(6+CurrINI.decimals,’%0.0f’) ’.’ ...

num2str(CurrINI.decimals,’%0.0f’) ’f’];

%

[n,vn] = size(DSGEModel.VariableNames);

if vn<15;

AddNameStr = SpaceStr(15-vn);

else;

AddNameStr = ’’;

end;

%

% write the output in SpatDist

%

.

.

.

%

% bottom file data

%

fprintf(fid,’Directory for file: %s\n’,GetPath(file));

fprintf(fid,’Name of file: %s\n’,GetFilename(file));

fprintf(fid,’Output created on: %s\n\n’,datestr(now,0));

fclose(fid);

%

% end of PrintSpatialDistortions.m

%

Since the variable SpatDist is different for the single and the multiple parameter values cases
we need to ensure that the code takes this into account. Like in the case of the name of the
output file we may use the NumDraws variable to separate these cases from one another.

This function may now be called as follows in the case of posterior draws:

%

% write output fo file

%

PrintSpatialDistortions(DSGEModel,CurrINI,SpatDist, ...

DSGEModel.ScenarioParameters,size(thetaPostSample,1), ...

NumDraws,CurrChain,1);

%

SelParamStr = strrep(num2str(SelectedParameters),’ ’,’’);

file = FixFilePath([DSGEModel.OutputDirectory ’\SpatDist-’ ...

DSGEModel.NameOfModel ’-’ int2str(CurrChain) ’-’ ...

SelParamStr ’-’ int2str(size(thetaPostSample,1)) ’.’ ...

int2str(NumDraws) ’.txt’]);

%

if FileExist(file)==1;

TextGUI(file,’Spatial Distortions’,[(CurrINI.scrsz(3)- ...

min(1000,CurrINI.scrsz(3)))/2 32 min(1000,CurrINI.scrsz(3)) ...

CurrINI.scrsz(4)-100],’Posterior Distribution’,100,CurrINI,1,0);

end;

It is noteworthy that the results are displayed only if YADA can locate the file on disk. Moreover,
the value of the last input variable for TextGUI (locally called CloseSelf) ensures that the
execution of the code is halted until the dialog is closed by the user. The reason why this value
for last input variable is used is simply that it is assumed that the results can also be displayed
graphically.
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5.5.2. Displaying Results in a Graph

Let us assume that it makes perfect sense to plot the spatial distortions for one variable at a
time. Moreover, since the second dimension of the results is assumed to represent the state
variables there is no need to plot time series data. Instead, we shall consider scatter-plots.

Let us call the file for displaying scatter-plots SpatialDistortionsDLG.m. The function hav-
ing the same name as the file takes 5 input variables. First of all, the variable selector is the
only required input variable. It can take on 3 values: ’init’, ’showgraph’, and ’done’. The
first value initializes the dialog, the second leads to displaying a graph of the spatial distoritions,
while the last value results in the dialog being deleted and the function returning to the func-
tion that called it. In addition, when selector is equal to ’init’, the SpatialDistortionsDLG

accepts the familiar DSGEModel and CurrINI structures as well as the SpatDist variable with
the results on spatial distortions as input. Finally, we shall let the function accept the string vari-
able TypeStr which can take on 4 different values: Initial Values, Posterior Mode, Prior
Distribution, and Posterior Distribution.

The basic building block of the dialog for displaying the scatter-plots of the spatial distortions
can be expressed as follows:

function SpatialDistortionsDLG(selector,DSGEModel,CurrINI, ...

SpatDist,TypeStr)

% SpatialDistortionsDLG: Displays scatter-plots of the

% spatial distortions

%

% USAGE:

.

.

.

if strcmp(selector,’init’)==1;

DSGEModel.SpatDist = SpatDist;

DSGEModel.TypeStr = TypeStr;

else;

SDGUI = findobj(’Type’,’figure’,’Tag’,’SpatialDistortionsDLG’);

SDControls = get(SDGUI,’UserData’);

DSGEModel = get(SDControls.show,’UserData’);

CurrINI = get(SDControls.variablex,’UserData’);

end;

%

switch selector

case ’init’

%

% create the dialog

%

case ’showgraph’

%

% check which variable to plot

%

case ’done’

set(SDControls.done,’UserData’,’done’);

delete(SDGUI);

pause(0.02);

drawnow;

end;

%

if strcmp(selector,’init’)==1;

%
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set(SDGUI,’Visible’,’on’);

drawnow;

if MatlabNumber>=7;

uicontrol(SDControls.done);

end;

waitfor(SDControls.done,’UserData’,’done’);

end;

%

% end of SpatialDistortionsDLG.m

%

The DSGEModel and CurrINI structures are the main variables for creating the dialog and for
displaying the graphs. Hence, the initialization case makes sure that SpatDist and TypeStr are
stored as fields of the DSGEModel structure. For other values of the selector variable, these
two structures are assumed to be stored under the UserData property of two controls that have
been created by the init value of the input variable.

At the end of the function, the dialog is first made visible, the Done button is given focus
(provided that the user’s version of Matlab supports this feature), and finally the waitfor func-
tion is called. This function blocks the execution of SpatialDistortionsDLG when selector is
equal to ’init’ until the UserData property of the control SDControls.done is set equal to the
value ’done’. Below we will find that the value of this control is initially set to ’waiting’.

The controls on the dialog as well as the figure window have not been discussed yet. The
code for the init case in the switch part of the function is:

case ’init’

%

% create the dialog

%

SDGUI = figure(’Color’,get(CurrINI.GraphicsRoot, ...

’defaultuicontrolbackgroundcolor’), ...

’FileName’,’SpatialDistortionsDLG.m’, ...

’MenuBar’,’none’, ...

’PaperUnits’,’points’, ...

’Units’,’pixels’, ...

’Position’,[(CurrINI.scrsz(3)-500)/2 ...

(CurrINI.scrsz(4)-120)/2 500 120], ...

’Tag’,’SpatialDistortionsDLG’, ...

’Visible’,’off’, ...

’Resize’,’off’, ...

’Name’,[’Spatial Distortions - ’ TypeStr], ...

’NumberTitle’,’off’, ...

’CloseRequestFcn’,’SpatialDistortionsDLG done’, ...

’ToolBar’,’none’);

%

if MatlabNumber>=7.0;

set(SDGUI,’DockControl’,’off’);

end;

%

% Outer axis

%

AxesBox([2 2 498 110],’Graphics’,45,[0.5 1],’on’,CurrINI);

%

% Check where the sample of data actually begins

%

[NewStartYear,NewStartPeriod] = AdjustSampleStart( ...
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DSGEModel.SubBeginYear,DSGEModel.SubBeginPeriod, ...

DSGEModel.DataFrequency,DSGEModel.KalmanFirstObservation-1);

%

% display the sample

%

SDontrols.sample = uicontrol(’Units’,’pixels’, ...

’BackgroundColor’,get(CurrINI.GraphicsRoot, ...

’defaultuicontrolbackgroundcolor’), ...

’Position’,[24 75 360 20], ...

’FontSize’,CurrINI.GUIFontSize, ...

’FontName’,CurrINI.GUIFontName, ...

’FontWeight’,CurrINI.GUIFontWeight, ...

’FontAngle’,CurrINI.GUIFontAngle, ...

’Style’,’text’, ...

’String’,[’Selected Sample: ’ NewStartYear ’:’ NewStartPeriod ...

’ - ’ DSGEModel.SubEndYear ’:’ DSGEModel.SubEndPeriod], ...

’HorizontalAlignment’,’left’, ...

