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Abstract: Euro area real-time density forecasts from three DSGE and three BVAR models are
compared with six combination methods over the sample 2001Q1–2019Q4. The terms information
and observation lag are introduced to distinguish time shifts between data vintages and actuals used
to compute model weights and compare the forecast, respectively. Bounds for finite mixture combi-
nations are presented, allowing for benchmarking them given the models. Empirically, combinations
with limited weight variation often improve upon the individual models for the output and the joint
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1. Introduction

The benefits of combining density forecasts from different models or forecasters have long been

recognized across many academic fields, such as management science, meteorology and statistics.

Density forecast combinations have also attracted a growing interest among economists and policy

makers. Not only do combinations provide a way to guard against model uncertainty, it is further-

more a means to improve forecast accuracy; see Timmermann (2006) and Aastveit et al. (2019).

The improvement in forecast accuracy can, for instance, arise from individual models being over- or

under-confident in the sense of delivering predictive densities that are too narrow or too wide and

thereby not well-calibrated ; see, e.g., Dawid (1984) and Diebold et al. (1998).

Notwithstanding this positive consensus on forecast combinations, there is less empirical agree-

ment on the performance and robustness of different combination schemes. Different methods can

generate different outcomes and reflect different philosophies; see Amisano and Geweke (2017). For
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instance, the well-known method of Bayesian model averaging is predicated on the assumption of a

complete model space, while optimal prediction pools, suggested by Hall and Mitchell (2007), make

no such assumption: all models in the pool may be false, but nonetheless useful. Straddling these

extremes is the enduring puzzle that naïve schemes, such as equal model weights, often outperform

more sophisticated alternatives. Equal weighting, though, precludes the possibility of adaption to

particular episodes of model improvements. If the forecast horizon contains some dramatic event or

particular constellation of shocks, this may be costly. On the other hand, schemes that yield volatile

model weights may undermine the practical case for combination methods.

Against this background, our paper makes three principal contributions. First, like forecasting

itself, we believe gains from combinations matter most in real time. This is because real-time

data constitutes the most realistic and policy-relevant testing ground. Many studies have assessed

density forecasting with different competing models using real time data, e.g., Jore et al. (2010),

Clark (2011), Groen et al. (2013), Mazzi et al. (2014); see also Chauvet and Potter (2013) and

Clements (2017) for a discussion of real-time forecasting issues.1 However, what is missing from this

literature is a formal recognition that the use of real time data has implications for the performance

and analysis of combination schemes.

Apart from fixed-weight combinations, weights are usually computed using information about

each model’s (or forecaster’s) past predictive performance. In a real-time context, however, model

weighting emerges when outcomes are imperfectly known: measured values of the predicted variables

for period t are, by construction, not observed until later. This implies that the predictive measures,

such as the predictive likelihood, should be suitably lagged when computing the incremental weights.

To that end we define the following terms: the observation lag is the time difference between the

date of the variable and the vintage its actual or “true” value is taken from; while the information

lag is the time difference between the date of the vintage and the date of the last data point

of the predicted variables which is used for computing the model weights when forecasting with

this vintage. The former concept concerns the data used for the performance measure of density

forecast combinations, while the latter is related to the information used for computing combination

weights. Note that the information lag comes on top of the forecast horizon so that the sum of the

two make up the delay before historical density forecasts can be used for model weighting. This

1 Other papers of note which separately consider real-time forecasting or combinations exercises include Edge et al.
(2010) and Rossi and Sekhposyan (2014).
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requires us to re-specify the density combination method to accommodate these features. We then

demonstrate that the assumed length of the information lag matters for the attainable gains from

forecast combinations and the ranking of the methods over time.

In this context, it is also worth emphasizing that we consider forecasts at various horizons in

our real-time analysis: backcasts, nowcasts and up to eight-quarter-ahead forecasts. This matters

because models’ predictive performance can be highly horizon specific. In that respect, the Great

Recession episode is telling: all models incur large forecast errors, but some “recover” better than

others over different horizons and for different reasons. This has implications for the gains obtainable

from combinations in general as well as the specific performance of different combination schemes. A

standard one-step-ahead density forecast would suppress these issues. In addition, the impact of the

assumed information lag on the performance of combination methods may vary with the horizon,

where one may a priori suppose that its influence is greater at short than at long forecast horizons.

Second, we introduce upper and lower bounds for finite mixtures of the model density forecasts,

allowing us to benchmark such combination methods not only with respect to the available models

but against the best and the worst cases given the models involved. The bounds are computed

from the density forecasts of the models using the actual values, implying that they are ex post

bounds. They tells us what can be achieved by finite mixture combination methods for the given

set of models. If the best-performing model is far from the upper bound, then there is a large

room for improvement. If near the upper bound, then finite mixture combination methods are

unlikely to be useful and either additional models may be considered before combinations are used

or compound distribution based methods may be contemplated. This constitutes, we believe, an

important practical diagnostic aid, which has not been considered in the literature.

Finally, we contribute to the literature on combinations in a euro area context. Relative to that of

the US, evidence of real-time density forecasting on euro area data remains scant, despite its similar

economic weight, and corresponding evidence on combinations is scanter still. This is also important

since the euro area real time data has distinct properties and constraints in terms of sample size

and number of variables. Notable papers using the euro area real time database include Mazzi et al.