’Tag’,’SampleText’);

%

% Select variables controls

%

SDControls.variableytext = uicontrol(’Units’,’pixels’, ...

’BackgroundColor’,get(CurrINI.GraphicsRoot, ...

’defaultuicontrolbackgroundcolor’), ...

’Position’,[24 45 176 20], ...

’FontSize’,CurrINI.GUIFontSize, ...

’FontName’,CurrINI.GUIFontName, ...

’FontWeight’,CurrINI.GUIFontWeight, ...

’FontAngle’,CurrINI.GUIFontAngle, ...

’Style’,’text’, ...

’String’,’Select variable for Y-axis:’, ...

’HorizontalAlignment’,’left’, ...

’Tag’,’VariableYText’);

%

SDControls.variabley = uicontrol(’Units’,’pixels’, ...

’BackgroundColor’,[1 1 1], ...

’Position’,[200 50 165 20], ...

’Style’,’popupmenu’, ...

’FontSize’,CurrINI.GUIFontSize, ...

’FontName’,CurrINI.GUIFontName, ...

’FontWeight’,CurrINI.GUIFontWeight, ...

’FontAngle’,CurrINI.GUIFontAngle, ...

’UserData’,CurrINI, ...

’String’,DSGEModel.VariableNames, ...

’HorizontalAlignment’,’center’, ...

’Tag’,’VariableYPopup’,...

’Value’,1);

%

SDControls.variablextext = uicontrol(’Units’,’pixels’, ...

’BackgroundColor’,get(CurrINI.GraphicsRoot, ...

’defaultuicontrolbackgroundcolor’), ...

’Position’,[24 15 176 20], ...

’FontSize’,CurrINI.GUIFontSize, ...

’FontName’,CurrINI.GUIFontName, ...
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’FontWeight’,CurrINI.GUIFontWeight, ...

’FontAngle’,CurrINI.GUIFontAngle, ...

’Style’,’text’, ...

’String’,’Select variable for X-axis:’, ...

’HorizontalAlignment’,’left’, ...

’Tag’,’VariableXText’);

%

SDControls.variablex = uicontrol(’Units’,’pixels’, ...

’BackgroundColor’,[1 1 1], ...

’Position’,[200 20 165 20], ...

’Style’,’popupmenu’, ...

’FontSize’,CurrINI.GUIFontSize, ...

’FontName’,CurrINI.GUIFontName, ...

’FontWeight’,CurrINI.GUIFontWeight, ...

’FontAngle’,CurrINI.GUIFontAngle, ...

’UserData’,CurrINI, ...

’String’,DSGEModel.VariableNames, ...

’HorizontalAlignment’,’center’, ...

’Tag’,’VariableXPopup’,...

’Value’,2);

%

% show graph button

%

SDControls.show = uicontrol(’Units’,’pixels’, ...

’BackgroundColor’,get(CurrINI.GraphicsRoot, ...

’defaultuicontrolbackgroundcolor’), ...

’Position’,[395 50 90 20], ...

’String’,’Display’, ...

’FontSize’,CurrINI.GUIFontSize, ...

’FontName’,CurrINI.GUIFontName, ...

’FontWeight’,CurrINI.GUIFontWeight, ...

’FontAngle’,CurrINI.GUIFontAngle, ...

’CallBack’,’SpatialDistortionsDLG showgraph’, ...

’UserData’,DSGEModel, ...

’Enable’,’on’, ...

’Tag’,’Done’);

%

% done button

%

SDControls.done = uicontrol(’Units’,’pixels’, ...

’BackgroundColor’,get(CurrINI.GraphicsRoot, ...

’defaultuicontrolbackgroundcolor’), ...

’Position’,[395 20 90 20], ...

’String’,’Done’, ...

’FontSize’,CurrINI.GUIFontSize, ...

’FontName’,CurrINI.GUIFontName, ...

’FontWeight’,CurrINI.GUIFontWeight, ...

’FontAngle’,CurrINI.GUIFontAngle, ...

’CallBack’,’SpatialDistortionsDLG done’, ...

’Enable’,’on’, ...

’UserData’,’waiting’, ...

’Tag’,’Done’);

%

% set UserData property of the dialog
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%

set(ScatterPostDrawsGUI,’UserData’,SDControls, ...

’HandleVisibility’,’callback’);

Excluding the size of the window frame of the dialog, the width is 500 pixels and the height
is 120 pixels. This is a fairly small dialog, but sufficient for our needs. The dialog also has a
frame inside it which is painted by the AxesBox function and whose text is given by ’Graphics’.

In the top left corner of the dialog there is a text control which shows the currently se-
lected sample, taking the training sample of the Kalman filter into account. The function
AdjustSampleStart (located in the data directory) performs this task. Directly below this con-
trol there are four controls. Another text control, displaying the text ’Select variable for

Y-axis:’, and to its right a popup control that shows the currently selected observed variable
for the Y-axis. The default value is here the first variable, determined by the Value property of
SDControls.variabley. Below these controls there are two additional controls that deal with
the selection of the variable for the X-axis of the scatter-plot.

There are also two buttons on the right hand side of the dialog. In the bottom right corner we
find the Done done, and above it the Display button. When clicked on, the former button invokes
the value ’done’ for the selector input variable of the function, while the latter invokes the
’showgraph’ case.

The final step of the ’init’ case inside the switch part of SpatialDistortionsDLG is that
the figure window receives as its UserData property the structure with handles to the dialog
controls.

To display the graph we take a look at the code that may occur inside the ’showgraph’ case.
To begin with it should collect positions and names of the currently selected observed variables
for ths scatter-plot. Moreover, the controls where the variable names are displayed may be
updated. The typical behavior in YADA is to move the control to the next variable unless the
currently selected variable is the last. In that case, the control is shifted to the first variable.
The following code performs these tasks:

case ’showgraph’

%

% check which variables to plot

%

VariableValueX = get(SDControls.variablex,’Value’);

CurrVariableX = StringTrim(DSGEModel.VariableNames(VariableValueX,:));

VariableValueY = get(SDControls.variabley,’Value’);

CurrVariableY = StringTrim(DSGEModel.VariableNames(VariableValueY,:));

if VariableValueX<size(DSGEModel.VariableNames,1);

set(SDControls.variablex,’Value’,VariableValueX+1);

else;

set(SDControls.variablex,’Value’,1);

if CurrVariableY<size(DSGEModel.VariableNames,1);

set(SDControls.variabley,’Value’,VariableValueY+1);

else;

set(SDControls.variabley,’Value’,2);

end;

end;

Notice that the variable for the Y-axis is only changed when the variable for the X-axis is reset
to the first variable. In that case the variable for the Y-axis is either the next variable or the
second variable.

When a new graph is prepared in YADA, the Visible property of the figure is always set to
the value ’off’ until all objects on the graph have been created. The default code for this may
be represented by the following:

%

% create the figure
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%

FigHandle = figure(’Visible’,’off’, ...

’Position’,[(CurrINI.scrsz(3)-650)/2 ...

(CurrINI.scrsz(4)-500)/2 650 500], ...

’Units’,’pixels’, ...

’Tag’,[’ScatterPlot-’ CurrVariableX ’-’ ...

CurrVariableY], ...

’Name’,[’Spatial Distortions Of ’ CurrVariableX ...

’ And ’ CurrVariableY ...

’ - ’ DSGEModel.TypeStr]);

%

SetFigureProperties(FigHandle,CurrINI);

%

% create the scatter-plot

%

.

.

.

%

% make the figure visible

%

SetToolbarImages(FigHandle,CurrINI.images);

set(FigHandle,’Visible’,’on’,’CloseRequestFcn’, ...

’delete(gcf); drawnow; pause(0.02);’);

drawnow;

pause(0.02);

The figure is here centered on the user’s screen, having a width of 650 pixels and a height of
500 pixels. It should be recalled that the window frame will be added and, thus, the figure
will not be perfectly centered on the screen. The call to the function SetFigureProperties

ensures that certain defaults for the graphs will be met. This function is located in the directory
gui\graphics below YADA’s base directory. The call to the function SetToolbarImages towards
the end of the selection above ensures that the certain icons on the toolbar are replaced with
YADA’s more “modern” icons.

The actual content on the graphs is taken from the matrix DSGEModel.SpatDist.Mean for
multiple parameter values, and from the matrix DSGEModel.SpatDist for a single parameter
value. In the case of multiple values of theta this matrix is n times r with the former being the
number of observed variables and the latter the number of state variables. For the scatter-plots
we have already selected the observed variable, while the spatial distortions are measured in
the state variable dimension. The data on the variables are therefore located in row numbers
VariableValueX and VariableValueY.

The following code creates a scatter-plot of the spatial distortions for two observed variables.

if isstruct(DSGEModel.SpatDist)==1;

x = DSGEModel.SpatDist.Mean(VariableValueX,:);

y = DSGEModel.SpatDist.Mean(VariableValueY,:);

else;

x = DSGEModel.SpatDist(VariableValueX,:);

y = DSGEModel.SpatDist(VariableValueY,:);

end;

if MatlabNumber>8.3;

ScatHandle = scatter(x,y,25,’filled’);

else;

if MatlabNumber>=7;

ScatHandle = scatter(’v6’,x,y,4,’filled’);
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else;

ScatHandle = scatter(x,y,4,’filled’);

end;

end;

%

% Show title and labels

%

SetAxesFonts(CurrINI,’Title’,[’Spatial distortions for ’ ...

lower(DSGEModel.TypeStr)],’XLabel’,CurrVariableX, ...

’Ylabel’,CurrVariableY);

if strcmp(get(gca,’YGrid’),’on’)==1;

set(gca,’XGrid’,’on’);

end;

The option ’v6’ is used to ensure that ScatHandle gives the handles of patches regardless of
which version of Matlab the user has prior to Matlab 2014b. The value 4 is the marker size and
the option ’filled’ means that the markers for the scatter-plot will be filled. The call to the
function SetAxesFonts ensures that the YADA defaults for label and title fonts will be used and
that these objects will have the desired text. Finally, the code sets the X and Y-axis grids to both
be either ’on’ or ’off’.

Matlab 2014b is the first Matlab release based on the new graphics engine HG2. The option
’v6’ is not supported any longer and is consequently not used by YADA. At the same time,
the units of the markers for the scatter series object differs from the units used with the older
objects (patch objects). The units in 2014b and later is points squared so that 25 means 5 points
times 5.

The final step in all of the four cases in ProjectFunctions is to call the above dialog function.
The following code takes care of this for the posterior distribution:

SpatialDistortionsDLG(’init’,DSGEModel,CurrINI,SpatDist, ...

’Posterior Distribution’);

It now remains for you to decide exactly what the spatial distortions should do. It has been
suggested in the physics literature that when a physical model of the distortion process is lacking
or inadequate, bi-cubic splines may be suitable interpolating functions for defining approximate
spatial distortion functions. This may indeed be a way forward.
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Table 1. Accessing the handles to the top-level controls on the file menu.

File menu handle: controls.filemenu

Menu item Handle Accelerator Alt Keys

Open Model controls.openmenu Ctrl+O Alt+F+O

Save Model controls.savemenu Ctrl+S Alt+F+S

Reload Model controls.reloadmenu Ctrl+R Alt+F+R

Reopen Model controls.reopenmenu Alt+F+M

Model Sequence controls.modelsequencemenu Alt+F+D

Driver Tools controls.drivermenu Alt+F+V

Save Inverse Hessian controls.saveinversehessian Alt+F+H

Import YADA Settings controls.importsettingsmenu Alt+F+I

Open Text File controls.opentextfilemenu Ctrl+T Alt+F+T

Options controls.optionsmenu Alt+F+N

Close Model controls.closemenu Alt+F+C

Parallel Computing Toolbox controls.parallel.parent Alt+F+A

Quit controls.quitmenu Ctrl+Q Alt+F+Q

Table 2. Accessing the handles to the controls on the edit menu (only available
on computers with Matlab version 6 or earlier.

Edit menu handle: controls.editmenu

Menu item Handle Accelerator Alt Keys

Undo controls.editundomenu Ctrl+Z Alt+E+U

Cut controls.editcutmenu Ctrl+X Alt+E+T

Copy controls.editcopymenu Ctrl+C Alt+E+C

Paste controls.editpastemenu Ctrl+V Alt+E+P

Select All controls.editselectallmenu Ctrl+A Alt+E+A
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Table 3. Accessing the handles to the top-level controls on the view menu.

View menu handle: controls.viewmenu

Menu item Handle Alt Keys

Open Graphics controls.viewgraphicsmenu Alt+V+G

Data Construction Information controls.datainfo Alt+V+D

AiM Model File controls.aimmodelinfo Alt+V+A

Prior Distribution Information controls.priorinfo Alt+V+U

State-Space Form controls.statespaceparent Alt+V+F

Graph-a-Prior controls.plotaprior Alt+V+H

Parameter Covariance Matrix controls.estimateparamcovmat Alt+V+X

Posterior Mode Results controls.modeinfo Alt+V+P

Posterior Mode Summary controls.modesummary Alt+V+M

Optimization Error Summary controls.opterrorsummary Alt+V+Z

Posterior Sampling Summary controls.postsamplesummary.parent Alt+V+S

Raw Posterior Draws controls.postsample.rawplots Alt+V+W

Scatter-Plot Posterior Draws controls.postsample.scatterplots Alt+V+E

Sequential Marginal Likelihood controls.postsample.marglike Alt+V+Q

Convergence controls.postsample.convergence Alt+V+V

Modesty Statistics controls.modesty.parent Alt+V+Y

Iterated Parameter Estimates controls.iteratedparameters Alt+V+I

Check Posterior Mode controls.checkpostmode Alt+V+K

Posterior Mode Surface controls.threedeepostmode.parent Alt+V+C

Prior Densities controls.viewprior Alt+V+R

Laplace Posterior Densities controls.viewlaplaceposterior Alt+V+L

Posterior Densities controls.viewposterior Alt+V+T

Prior and Log Jacobian Value controls.viewpriorvalue.parent Alt+V+J

Observed Variables controls.viewdata Alt+V+O

Annualized Observed Variables controls.viewannualdata Alt+V+N

Transformed Observed Variables controls.viewtransdata Alt+V+B
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Table 4. Accessing the handles to the top-level controls on the tools menu.