(2014), Smets et al. (2014), Berg and Henzel (2015), Jarociński and Lenza (2018), Bańbura et al.

(2021) and Warne (2022).

The paper is organized as follows. Section 2 discusses probabilistic forecasting with a focus on

combination methods and the real-time dimension. Section 3 overviews the models used: three
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DSGE models that are variants of the canonical Smets and Wouters model (McAdam and Warne,

2019), as well as three Bayesian vector autoregressions (BVARs), embodying standard and recently

developed priors. In Section 4, the forecast performance of the six models is presented for the sample

2001Q1–2019Q4, a period which constitutes an especially challenging laboratory: it spans a period

of relatively calm macroeconomic conditions, undone by the Great Recession. Since we make use of

annual revisions for the actual values of the forecasted variables vintages until 2020Q4 are utilized. In

Section 5 we define the upper and lower bounds for the combination methods based on the models

at hand, compare the predictive performance of the models relative to the different combination

schemes and study the combination weights. The sensitivity of the results to the information lag

assumption is also examined. Finally, Section 6 summarizes the main findings, while additional

material is in the Online Appendix.

2. Density Forecast Combinations in Real Time

Scoring rules are widely used to compare the quality of probabilistic forecasts by attaching a numer-

ical value based on the predictive distribution and an event or value that materializes; see Gneiting

and Raftery (2007) for a survey on scoring rules, and Gneiting and Katzfuss (2014) for a review

on probabilistic forecasting. A scoring rule is said to be proper if a forecaster who maximizes the

expected score provides his or her true subjective distribution, and it is said to be local if the rule

only depends on the predictive density at the realized value of the predicted variables. A well-known

scoring rule is the log predictive score and it is the only proper local scoring rule; see Bernardo

(1979). The empirical analysis below relies on this rule as it is the most commonly applied scoring

rule in practice.2

2.1. Log Predictive Score

Suppose there are M models to compare in a density forecast exercise. Let p
(i)
t+h|t = p(x

(a)
t+h|I(i)

t , Ai)

denote the predictive likelihood conditional on the assumptions of model i, Ai, and the information

set of model i, I(i)
t . The predictive likelihood is given by the predictive density evaluated at the

actual or observed value of the vector of random variables x, realized at time t + h and denoted

by x
(a)
t+h, with the integer h being the forecast horizon. The log predictive score of model i for

2 If we remove the requirement of using the predictive density for the scoring rule and allow for the predictive
cumulative distribution, then additional proper and strictly proper scoring rules exist. Examples include the univariate
continuous ranked probability score or its multivariate version, the energy score; see, e.g., Gneiting and Raftery (2007)
and Gneiting et al. (2008) for further discussion and Warne (2022) for a recent real-time application.
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h-step-ahead density forecasts is given by

S
(i)
T :Th,h

=

Th∑
t=T

log
(
p
(i)
t+h|t

)
, i = 1, . . . ,M. (1)

The larger the log predictive score is, the better a model can predict the vector of variables x at the

h-step-ahead forecast horizon.

A Kalman-filter-based approach to the estimation of the log predictive likelihood in linear state-

space models was suggested in a recent paper by Warne et al. (2017). The basic idea is to calculate

the predictive likelihood of a model conditional on a draw from the posterior distribution of the

parameters and then average these likelihoods over all or a suitable subsample of the posterior

draws. This simple Monte Carlo integration approach was also utilized in McAdam and Warne

(2019), where we compare real-time density forecasts for the euro area based on three estimated

DSGE models.

Let wi,h,t be the weight on model i for h-step-ahead forecasts in period t, satisfying wi,h,t ≥ 0

and
∑M

i=1wi,h,t = 1. The log predictive score of a generic density forecast combination using these

weights is given by

ST :Th,h =

Th∑
t=T

log

(
M∑
i=1

wi,h,tp
(i)
t+h|t

)
. (2)

In the Online Appendix, Section E, we discuss several approaches to combining the density fore-

casts from individual models: static optimal and dynamic prediction pools (SOP and DP), Bayesian

and dynamic model averaging (BMA and DMA), and log score and average log score weighting (LS

and ALS). It is interesting to note that the LS weights, suggested by Jore et al. (2010), are identical to

the BMA weighting approach we employ under equal initial model weights, as we shall assume in the

empirical analysis. Furthermore, the ALS weights are derived from the Kullback-Leibler information

criterion (KLIC) weighting scheme suggested by Mitchell and Hall (2005). It may furthermore be

noted that these combination schemes cover the three broad combination methodologies discussed

by Aastveit et al. (2019): frequentist based optimized combination weights (SOP); Bayesian model

averaging weights (BMA, DMA and ALS); and flexible Bayesian forecast combination structures

(DP). In addition to these five combination schemes, the empirical part of the paper includes equal

weights (EW).