Tools menu handle: controls.toolsmenu

Menu item Handle Alt Keys

DSGE Model Eigenvalues controls.dsgeeigenvalues.parent Alt+T+G

Monte Carlo Filtering controls.montecarlofiltering Alt+T+F

Poor Man’s Invertibility Condition controls.dsgetovareigenvalues.parent Alt+T+Y

Information Matrix controls.informationmatrix.parent Alt+T+X

Simulate Data controls.simulatedata.parent Alt+T+U

Observed Variable Correlations controls.obsvarcorrs.parent Alt+T+O

Conditional Correlations controls.condcorrs.parent Alt+T+R

State Variable Correlations controls.statevarcorrs.parent Alt+T+C

State Shock Correlations controls.stateshockcorrs.parent Alt+T+T

Measurement Error Correlations controls.measurementerrorcorrs.parent Alt+T+A

1-Step Ahead Forecasts controls.obsvar.parent Alt+T+1

State Variables controls.statevariables.parent Alt+T+S

State Shocks controls.stateshocks.parent Alt+T+K

Measurement Errors controls.measurementerror.parent Alt+T+M

Log-likelihood Function controls.loglikelihood.parent Alt+T+L

Parameter Scenarios controls.controls.ps.parent Alt+T+N

Predictive Distributions controls.predict.parent Alt+T+P

Decompositions controls.decomp.parent Alt+T+D

Impulse Responses controls.irfunctions.parent Alt+T+I
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Table 5. Accessing the handles to the top-level controls on the actions menu.

Actions menu handle: controls.actionsmenu

Menu item Handle Alt Keys

Run AiM Parser controls.runaimmenu Alt+A+A

Dynare Jobs controls.dynarejobsmenu Alt+A+J

Estimate Posterior Mode controls.postmodemenu Alt+A+E

Posterior Sampling controls.postsamplingmenu Alt+A+P

Prior Sampling controls.priorsamplingmenu Alt+A+M

Estimate System Prior Mode controls.systempriormodemenu Alt+A+Y

Set State Variables controls.statevarmenu Alt+A+V

Set State Equations controls.stateeqmenu Alt+A+Q

Set State Shocks controls.stateshockmenu Alt+A+S

Configure Shocks controls.configureshocksmenu Alt+A+F

Set Shock Groups controls.shockgroupmenu Alt+A+G

Set Observed Variable Groups controls.obsvargroupsmenu Alt+A+R

Set Initial State Values controls.initialstatevaluesmenu Alt+A+I

Specify Unit-Root State Variables controls.unitrootstatemenu Alt+A+U

Confidence Band Base Color controls.confbandcolor Alt+A+C

View Conditioning Variables controls.viewconditionalvars Alt+A+W

Select Conditioning Variables controls.setconditionalvars Alt+A+L

Select Conditioning Shocks controls.setconditionalshocks Alt+A+O

Reorder Conditioning Shocks controls.reorderconditionalshocks Alt+A+H

State Conditioning Variables controls.stateconditionalvarsparent Alt+A+N
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Table 6. Accessing the handles to the top-level controls on the DSGE-VAR menu.

DSGE-VAR menu handle: controls.dsgevarmenu

Menu item Handle Alt Keys

Estimate Marginal Posterior Mode controls.dsgevarmargmodemenu Alt+D+E

Estimate Joint Posterior Mode controls.dsgevarjointmodemenu Alt+D+J

DSGE Posterior Sampling controls.dsgevarpostsamplingmenu Alt+D+D

VAR Posterior Sampling controls.dsgevarvarpostsamplingmenu Alt+D+P

Prior Sampling controls.dsgevarpriorsamplingmenu Alt+D+M

View controls.dsgevarviewparent Alt+D+V

Tools controls.dsgevartoolsparent Alt+D+T

Set DSGE-VAR Shocks controls.dsgevarshocksmenu Alt+D+S

Lag Order controls.dsgevarlagordermenu Alt+D+L

Table 7. Accessing the handles to the top-level controls on the learning menu.

Learning menu handle: controls.learningmenu

Menu item Handle Alt Keys

Set Forward Variables controls.learning.setforwardvariables Alt+L+F

RE Solution → Belief System controls.learning.retoplm Alt+L+R

Select Belief System controls.learning.belief.parent Alt+L+S

Belief Parameters Prior File controls.learning.setbeliefpriorfile Alt+L+B

Options controls.learning.options.parent Alt+L+O

Estimate Posterior Mode controls.learning.postmodemenu Alt+L+E

Posterior Sampling controls.learning.posteriorsamplingmenu Alt+L+P

Prior Sampling controls.learning.priorsamplingmenu Alt+L+M

Estimate System Prior Mode controls.learning.systempriormodemenu Alt+L+Y

View controls.learning.viewmenu.parent Alt+L+V

Tools controls.learning.toolsmenu.parent Alt+L+T
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Table 8. Accessing the handles to the top-level controls on the BVAR menu.

BVAR menu handle: controls.bvarmenu

Menu item Handle Alt Keys

Estimate Posterior Mode controls.bvarmodemenu Alt+B+E

Posterior Sampling controls.gibbssamplingmenu Alt+B+P

Posterior Mode Results controls.bvarmoderesultsmenu Alt+B+M

Posterior Sampling Results controls.bvargibbsresultsmenu Alt+B+S

Eigenvalues controls.bvareigenvalues Alt+B+G

Predictive Distributions controls.bvarpredict.parent Alt+B+C

Raw Posterior Draws controls.bvarrawdraws Alt+B+R

Sequential Marginal Likelihood controls.bvarmarglike Alt+B+L

Convergence controls.bvarconvergence Alt+B+V

Modesty Statistics controls.bvarmodesty.parent Alt+B+Y

Prior Densities controls.bvarpriordensity Alt+B+I

Posterior Densities controls.bvarpostdensity Alt+B+D

Table 9. Accessing the handles to the controls on the help menu.

Help menu handle: controls.helpmenu

Menu item Handle Alt Keys

Help controls.helpfilemenu Alt+H+H

Browser-Based Help controls.htmlhelpfilemenu Alt+H+B

Manual - Computational Details (PDF) controls.yadamanual Alt+H+M

Extending YADA (PDF) controls.extendyada Alt+H+E

YADA Cyberspace Connection controls.yadahomepage Alt+H+Y

License controls.license Alt+H+L

About controls.aboutmenu Alt+H+A
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Table 10. DSGEModel fields related to user files.

Field Data Type Handle to Control Description

AIMFile string controls.dsge.aimfile The string property of the control holds then full path and
name of the AiM model file. The default value is pwd.

DataConstructionFile string controls.dsge.datafile The string property of the control holds the full path and
name of the data construction file. The default value is pwd.

DynareModelFile string The default value is pwd. This variable is not stored in any

control.

InitializeParameterFile string controls.dsge.initialparameterfile The string property of the control holds the full path and

name of the file with parameters to initialize. The default
value is an empty string.

MeasurementEquationFile string controls.dsge.measurefile The string property of the control holds the full path and
name of the measurement equation file. The default value

is pwd.

NameOfModel string controls.dsge.modelname The string property of the control gives the name of the

DSGE model. The default value is an empty string, but

takes on the name of the AIMFile once this file has been
selected.

OutputDirectory string controls.outputdir The string property of the control holds the full path of
the output directory.

PriorFile string controls.dsge.priorfile The string property of the control holds the full path and
name of the prior distribution specification file. The default

value is pwd.

PriorFileSheet string controls.dsge.priorfilesheet The string property of the control holds the name of the
sheet of the spreadsheet file in PriorFile when this file is

an Excel file. The default value is an empty string.

RunInitializeFirst boolean controls.dsge.runinitialfirst The value property of the control holds the data that de-

termines if the file with parameters to initialize should

be executed before (1) or after (0) the file with pa-
rameters to update. This control is only enabled when

InitializeParameterFile exists and the value property
is 0 by default.

SystemPriorFile string controls.dsge.systempriorfile The string property of the control holds the full path and
name of the system prior density file. The default value is

pwd.

UpdateParameterFile string controls.dsge.updateparameterfile The string property of the control holds the full path and
name of the file with parameters to update. The default

value is an empty string.
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Table 11. DSGEModel fields related to observed data.

Field Data Type Description

Actuals structure A vector structure with subfields data and title. The former contains alternative data for the observed vari-
ables that may be used in forecasting exercises, while the latter is a string with the name (or title) of the dataset.

annual vector A vector of length equal to the number of observed variables (n). A value of 1 means that the variable is already
annualized, 4 that its in quarterly changes so that adding 4 consecutive quarters gives annual changes, and 12

that the variable is measured in monthly changes.

annualscale vector A vector of length n with coefficients that should be multiplied by the variables after the data in annual is

accounted for.

BeginPeriod string The period of the first observation of the observed (endogenous) variables.

BeginYear string The year of the first observation of the observed variables.

BVARX vector Determines which exogenous variables are included in a Bayesian VAR with steady-state prior.

BVARY vector Determines which endogenous (observed) variables are included in a Bayesian VAR with steady-state prior.

ConditionalShocks vector Determines which structural shocks that can be used in conditional forecasting exercises.

ConditionalVariables vector Determines which conditioning assumptions to use in conditonal forecasting exercises.

DataFrequency string Determines the frequency of the data, with a being annual, q quarterly, and m monthly.

EndPeriod string The period of the last observation of the observed (endogenous) variables.

EndYear string The year of the last observation of the observed (endogenous) variables.

k integer The number of the k exogenous variables.

K1 matrix An n × m matrix linking the current value of the m possible conditioning assumptions to the current value of

the observed variables.

K2 matrix An n×m (or empty) matrix linking the current value of the m possible conditioning assumptions to lags of the

observed variables.

K3 matrix An r × qz (or empty) matrix linking the current value of the qz possible conditioning assumptions on the state

variables to the current value of the r state variables.

levels vector A vector of length equal to the number of observed variables that has zero values for all variables that appear

in first differences and unit values for the variables that already appear in levels.

MixedConditionalShocks vector Determines which structural shocks that can be used when the control of the distribution of a subset of the

shocks conditioning method is used.
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Table 11. DSGEModel fields related to observed data (continued).

Field Data Type Description

n integer The number of the n observed (endogenous) variables.

ObsVarGroupNames string A string matrix with the names of all observed variable groups.

ObsVarGroups vector A vector with integer values that maps each observed variable to an observed variable group.

Percentiles vector Determines the percentiles to use when creating plots that involve distributional data, such as condifidence

bands.

PredictedX matrix A k × Tp matrix with out-of-sample data on the exogenous variables.

T integer The number of data points of the observed (endogenous) variables.

U matrix An m×Tz matrix with initial conditions when mapping the observed variables into the conditioning assumptions.

The first observation is measured in the same time period as the first observation in the field Y.

VariableNames string A string matrix with n rows holding the names of the observed (endogenous) variables.

X matrix A k × T matrix with data on the exogenous variables. The data points in this matrix appear directly before the
data points in PredictedX. The first observation is measured in the same time period as the first observation of

the field Y.

XVariablesNames string A string matrix with k rows holding the names of the exogenous variables.

Y matrix An n× T matrix with data on the observed (endogenous) variables.

YNaNs boolean Indicates if there are missing observations among the observed variables in Y (1) or not (0).

YTransformation structure Determines how to transform the observed variables data. The structure has field names given by the names of

the observed variables.

YTransMatrix matrix An n×n matrix with linear combinations that are applied to the vector of observed variables after the individual

transformations in YTransformation have been applied.

Z matrix An m×Tz matrix with data for the conditioning assumptions that can be used. The first observation is measured

in the same time period as the first observation of the field Y.
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Table 11. DSGEModel fields related to observed data (continued).

Field Data Type Description

Zeta matrix A qz × Tz matrix with data for the conditioning assumptions on the state variables. The first observation is
measured in the same time period as the first observation of the field Y.

ZetaConditionalShocks vector Determines which structural shocks that can be used in forecasting exercises with state variable assumptions.

ZetaConditionalVariables vector Determines which conditioning assumptions for the state variables to use in forecasting exercises.

ZetaMixedConditionalShocks vector Determines which structural shocks that can be used in forecasting exercises with state variable assumptions
when the control of the distribution of a subset of the shocks conditioning method is used.

ZetaVariableNames string A string matrix with qz rows holding the names of the conditioning assumptions for the state variables.

ZLBData Vector A Tzlb-dimensional vector with data for the zero lower bound. May also be a scalar.

ZLBPosition integer Determines the position of the monetary policy rate among the n observed variabvles.

ZVariableNames string A string matrix with m rows holding the names of the conditioning assumptions that can be used.
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Table 12. DSGEModel fields related to AiM.

Field Data Type Handle to Control Description

AIMDataFile string Gives the full path and the name of the mat-file that holds

the AiM data, i.e., the output from running the function

compute_aim_data that the AiM parser creates.

AIMTolerance integer controls.dsge.aimtolerance Determines the tolerance level for AiM. The AIMTolerance

value is equal to the row in the string matrix holding the
allowed tolerance levels.

ModelSolver integer controls.dsge.modelsolver Determines which algorithm is used to solve the DSGE

model.

ModelSolverFile string Gives the full path and filename of an external DSGE model

solver.

ShockAliases string A string matrix where alternative names for the selected

state (structural) shocks are located in the rows.

ShockGroupNames string A string matrix with the names of all shock groups.

ShockGroups vector A vector with integer values that maps each state (struc-
tural) shock to a shock group.

Solution structure A structure with field names A, H, R, F, and B_0 which may
locally hold the state-space matrices that are the solution

to the DSGE model and the measurement equations. The

field is typically missing, but may be used by a system prior
file.

StateEquationNames string A string matrix where the names of the selected state equa-
tions are given in the rows.

StateEquationPositions vector Determines in which integer positions the state equations
are located among all the equations that are listed in

AIMDataFile.

StateShockNames string A string matrix where the names of the selected state

(structural) shocks are located in the rows.
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Table 12. DSGEModel fields related to AiM (continued).

Field Data Type Handle to Control Description

StateShockPositions vector Determines in which integer positions the state (structural)

shocks are located among all the variables that are listed in

AIMDataFile.

StateVariableNames string A string matrix where the names of the selected state vari-

ables are located in the rows.

StateVariablePositions vector Determines in which integer positions the state variables

are located among all the variables that are listed in
AIMDataFile.
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Table 13. DSGEModel fields related to sample selection and Kalman filter.

Field Data Type Handle to Control Description

AllowUnitRoot boolean controls.dsge.allowunitroot Makes it possible to allow the DSGE model to have an arbi-
trary number of unit roots.

DAMaximumIterationsValue integer controls.dsge.doublingalgorithm Determines the maximum number of iterations to use with

the doubling algorithm when computing the covariance
matrix of the state variables. The value is equal to the row

number in the string matrix with the possible number of
iterations.

DAToleranceValue integer controls.dsge.doublingtolerance Determines the tolerance value when the doubling algo-

rithm is used to compute the covariance matrix of the state
variables. The value is equal to the row number in the

string matrix with possible tolerance levels.

InitialStateValues vector The field holds alternative initial values for the state vari-

ables when initializing the Kalman filter. The default values
are zero for all state variables.

KalmanAlgorithm integer controls.dsge.kalmanalgorithm Determines which Kalman filter algorithm is used when

computing the log-likelihood function.

KalmanFirstObservation integer controls.dsge.initializekalman Determines the first observation to use after the training

sample. The default is unity, i.e., the first period in the
selected sample (meaning that there is no training sample).