Notice that the predictive likelihood, p(x(a)t+h|I(i)
t , Ai), does not include the parameters of the model

as these have already been integrated out by accounting for the posterior distribution. Waggoner
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and Zha (2012) allow the combination weights to follow a hidden Markov process and emphasize the

joint estimation of the weights and the parameters of all models. In the empirical exercise we extend

the predictive likelihoods estimates of three DSGE models from McAdam and Warne (2019) by

employing vintages covering 2015–2019, while the predictive likelihoods of the reduced form models

are also estimated separately. This decision is based not only on computational constraints but

also on the fact that different models are rarely developed by the same team at policy institutions,

making cross model estimation an unusual or unrealistic feature in practice; see also the discussion

in Del Negro et al. (2016, pages 392–393).

Several other density forecast combination methods have recently been introduced to the litera-

ture, such as the dynamic Bayesian predictive synthesis in McAlinn and West (2019); the so called

generalized density forecast combinations of Kapetanios et al. (2015); and the state-space approach

of Billio et al. (2013); see also Aastveit et al. (2019) for additional approaches. These techniques are

very general and we have opted to omit them from the current study since our objectives are mainly

to learn: (i) if finite mixture combination methods can provide superior density forecasts to those

from the three DSGE models in McAdam and Warne (2019) when complemented with commonly

applied reduced form models; (ii) if successful methods share specific properties; and (iii) how the

weights on the models develop over time and for different forecast horizons, before, during and after

the Great Recession. This does not rule out that other combination schemes or models are superior

to those we investigate, but we leave this issue open for future research.

2.2. Observation and Information Lags

From a recursive perspective, the weights in (2) can only be estimated based on the predictive

likelihoods that have been observed at the time. The standard assumption for discrete time data

is that variables are observed in the same period that they measure, i.e., xt is both realized and

observed in period t. From a real-time perspective, however, a first release or first estimate of xt is

often not available in period t but is published at a later date. Let x
(τ)
t denote the value of xt taken

from vintage τ , where t ≤ τ and where the inequality is often strict.

Moreover, most macroeconomic variables are subject to revisions, due to more accurate infor-

mation appearing with some delay and/or due to changes in measurement methodology. When

comparing or evaluating forecasts, a decision must be made regarding which vintage to use for the

actuals; see, e.g., Croushore and Stark (2001) and Croushore (2011). In principle, any vintage can
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be used for the actual value and common choices in the real-time literature are the first release, the

annual revision and the latest vintage. Although the latest vintage may reflect actuals that for many

periods have not been subject to large revisions, it may suffer from possible methodological changes

to the measurements that were not known in real time.3 Similarly, first release data is typically

subject to larger revisions in comparison to, for instance, annual revisions data.

The choice of actuals is important since it represents the “true value” of the forecasted variables

and therefore affects the outcome of the comparison exercise. To distinguish the data used for

comparing forecasts from the data used for computing model weights for combination methods, the

time difference between the date of the variable and the date of the vintage the actual value is taken

from is henceforth called the observation lag and in the empirical exercise we use annual revisions

data. This means that x(a)t is taken from vintage t+4 such that x(a)t = x
(t+4)
t , with the consequence

that the observation lag k = 4. Similarly, if T ∗ denotes the latest vintage and the actuals are only

taken from this vintage, then x
(a)
t = x

(T ∗)
t for all t and the observation lag is T ∗ − t, i.e. decreasing

linearly in t. To simplify notation, we do not include a time index for the vintage date of the actuals.

At the same time, the vintages τ = t+1, t+2, t+3 may include data on the forecasted variables

and these measured values may be useful when computing the weights at τ . To account for this

we also define the term information lag, denoted by l. The minimum information lag is determined

by the time delay before the first publication of xt, while the maximum may be set equal to the

observation lag. The information lag is given by the difference between the vintage period, τ , and

the last data point used at τ for computing combination weights, x(τ)τ−l. Note that the information

and observation lags are both zero if one assumes that the date of the variable is equal to the time

period when it is observed, as is standard for the single database (vintage) forecast exercises.

It should be emphasized that the information lag is a distinct concept from the ragged edge of

real-time data; see Wallis (1986). The latter is a property of the database and is a consequence

of individual time series in a real-time vintage being measured up to different time periods. For

instance, interest rates may be measured up to the vintage date, while real GDP growth lags with one

quarter, and some labor market variables such as wages with two quarters. The ragged edge directly

affects the data available for estimation of model parameters and the conditioning information when

3 This is certainly true for the euro area Real Time Database (RTD), which also reflects a time-varying country
composition, where seven EU member countries have been admitted since 2007.
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forecasting with the models.4 The minimum information lag is determined by the ragged edge since

it depends on the dates for which historical values of all the forecasted variables are available. At

the same time, the information lag concerns only the forecasted variables and may be selected by

the user of the combination method. It is not written in stone that the minimum information lag

based on the ragged edge is always the best choice. A good choice for this parameter is likely to

depend on the properties of the combination method as well as the size of the revisions between the

initial release and the choice of actuals. For instance, the success of a combination method that has

a low (high) variability of the weights over time may be expected to have a low (high) sensitivity

to the information lag. Furthermore, if the revisions to the forecasted data are small, then a lower

information lag is expected to be more successful than a higher lag. While we do not investigate

the optimal or best selection of the information lag from a theoretical perspective, this may be an

interesting topic for future research.

To clarify the relevance of these concepts and the decision problems implied by them, consider the

following example based on one-quarter-ahead density forecasts: Suppose the minimum information

lag is equal to one quarter for the vector x in vintage τ , while the observation lag is equal to four

quarters. This means that xτ−1 is represented by a measured value x
(τ)
τ−1 for vintage τ and that

similarly xτ−2, xτ−3, . . . have measured values for this vintage. By having a measured value it is

understood that there are not any missing data for any element of x. Furthermore, an observation

lag of four means that actual values of xτ−4, xτ−5, . . . are available at τ and are taken from vintages

τ, τ − 1, . . .. Similarly, forecast densities of the current and all previous one-quarter-ahead forecasts

of x are available for the M models at time τ , where each model makes use of data from the

corresponding vintage. This means that the predictive likelihood values based on the actual values

p(x
(a)
t+1|I(i)

t , Ai) can be observed for t = T, . . . , τ − 5. In addition, the predictive likelihood values

based on the measured values p(x
(τ)
t+1|I(i)

t , Ai) can be observed for t = T, . . . , τ − 2.

The user of our generic combination method needs to make two decisions before computing the

weights for vintage τ : (i) which information lag to use among l = 1, 2, 3, 4; and (ii) whether to use

the predictive likelihoods based on the actual values or on the measured values for t = T, . . . , τ − 4.

The decisions to these two issues determine the objective function for computing the weights. Since

the actual values represent the “true values” we assume in the empirical exercise that the second

4 Table I.2 in the Online Appendix shows the ragged edge for the real-time data for all vintages used in the empirical
part. That determines which information is available when forecasting for each vintage, both when using the models
individually and when computing the weights for combining the model forecasts.
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decision always brings the predictive likelihood values for the actuals to the weight problem. If

an information lag longer than the minimum possible is selected, this means for our example that

all x(τ)τ−j for j < l along with the predictive likelihood values based on these measured values are

discarded when computing the weights at τ . For the possible choices of l the log predictive score

when computing weights is

S̃T :τ−l−1,1 =

τ−5∑
t=T

log

(
M∑
i=1

w
(τ)
i,1,tp

(
x
(a)
t+1

∣∣I(i)
t , Ai

))
+

τ−l−1∑
t=τ−4

log

(
M∑
i=1

w
(τ)
i,1,tp

(
x
(τ)
t+1

∣∣I(i)
t , Ai

))
,

where the weights w
(τ)
i,1,t, i = 1, . . . ,M , are non-negative and sum to unity. Notice that the first

term on the right hand side involves a sum up to the vintage date (τ) minus the observation lag

(k = 4) and the forecast horizon (h = 1), while the sum for the second term begins at the vintage

date minus the observation lag (plus the forecast horizon minus 1) and ends at the vintage date

minus the information lag (l) and the forecast horizon. Notice also that when τ ≤ T + l the above

log predictive score when selecting weights cannot be determined. Initial values for the weights are

then needed for these vintages and one candidate is w
(τ)
i,1,t = 1/M for these dates and for all i.

The notions of an observation lag and an information lag are indirectly recognized in the literature,

but to our knowledge have not been formally conceptualized. The former is indirectly defined as

it follows from the choice of actuals. Concerning the information lag, an example is given by Jore

et al. (2010, p. 622) who note that “the publication delay in the production of real-time data ensures

that macroeconomic variables dated through to quarter τ are not available until (vintage) τ+1” and

they mention that as a consequence the one-step-ahead forecasts are actually nowcasts. Furthermore,

they include a one-period lag, the minimum information lag, relative to the forecast horizon when

constructing their recursive weights. Note that also the information lag need not be constant. For

instance, the ragged edge is not always identical for all vintages of a real-time database with the

consequence that the minimum information lag can vary with the shape of the edge.

In the empirical exercise we initially make the mechanical assumption that the information lag is

equal to the observation lag, but also examine the more realistic case when the information lag is

shorter than the observation lag. For the variables we forecast in the empirical analysis, the shortest

possible information lag for quarterly data is one quarter for most vintages and two quarters for the

remaining ones. Finally, while we apply the two lag concepts to density forecast combinations in

this paper, they are also relevant for point forecast combination methods with real-time data.
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3. The DSGE and the VAR Models

3.1. The DSGE Models

We use three DSGE models, where the first is that of Smets and Wouters (2007), as adapted to

the euro area (labelled SW). The model contains a continuum of utility-maximizing households and

profit-maximizing intermediate good firms who, respectively, supply labor and intermediate goods

in monopolistic competition and set wages and prices. Final good producers use these intermediate

goods and operate under perfect competition.

The model incorporates several real and nominal rigidities, such as habit formation, investment

adjustment costs, variable capital utilization and Calvo staggering in prices and wages. The mon-

etary authority follows a Taylor-type rule when setting the nominal interest rate. There are seven

stochastic processes: a TFP shock; a price and a wage markup shock; a risk premium (preference)

shock; an exogenous spending shock; an investment-specific technology shock; and a monetary policy

shock. The observed variables are: real GDP, real private consumption, real investment, employ-

ment, real wages, the GDP deflator (all transformed as 100 times the first difference of the natural

logarithm), and the short-term nominal interest rate in percent.