PeriodStrMatrix string controls.dsge.subbeginperiod String matrix with all the period values determined by the
field DataFrequency. For quarterly (monthly) data the

string matrix has 4 (12) rows, while for annual data it has

1 row.

StateCovConst integer controls.dsge.statecovariance Determines the constant that is multiplied by the identity

matrix when the state covariance matrix for the Kalman fil-
ter is initialized by the value 3 for UseDoublingAlgorithm.

SubBeginPeriod string The period string value for the first observation of the se-
lected sample. For quarterly data the possible values are

’1’ until ’4’.

SubBeginPeriodValue integer controls.dsge.subbeginperiod The period integer value for the first observation of the se-

lected sample. For quarterly data the possible values are 1

until 4.
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Table 13. DSGEModel fields related to sample selection and Kalman filter (continued).

Field Data Type Handle to Control Description

SubBeginYear string The year string value for the first observation of the se-

lected sample.

SubBeginYearValue integer controls.dsge.subbeginyear The row number of YearStrMatrix that locates the string

which is equal SubBeginYear.

SubEndPeriod string The period string value for the last observation of the se-

lected sample.

SubEndPeriodValue integer controls.dsge.subendperiod The period integer value for the last observation of the se-
lected sample.

SubEndYear string The year string value for the last observation of the selected
sample.

SubEndYearValue controls.dsge.subendyear The row number of YearStrMatrix that locates the string
which is equal SubEndYear.

UnitRootStates vector Vector with the positions of state variables that have a unit
root.

UseDoublingAlgorithm integer controls.dsge.usedoublingalgorithm Determines which method is used for computing the ini-
tial state covariance matrix for the Kalman filter. The value

1 means that the covariance matris is computed from the

state equation matrices using an analytical method (vector-
ization), the value 2 (default) that the doubling algorithm

is used, 3 that the initial covariance matrix is equal to a con-

stant times the identity (where the constant is determined
via the field StateCovConst), and 4 that exact diffuse ini-

tialization is performed.

UseOwnInitialState boolean controls.dsge.useowninitialstate Determines if the state variables are initialized in the

Kalman filter by user selected values (1) or the default of

0.

YearStrMatrix string controls.dsge.subbeginyear String matrix with all the year values for the full sample.

The first row value is therefore equal to the field BeginYear

and the last to EndYear.
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Table 14. DSGEModel fields related to forecasting.

Field Data Type Handle to Control Description

AdjustPredictionPaths boolean controls.forecast.adjustpredictionpaths Determines if the simulated sample paths from the predic-

tion distribution are adjusted such that the sample mean

of the sample paths is equal to the theoretical (population)
mean (unit value) or not (zero value).

KsiUseCondData boolean controls.forecast.ksiuseconddata Determines if the conditioning assumptions will be used
when determining the mean and covariance of the distribu-

tion from which the state variables in period T are drawn

for conditional forecasts from period T + 1 and onwards.

MaxForecastHorizon integer controls.forecast.maxhorizon Determines the maximum horizon for out-of-sample fore-

casts.

NumPredPathsValue integer controls.forecast.predpaths Determines the number of prediction paths that are com-

puted for each parameter value that the preditive distribu-
tion should account for. This field is also used whenever

data are simulated from the model and a given number of

paths per parameter value is needed.

PostDrawsUsageValue integer controls.posterior.postdrawsusage Determines the maximum number of draws from the pos-

terior distribution to use for simulation exercises such as
estimation of the preditive distribution.

PredictionEvent matrix Determines the lower and the upper bound of the predic-
tion events for all observed variables, as well as the length

of the event.

RunPredictionEvent boolean Indicates if prediction event calculations should be per-

formed.

ShockControlMethod integer controls.forecast.shockcontrols Indicates which method to use in conditional forecasting.
If the field is one, then the “values for shocks” method

of directly manipulating the values for certain shocks is
used, the value two means that the user has selected the

Waggoner-Zha (cf. Waggoner and Zha, 1999) method of

manipulation the distribution of the shocks, while three
means that the subset method is used.
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Table 15. DSGEModel fields related to optimization.

Field Data Type Handle to Control Description

ALDSGEImportIVFile string The location of the mat-file with initial values of the pa-
rameters and the inverse Hessian matrix for the adaptive

learning version of the DSGE model.

CheckOptimum boolean controls.optimize.checkoptimum Determines whether (unit value) or not (zero value) YADA
should check the curvature around of the posterior mode

of the estimated parameters once it has completed posterior
mode estimation.

CheckTransformedOptimum boolean controls.optimize If this field is unity then YADA will only check the curvature
around the posterior mode for the transformed parameters,

while if zero then it will also check the curvature around

the mode for the original parameters.

CsminwelExtraRuns integer controls.optimize.csminwelextraruns Determines the maximum number of times the csminwel

routine may be executed after the original optimization
run.

DSGEImportIVFile string The location of the mat-file with initial values of the pa-

rameters and the inverse Hessian matrix for the rational
expectations version of the DSGE model.

FiniteDifferenceHessian boolean controls.optimize.finitediffhessian This field is unity if the inverse Hessian at the posterior
mode should be computed also with finite difference meth-

ods, and zero otherwise.

GridWidth integer controls.optimize.gridwidth Determines the number of “standard deviations” to use

when calculating a lower and an upper bound for the grid

around the posterior mode. YADA uses the square root of
the diagonal elements of the estimated inverse Hessian at

the mode as standard deviation.

InitializeHessian integer controls.optimize.initcsminwel Determines how the inverse Hessian is initialized when us-

ing the csminwel optimization routine.

MaximizeAlgorithmValue integer controls.optimize.maxroutine Determines which optimization routine is used by YADA. A

value of one or two means the csminwel routine, a value

of three or four that newrat is applied, five or six that the
Monte Carlo based routine gmhmaxlik from Dynare is run,

and a value of seven or eight that the fminunc routine of

the Optimization Toolbox in Matlab is used. Odd values re-
fer to the transformed parameters and even to the original

parameters.
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Table 15. DSGEModel fields related to optimization (continued).

Field Data Type Handle to Control Description

NumberOfGridPoints integer controls.optimize.numbergridpoints Determines the number of points around the posterior

mode in the grid when checking the optimum.

OptMaxIterationsValue integer controls.optimize.maximumiterations The value determines the maximum number of iterations

to use for posterior mode estimation.

OptToleranceValue integer controls.optimize.tolerance Determines the tolerance level for the posterior mode esti-

mation.

ShowProgress boolean controls.dsge.progress If the field is unity then the progress dialog is displayed

during, e.g., posterior mode estimation. The progress dia-
log is shown in Figure 6.

ShowProgressClock boolean controls.dsge.progressclock A clock will be displayed on the progress dialog only when

this field is unity.

StepLengthHessian integer controls.optimize.steplength Determines the step length that is used when computing

the inverse Hessian with finite differences.
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Table 16. DSGEModel fields related to the posterior distribution.

Field Data Type Handle to Control Description

BlockSize vector The minimum and maximum number of parameter blocks
when random blocking samplers are used.

BurnIn integer The number of burn-in draws selected directly by the user.

BurnInValue integer controls.posterior.burnin Determines the number of posterior draws at the beginning

of a Markov chain that are discarded as a burn-in period.

CoverageEnd integer controls.dsge.coverageend Gives the largest coverage probability that is used when

computing the marginal likelihood with the modified har-

monic mean estimator.

CoverageIncrement integer controls.dsge.coverageincrement Gives the increment for a sequence of coverage probabili-

ties that are used when computing the marginal likelihood
with the modified harmonic mean estimator.