The second model (SWFF) adds the financial accelerator mechanism of Bernanke et al. (1999) to

the SW model and augments the list of observables to include a measure of the external finance pre-

mium in percent; see McAdam and Warne (2019) for details.5 The final model (SWU) instead allows

for an extensive labor margin, following Galí et al. (2012), and accordingly adds the unemployment

rate in percent to the set of observables.

3.2. The VAR Models

Two BVAR models with homoskedastic innovations are studied in this paper and make use of the

priors discussed in Giannone et al. (2015, 2019). The observed variables of these models are identical

and, hence, they only differ in terms of their assumed priors. The first model is based on Giannone

et al. (2015) with a Minnesota prior combined with the standard sum-of-coefficients prior by Doan

et al. (1984), and the dummy-initial-observation prior by Sims (1993). As pointed out by Sims and

Zha (1998), the latter part of the prior was designed to neutralize the bias against cointegration

5 A variant of the SWFF, which also includes an observable for long-term inflation expectations is used by, e.g.,
Del Negro and Schorfheide (2013), Del Negro et al. (2015) and more recently by Cai et al. (2021).
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due to the sum-of-coefficients prior, while still treating the issue of overfitting of the deterministic

component; see also Sims (2000). This parameterization is henceforth called the SoC prior.

The second parameterization of the prior is based on the prior for the long run (PLR) suggested

by Giannone et al. (2019). The PLR provides an alternative to the SoC prior for formulating the

disbelief in an excessive explanatory power of the deterministic component of the model. Specifically,

the PLR focuses on long-run relations, stationary as well as non-stationary, where economic theory

can play an important role for eliciting the priors. The PLR does not impose the long-run relations

but instead allows for shrinkage of the VAR parameters towards them. The details on the prior

and posterior distributions as well as the estimation of the predictive likelihood are provided in the

Online Appendix, Section A; (see also McAdam and Warne, 2020).

It should be stressed that the estimation approach we employ for the two BVARs with homoskedas-

tic innovation is based on complete datasets, i.e., when there are no missing observations of the

observable variables. As emphasized in the previous section, the real-time data vintages we use

in the paper have a ragged edge, with some variables being missing for the vintage date as well

as for the quarter prior to the vintage date. To incorporate such datasets makes direct sampling

of the VAR parameters impossible and further complicates the posterior analysis as an analytical

expression of the marginal likelihood conditional on the hyperparameters is not available, with the

effect that all these parameters need to be estimated simultaneously. The computational costs of

dealing with the ragged edge can therefore be very high and for this reason a second best approach is

considered, where the dataset is trimmed during the parameter estimation step. For the forecasting

step, the ragged edge is taken into account by applying a Kalman filter to the backcast, nowcast

and forecast periods. The technical details on the forecasting step are presented in Section B of the

Online Appendix.

A third BVAR model is also studied which allows for heteroskedastic innovations through a

standard stochastic volatility setup. The modelling approach we use relies greatly on Cogley and

Sargent (2005) as it has been implemented in the BEAR Toolbox; see Dieppe et al. (2016). The

technical details on estimation with stochastic volatility using the above setup are given in Dieppe

et al. (2018), concerning their so-called standard model in Section 5.2. In Section C of the Online
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Appendix, we discuss the details on the prior we have used for this model as well as forecasting

considerations. This BVAR model is henceforth referred to as the SV model.6

4. Comparing the BVAR Models to the DSGE Models

The log predictive scores of the joint density forecast of real GDP growth and GDP deflator inflation

of the models based on the full sample of vintages are provided in Table 1.7 For each horizon (h)

and pair of rows, the log score values shown in the top row are in deviation from the largest value,

while the row below gives the largest value in the column of the corresponding model. It should be

kept in mind that the full sample log scores are calculated from Th = 76−h forecast sample quarters

per model for h ≥ 0, while the backcasts involve only 3 such periods.

The full sample results show that the SoC or the SV model has the highest log score for all

horizons. Moreover, all three BVAR models have a higher log score for all horizons than the best

performing DSGE model. The SWU model has the highest log score among the DSGE models for all

horizons. The SWFF model generally performs markedly worse than the other models, although it

tends to perform comparatively better for the longer horizons.8 Formal test results on the equality

of the log predictive scores (of the different pairs of models) using the weighted likelihood ratio test,

advocated by Amisano and Giacomini (2007), are shown in the Online Appendix, Figure I.5.

Recursive estimates of the average log scores for the joint density forecasts of real GDP growth

and inflation for selected horizons are shown in Figure 1. Each chart displays the results for the

six models for a given horizon with the SW model being represented by a solid red line, the SWFF

model with a dark blue dash-dotted line, the SWU model with a green dashed line, the SoC model

with a rose pink dash-dotted, the PLR with a light blue dashed line, and the SV model with a dark

yellow solid line. In addition, two dark red lines called “bounds” are shown in each chart and we

shall define them in Section 5.1.