CoverageStart integer controls.dsge.coveragestart Gives the smallest coverage probability that is used when
computing the marginal likelihood with the modified har-

monic mean estimator.

CoVToleranceValue integer controls.posterior.isweightshare Determines the tolerance level of the coefficient of varia-
tion criterion when using importance sampling based on

the MitISEM algorithm.

FixedNumParamBlocks integer Gives the number of parameter blocks when fixed blocking

samplers are used.

InverseHessianEstimator integer controls.posterior.invhessian Determines which estimator of the inverse Hessian that is

used as the covariance matrix of the proposal density.

ISAddedDF integer controls.posterior.isaddeddf Determines the number of degrees of freedom for the

added Student-t density when using the MitISEM algo-

rithm to estimate the candidate density for importance
sampling.

ISAddedMixWeightValue integer controls.posterior.isaddedmixweight Determines the initial weights given to the added Student-t
density for the MitISEM algorithm.

ISInitialDF integer controls.posterior.isinitialdf Determines the number of degrees of freedom when initial-
izing the Student-t density during the initializationa and

adaption steps of the MitISEM algorithm prior to estimat-

ing this parameter.

ISMaxMixCompValue integer controls.posterior.ismaxmixcomp Determines the maximum number of Student-t compo-

nents to use when running the MitISEM algorithm.
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Table 16. DSGEModel fields related to the posterior distribution (continued).

Field Data Type Handle to Control Description

ISWeightShareValue integer controls.posterior.isweightshare Determines the shares of IS weights and parameter draws

used to estimate the initial values of the location and scale

parameters of the added Student-t density during the Mi-
tISEM algorithm.

MarginalLikelihoodValue integer controls.dsge.marginallikelihood Gives the algorithm(s) that is (are) used for estimating the
marginal likelihood in connection with posterior sampling.

MaxCorrelationValue integer controls.posterior.maxcorrelation Determines the maximum correlation that can appear in
the covariance matrix of the proposal density.

MHInitialScaleFactor integer controls.posterior.initialscale The value determines the constant c0 used when comput-

ing the initial value of the parameters for the random walk
Metropolis algorithm; see, e.g., Warne (2025, Section 9).

MHScaleFactor integer controls.posterior.scalefactor Gives the constant c that is used when parameterizing
the proposal density for the random walk Metropolis al-

gorithm; see, e.g., Warne (2025, Section 9).

MixedDistWeightValue integer controls.posterior.mixeddistweight Determines the weight for the mixed normal proposal den-

sity used in the mutation step of the SMC with likelihood

or data tempering posterior samplers.

ModifiedHessian boolean controls.optimize.modifiedhessian Determines if the correlations from the inverse Hessian at

the mode are applied when transforming the conditional
standard deviations of the modified Hessian into marginal

standard deviations.

NumParamBlocks integer controls.posterior.numparamblocks Gives the number of parameter blocks for the mutation

step of the SMC with likelihood or data tempering poste-

rior samplers.

OverwriteDraws boolean controls.dsge.overwritedraws When this field is unity, YADA will overwrite posterior

draws on disk when they are based on the identical set-
tings.

ParallelChainsValue integer controls.posterior.chains Determines the number of Markov chains to run.

ParameterCovMatrix string Given the full path and name of the mat-file where an es-

timated covariance matrix for the transformed parameters

is located. This matrix can be used as an estimator of the
inverse Hessian.

–
9
7

–



Table 16. DSGEModel fields related to the posterior distribution (continued).

Field Data Type Handle to Control Description

PosteriorDraws integer The number of posterior draws selected directly by the user.

PosteriorDrawsValue integer controls.posterior.draws Yields the total number of draws from the posterior distri-

bution.

PostDrawsPercentValue integer controls.posterior.usepostdraws Makes it possible to determine the percent of the the post
burn-in sample draws from the posterior distribution to use

when computing functions of the parameters, such as im-
pulse responses.

PosteriorSampler integer controls.posterior.posteriorsampler Determines which posterior sampler to use, random walk

Metropolis with a normal proposal density (1); slice sam-
pler (2); random walk Metropolis with a Student-t proposal

density (3); fixed block RWM with a normal proposal den-
sity (4); fixed block RWM with a Student-t proposal density

(5); random block RWM with a normal proposal density

(5); random block RWM with a Student-t proposal density
(7); SMC with likelihood tempering (8); SMC with data

tempering (9); IS based on the MitISEM algorithm (10).

RandomizeDraws boolean controls.tools.randomizedraws Determines if draws from the posterior should be selected

randomly (unit value) or not (zero value). The field only

applies to functions that use a subset of the posterior draws.

RandomNumberValue boolean controls.tools.randomnumber Determines if the random number generators are initialized

with a fixed (unit value) or a variable state (zero value).

RandomWeightValue integer controls.posterior.randomweight Determines the weight (between 0 and 1) on random draws

relative to the posterior mode when initializing the param-
eters for multiple Markov chains.

ResamplingAlgorithm integer controls.posterior.resamplingalgorithm Determines the resampling algorithm used in the selection

step of the SMC with likelihood or data tempering posterior
samplers.

ResamplingThresholdValue integer controls.posterior.resamplingthreshold Determines the threshold value of the effective sample size
for running a resampling algorithm during the selection

step of the SMC with likelihood tempering posterior sam-
pler, or when to stop adding data points during the correc-

tion step of the SMC with data tempering posterior sampler.

SampleBatchValue integer controls.posterior.batch Gives the number of sample batches per Markov chain.
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Table 16. DSGEModel fields related to the posterior distribution (continued).

Field Data Type Handle to Control Description

ScenarioParameters vector Determines which estimated parameters can vary when

posterior (and prior) draws are used. The field is not used
by all tools.

SequentialML boolean controls.dsge.sequentialml Determines if the marginal likelihood should be estimated
sequentially in connection with posterior sampling.

SequentialStartIteration integer controls.dsge.sequentialstart Gives the number of posterior draws used for the first se-

quential estimate.

SequentialStepLength integer controls.dsge.sequentialstep Gives the number of posterior draws to add from one se-

quential estimate to the next.

SMCInitialScaleFactor integer controls.posterior.smcinitialscale Determines the initial value of the scale factor for the pro-

posal density for the SMC with likelihood or data tempering
posterior samplers.

SMCNumMHSteps integer controls.posterior.smcmhsteps Determines the number of Metropolis-Hastings steps of the
mutation step of the SMC with likelihood posterior sampler.

StudenttDegFree integer Gives the number of degrees of freedom of the Student-t

proposal density when the posterior sampler is the random
walk Metropolis with such a proposal.

TargetAcceptanceRateValue integer controls.posterior.targetacceptancerate Determines the value of the target acceptance rate in the
mutation step of the SMC posterior sampler

TemperingLambdaValue integer controls.posterior.temperinglambda Determines the bending parameter (λ) for the likelihood
tempering schedule of the SMC posterior sampler.

TemperingStagesValue integer controls.posterior.temperingstages Determines the number of tempering stages for the SMC
algorithm with likelihood tempering.
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Table 17. DSGEModel fields related to graphical selections.

Field Data Type Handle to Control Description

ConfidenceRegionMethod integer Determines if confidence sets are constructed based on

equal tails (1) or highest probability density (2).

ConfidenceBandBaseColor vector Determines the base color for confidence bands. This field

has three elements with real numbers between 0 and 1 rep-

resenting red, green, and blue (RGB). The base color is
multiplied by suitable scalars between 0 and 1 to produce

shades of the base color. The default is [1 1 1], i.e., white.