6 Some details on the estimation procedure of the DSGE and BVAR models is located in the Online Appendix,
Section G.
7 In a recent paper, Krüger et al. (2021) show that the log score is consistent when using MCMC parameter draws
under stronger conditions than for the continuous ranked probability score and the Dawid-Sebastiani score. The latter
is constructed from a Gaussian density with mean and covariance given by the predictive mean and covariance. For
the six models in the current paper, the log score is estimated from a Gaussian density conditional on the parameters
and averaged over the posterior parameter draws. Using Kolmogorov-Smirnov tests, it is shown by Warne (2022) that
the log score and the Dawid-Sebastiani score are not statistically different for the SWU model using the same sample
as in the current paper. The other two DSGE models obtain similar results compared with the Dawid-Sebastiani score
in McAdam and Warne (2019) for the sample until 2014Q4. Hence, the theoretical objections one can raise when
using the log score do not appear to be important for the three DSGE models and the sample investigated here.
8 The full sample log predictive scores of the marginal density forecasts of the two variables are shown in the Online
Appendix, Table I.4.
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The horizontal axis in the panels represents the dating of the predicted variables, while the average

log predictive score for a model in that period is based on all the vintages dated up to h quarters

prior to the date. Concerning the DSGE models it can be seen that the paths look similar with the

SWFF model path shifted down from the other two. The average log score for each DSGE model is

fairly constant with a downward shift in 2008Q4. The BVAR models, on the other hand, display an

upward trending behavior for the shorter horizons until 2008Q4, when a large drop occurs, before

the upward trending path begins again in the aftermath of the Great Recession.

The most striking feature is the size of the drop in average log score of the BVARs compared

with the DSGEs. The SoC and PLR models lose roughly twice as much in average log score as

the DSGE models, while the loss for the SV model is even larger. For example, for the vintage

2008Q3 the one-quarter-ahead log predictive likelihood value for the SW and SWU models are close

to −4 log units, while they are less than −11 for the BVARs. The two-quarter-ahead log predictive

likelihood is around −7 for these two DSGE models and below −17 for the BVARs. To evaluate

how big the losses for the BVARs are, these numbers may be compared, for the same horizons, with

the log scores in Table 1, i.e. the accumulated log predictive likelihoods for all the 76 vintages in the

forecast sample. In fact, the relative losses for the BVAR models are such that the model ranking

changes from the BVAR models obtaining a higher average log score than the DSGE models, to the

SW and SWU overtaking all three BVARs. Furthermore, from the nowcast until the eight-quarter-

ahead horizon, the SV model is the best performer until the onset of the Great Recession in 2008Q4.

Around 2014–15 the BVARs catch up with the SW and SWU models and thereafter overtake them.

Moving to the recursive average log scores for the real GDP growth density forecasts in Panel A of

Figure 2, the pattern in connection with the onset of the Great Recession is again present. The loss

in average log predictive score for the BVAR models is around one log unit, while it is a little less

than half a log unit for the DSGE models. As a consequence and similar to the evidence from the

joint log scores, the BVAR models temporarily lose their top rankings to the SW and SWU models.

Turning to the recursive average log scores for the inflation density forecasts in Panel B of Figure 2,

the DSGE models sometimes perform better than or no worse than the BVAR models, especially

for the one-quarter to four-quarter-ahead horizons. It is also notable that there is little or no effect

on the short-term density forecasts from the drop in inflation during the first half of 2009, while the

longer-term forecasts display a visible, albeit modest, drop in average log score for all models except

the SWFF model, which includes the BGG type of financial frictions. This result is particularly
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interesting since the BVAR models have access to the same data on the external finance premium,

yet they are unable to utilize this information as fruitfully as the SWFF model does when forecasting

inflation over 2009Q1–Q2, even two-years-ahead.

To analyze what may underlie the large drop in log score of the BVAR models relative to the

DSGE models, Table 2 provides prediction errors (PEs), predictive variances (PVs) and log predictive

likelihoods (LPLs) over the various horizons when the objective is to predict real GDP growth in

2008Q4 and in 2009Q1. Since the log predictive likelihood is expected to be well approximated by a

Gaussian likelihood function,9 the cause for the large drop in log score is due to prediction errors,

the predictive variance or, possibly, both.

In the case of 2008Q4, the sizes of the prediction errors for the BVAR models and the DSGE

models are similar in size, with all models greatly over-predicting actual quarterly real GDP growth.

Moreover, there are no major differences between the prediction errors based on the vintage under-

lying the forecast, especially in the case of the BVARs. For example, the SoC model forecast in

2006Q4 (h = 8) of 2008Q4 is roughly of the same magnitude as the forecast made in 2008Q3 of

2008Q4 (h = 1). The only possible exception concerns the SWFF model, which has larger errors in

absolute terms than the other models. Turning to the predictive variances, the estimates from the

BVAR models are around three times smaller (or even more in the case of the SV model) than those

from the DSGE models. Hence, the considerably smaller log predictive likelihoods of the BVAR

models in 2008Q4 seems to be due to their comparatively narrow predictive densities.

Concerning real GDP growth in 2009Q1, the same explanation is supported by the estimates in

Table 2. Overall, the prediction errors are larger than in 2008Q4 while the predictive variances are

broadly unchanged, with the consequence that the log predictive likelihoods are much smaller for

this quarter. Nevertheless, the explanation for the much larger drop in log predictive score for the

BVARs than for the DSGE models is the predictive variance. The small predictive variances of the

BVARs are beneficial in terms of log score prior to the Great Recession since the prediction errors

are modest. However, the punishment is also severe when these models fail to predict large changes

9 Based on the evidence presented in McAdam and Warne (2019), the predictive likelihood of each one of the three
DSGE models is well approximated by a normal density based on the prediction error and the predictive variance,
albeit that the approximation error is larger when the value of the log predictive likelihood is smaller. Similar results
were also obtained in Warne et al. (2017) when comparing a DSGE model to DSGE-VARs and, in particular, a BVAR
model based on the methodology in Bańbura et al. (2010). The posterior predictive densities of the SW, SWFF and
SWU models for the real GDP growth forecasts using the 2007Q1 vintage along with the normal approximation of
the predictive densities are displayed in Figure I.27 of the Online Appendix.
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to the variables of interest. Still, the lower predictive variances of the BVARs is also the reason why

these models recover their losses relative to the DSGE models once the Great Recession is over.10

5. Density Forecast Combinations

5.1. Upper And Lower Bounds for Finite Mixture Density Forecast Combinations

Forecast combinations offer an opportunity for improving upon the density forecasts of the individual

models. Commonly used combination methods are typically finite mixtures where each model has a

nonnegative weight and where the weights sum to unity. All methods applied in this paper belong to

this category of combinations. Some combinations, such as the dynamic Bayesian predictive synthesis

in McAlinn and West (2019), are compound distribution methods involving latent variables and the

bounds presented below do not apply to them. Still, they are nevertheless of interest also for these

methods since they provide the limits for finite mixtures.

An indicator that finite mixture combinations may be useful is that the recursive density forecasts

of the individual models are not dominated by one model. The joint real GDP growth and GDP

deflator inflation forecasts display time varying top ranks among the six models and similarly for real

GDP growth. Concerning the inflation density forecasts, however, some horizons have a dominant

model with respect to the recursive log score throughout the forecast sample; see, e.g., the eight-

quarter-ahead forecasts in Panel B of Figure 2 where SV is in such a position. Nevertheless, this

model does not dominate the other models in terms of log predictive likelihood for each time period,

and it is therefore possible, albeit difficult, for a combination scheme to outperform the SV model.

The model weights for any finite mixture combination method are formed using information

available at the time the density forecast is made. Given the models at hand, what is the best result

that can be obtained by combining them? Likewise, we may ask: what is the worst result that can

occur? The answers to these questions give the user an upper and a lower bound for finite mixture

combinations based on the compared M models.

10 A formal analysis of how well calibrated the model-based density forecasts are is provided in the Online Appendix,
Section D, where we use the test proposed by Amisano and Geweke (2017) as well as an informal graphical analysis;
see, in particular, Table I.9 and Figures I.3–I.4. The results indicate that the marginal real GDP growth density
forecasts are not well calibrated, while the marginal inflation density forecasts, with the exception of the SWFF
model, may be well calibrated.
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It is straightforward to construct both ex post bounds when the log score is used as the scoring

rule.11 Specifically, the upper and the lower bound for each forecast horizon is obtained by collecting

the maximum and the minimum of the log predictive likelihoods of the M models in each time

period and adding these “optima” as the log score of the upper and the lower bound combination,

respectively. That is, the upper and the lower bound of the log scores are:

S
(U)
T :Th,h

=

Th∑
t=T

max
i=1,...,M

log
(
p
(i)
t+h|t

)
,

S
(L)
T :Th,h

=

Th∑
t=T

min
i=1,...,M

log
(
p
(i)
t+h|t

)
.

(3)

From the perspective of a forecaster combining models in real time, these bounds are, as Th in-

creases, close to probability zero events as they involve always picking the winner or the loser. They

nevertheless form natural benchmarks when comparing density forecasts for a given set of models

and forecast sample. The interval between the bounds gives the range of possible log score values

that all finite mixture combination methods using the same models and forecast sample will take.

Moreover, the difference between the upper bound and the log score of the best model is the interval

available to combination methods for improving on the model forecasts. Should this interval be “too

narrow”, it may be prudent to consider additional forecasting models or compound methods before

carrying out a combination exercise.

Returning to Figure 1, we find that the upper bound of the average log score lies quite close to

the average log score of the best performing models prior to the Great Recession. Given the six

models, the room for improving the density forecasts of the BVARs with combination methods up

to 2008Q3 is therefore very narrow. Similarly, the lower bound of the average log score is not very

far below the worst performing model (SWFF) up to this event. Once the Great Recession occurs,

however, the gap between the upper bound and the best performing model increases substantially,

while the gap between the SWFF model and the lower bound becomes similarly pronounced. The

last two columns of Table 1 provide the upper and lower bounds for the full sample log predictive

score of combination methods. Apart from the backcasts, which are based on only three data points,

the best performing model has a log score approximately two-thirds-up from the lower bound for

11 Upper and lower bounds can also be produced for other scoring functions, such as the CRPS and the energy score,
using the procedure in this section, but replacing the log predictive likelihood with the relevant time period and
forecast horizon score.
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h = 0, . . . , 4 and gradually drops thereafter to slightly less than 60 percent at h = 8. Hence, the

room for combinations to improve upon the models’ density forecasts is considerable.

Concerning the marginal density forecasts in Figure 2 we likewise find that the possibilities for

combination methods to improve upon the forecasts of the best models are noteworthy for the real

GDP growth forecasts after the onset of the Great Recession, while the distances between the upper

bound and the best performing model for the inflation density forecasts are smaller. In addition,

the inflation forecast show few changes in first rank among the models. These two aspects suggest

that for inflation it will be very difficult for the combinations to beat the best performing models.