IRHorizon integer controls.tools.irhorizon Gives the value for the number of periods for impulse re-

sponses and variance decompositions.

KernelDensityEstimator string Gives a short name of the kernel density estimator for prior

draws. The possible values are kepan (Epanechnikov),

knorm (normal), krect (rectangular), ktria (triangular),
kbiwe (bi-weight), ktriw (tri-weight), klapl (Laplace),

and klogi (logistic).

KernelDensityValue integer controls.graphics.kerneldensity Determines which kernel density estimation method to use

for prior draws.

ObsVarGroupColors matrix Each row is a vector with an RGB triple (0-1) for a certain

observed variable group. The number of rows is equal to

the number of observed variable groups; see also Table 11.

PosteriorDensityValue integer controls.graphics.posteriorkernel Gives the choice of kernel density estimator for posterior

draws.

PriorKernel boolean controls.graphics.priorkernel When the field is unity (zero) the prior density is computed

with a kernel (grid) density estimator.

ShockColors matrix Each row is a vector with an RGB triple (0-1) for a cer-

tain shock. The number of rows is equal to the number of

shocks.

ShockGroupColors matrix Each row is a vector with an RGB triple (0-1) for a certain

shock group. The number of rows is equal to the number
of shock groups; see also Table 12.

ShowEstimationLog boolean controls.showestimationlog Determines if the estimation log is filled with selected in-
formation during estimation. Default is yes (1).

–
1
0
0

–



Table 18. DSGEModel fields related to DSGE-VAR models.

Field Data Type Description

DSGEVARShocks vector Determines which of the economic shocks in the DSGE model that will also be included in the DSGE-VAR. The

number of such shocks must be equal to the number of observed variables or equal to zero. In the latter case,
YADA will not support DSGE-VAR functions that require structural shocks.

JointLambda vector Determines which of the λ values in Lambda that will be used for joint posterior mode estimation. The default
is all values.

Lambda vector Determines which possible values of the λ hyperparameter that can be used for DSGE-VAR models. The default
is [0.25 0.5 0.75 1 5 Inf].

MarginalLambda vector Determines which of the λ values in Lambda that will be used for marginal posterior mode estimation. The

default is all values.

–
1
0
1

–



Table 19. DSGEModel fields related to DSGE models subject to adaptive learning.

Field Data Type Handle to Control Description

AdaptiveLearningModelSolverFile string Gives the full path and filename of
an external DSGE model solver under

adaptive learning.

BeliefPriorFile string The full path and filename of the se-

lected file with a prior for the param-

eters of the belief system.

BeliefPriorFileSheet string The file sheet used for the file with a

prior for the parameters of the belief
system.

BeliefSystem integer Determines if the default naive belief
system is used or if a user specified sys-

tem is applied.

BeliefSystemFile string The full path and filename of the se-
lected belief system file.

FixedBeliefsForProj boolean controls.learning.options.fixedbeliefsforproj Boolean variable which is 1 if the be-
lief coefficients should be kept fixed

while projecting forward and 0 other-
wise. The default value is 1.

ForwardVariableNames string A string matrix with the names of the

forward looking variables for the belief
system.

ForwardVariablePositions vector A vector with the positions of the for-
ward looking variables among the state

variables.

NoSmoothedStatesForBeliefs boolean controls.learning.options.nosmoothedstatesforbeliefs Determines if the Kalman filter for the

belief coefficients should use smoothed

estimates for the second lag or lagged
update estimates. Default is to use

smoothed ones (a value of 0).

–
1
0
2

–



Table 20. Miscellaneous DSGEModel fields.

Field Data Type Handle to Control Description

DriverFunctions string Determines the mat-files which contain data for running a

sequence of YADA functions.

MonteCarloFilterDraws integer Determines the default number of draws from the prior dis-

tribution to use for Monte Carlo filtering.

ParameterScenario vector Vector with ones and zero that determines which parame-

ters are changed in a parameter scenario.

ParameterScenarioValue integer Determines the default start period of a parameter sce-

nario.

RecentPastLag integer Determines the lag until there are past shocks for each time

period when conducting the Recent & Past decompositions

REqPosition integer Position of the monetary policy rule among the DSGE

model equations.

ResponseDenominatorPosition integer Determines how the permanent shock is normalized. The

default is no normalization, but one of the observed vari-

ables can also be selected for this role.

RiccatiMaxIterations integer controls.tools.riccatiiteration Gives the maximum number of iterations when running the

solver for the Riccati equations.

RiccatiToleranceValue integer controls.tools.riccatitolerance Determines the tolerance level that is used for the Riccati

equation solver. The tolerance level is equal to 10−(x+1),
with x being the value of the field.

RtildePosition integer Position of the monetary policy rate among the state vari-

ables in the DSGE model.

RunScriptFile string Holds the path and name of the last selected matlab script

file to be run in YADA.

SampleSplitPeriod integer Determines the number of time periods from the sample

end until the last period before the sample split.

–
1
0
3

–



Table 20. Miscellaneous DSGEModel fields (continued).

Field Data Type Handle to Control Description

TargetEqPosition integer Determines the target or policy equation where a perma-

nent shock can affect on of the included model/state vari-
ables.

TargetShockValue integer Determines the size of the permanent shock. The default
value is 0.

TargetVariablePosition integer Determines the target variable which may be subject to a
permanent shock in the target (policy) equation.

ZLBSampleT integer Determines the length of the prediction sample during

which the zero lower bound may be binding.

–
1
0

4
–



Table 21. DSGEModel fields related to a Bayesian VAR model with a steady-state prior.

Field Data Type Handle to Control Description

BVARLags integer controls.bvar.lag Determines the lag order of VAR and DSGE-VAR models.

CrossEqTightnessValue integer controls.bvar.crosseqtightness Gives the cross-equation tightness hyperparameter when a

Minnesota-style prior is used for parameters on lagged vari-

ables.

HarmonicLagDecayValue integer controls.bvar.harmoniclagdecay Determines the harmonic lag decay hyperparameter for

proper priors of the parameters on lagged variables.

OmegaPriorType integer controls.bvar.omegapriortype Gives the type of prior to use for the covariance matrix of

the VAR residuals.

OverallTightnessValue integer controls.bvar.overalltightness Determines the overall tightness hyperparameter for proper

priors of the parameters on lagged variables.

PriorDiffMeanValue integer controls.bvar.priordiffmean Gives the mean of parameters on the first own lag of first

differences variables for proper priors.

PriorLevelMeanValue integer controls.bvar.priorlevelmean Gives the mean of parameters on the first own lag of levels

variables for proper priors.

PriorType integer controls.bvar.priortype Determines the type of prior that is used for parameters on

lagged variables.

StationaryVAR boolean controls.bvar.stationaryvar Determines if the VAR parameter posterior draws are re-
quired to be consistent with stationarity (1) or not (0).

SteadyStatePriorFile string controls.bvar.steadystatefile Gives the full path and name of the steady-state parameter
prior file.

VarianceTightnessValue integer controls.bvar.variancetightness Determines the value of the variance tightness hyperpa-
rameter when the inverse Wishart prior is used for the co-

variance matrix of the residuals and the distribution is pa-

rameterized by this hyperparameter times the identity.

WishartDFValue integer controls.bvar.wishartdf Gives the number of degrees of freedom of the inverse

Wishart prior.

WishartType integer controls.bvar.wisharttype Determines how the location matrix of the inverse Wishart

prior is parameterized.

–
1
0
5

–
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