5.2. Comparing the Models to the Combination Methods

As mentioned in Section 2, six combination methods are applied for the DSGE and BVAR models

and, as the default value, we set the information lag equal to the observation lag of four quarters

(k = 4) for the SOP, the DP, the BMA, the DMA and the ALS combinations; see the Online

Appendix, Section E for details. Since data releases of the predicted variables are available prior to

the annual revision data release, albeit with at least one lag, we shall also examine the case when

the information lag is exactly one quarter in Section 5.4.

Concerning the dynamic prediction pool, the δ∗ parameter governing the effective sample size dur-

ing the selection step is given by 0.90 in the Bayesian bootstrap filter. This means that an effective

sample size below 90 percent of the number of particles (N) results in resampling during the selection

step of the filter. The size of the latter parameter is 10,000 particles, while the grid for the ρ pa-

rameter, reflecting persistence of the dynamic pool weights, is given by ρ ∈ {0.01, 0.02, . . . , 0.99}.12

The initial values of the weights are, by assumption, equal to 1/6 for large N and these weights are

used until the first time period when historical predictive likelihood values are available. With an

information lag of four quarters, this occurs in period h+ 4 of the forecast sample.

The other combination methods that allow for time-varying weights are initialized by setting them

to 1/6 for each model; we analyze in some detail the importance of the initial values of the resulting

log scores in the Online Appendix, Section H. Furthermore, we follow the approach in Amisano

and Geweke (2017) and estimate the DMA forgetting factor, ϕ, and have opted to set its grid to

ϕ ∈ {0.01, 0.02, . . . , 0.99}.

12 Del Negro et al. (2016) use 5,000 particles in their study with δ∗ = 2/3 and 10,000 posterior draws of ρ, via the
random-walk Metropolis algorithm. We have checked the dynamic prediction pool results for alternative values of δ∗,
namely, 0.8 and 2/3. This did not have a notable impact on the resulting log predictive scores.
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The full forecast sample log predictive scores of the six models, EW, SOP, BMA, DMA and ALS

combination methods are displayed in Figure 3 in deviation from the log score of the DP. The top

left panel displays the results for the joint real GDP growth and inflation density forecasts, where

the DSGE and BVAR models are plotted with unchanged linestyles and colors relative to the earlier

graphs. The combination methods are given by the grey dashed line for EW, black dotted line for

the SOP, grey solid line for BMA, black dash-dotted line for DMA and light grey solid line for ALS

while the zero line represents the DP. It can be seen from the chart that all combination methods

and models obtain a lower log score than the DP for all horizons, with the ALS and EW slightly

behind. The differences between these three combination methods are however small.13 The SoC

and SV models also come close to the DP for the longer horizons.

Turning to real GDP growth in the top right panel, the picture is broadly similar, with the DP,

ALS and EW combinations at the forefront. The BVAR models are also competitive, with the SV

model doing well for the short horizons, especially the nowcasts where it comes out ahead of the

combinations, and the PLR model for the medium and longer horizons. As in the joint density

forecast case, the DMA approach obtains higher log scores than BMA. The SOP ranks above BMA

and DMA for the nowcasts, in between them in the medium term and below them for the longer

horizons.

Moving to the inflation density forecasts in the bottom left panel, an individual model is generally

ranked first. For the shorter horizons, the SWU or the SoC ranks first while the SV takes this rank

for the longer horizons. Among the combination methods, the SOP ranks first with BMA in second

place and DMA often in third. Overall, the combination methods obtain log predictive scores within

a range of 8 to -2 log units relative to the DP and for all horizons the differences are significant for

the SOP, BMA and DMA methods.

To examine the behavior of the combination methods in more detail, the recursively estimated

average log predictive scores of the joint density forecasts of the models and combination methods

are plotted in Figure 4. To highlight the differences, the results are again shown in deviation from

the recursive estimates of the average log predictive scores for the DP. Concerning ALS and EW, the

deviations from zero are small, while for SOP, BMA and DMA the differences from zero follow the

general pattern of the BVAR models. In view of the discussion on the upper bound in Section 5.1,

13 Formal tests of the equality of the log scores are located in Figure I.6 of the Online Appendix. From these it can
be seen, for instance, that the differences between the joint density forecasts of the DP and EW weight methods are
significantly different, except for the inner forecast horizons.
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all combination methods have lower log scores than the SV model up to the onset of the Great

Recession and with the (temporary) downfall of the SV model these methods have an opportunity

to improve the density forecasts over the individual models.14

5.3. Model Weights

The empirical evidence presented so far gives fairly convincing support for the usefulness of combi-

nation methods in a real-time density forecast comparison exercise. It is therefore of interest to learn

how the weights on the six models develop over time and as an example we first examine the DP

weights for the joint density forecasts in Figure 5.15 In addition, summary statistics of the estimated

weights for all combinations with non-fixed weights are shown in Table 3 for selected horizons.

Turning first to the estimated paths of the DP weights, recall that an information lag of four

quarters is assumed. Each plot in Figure 5 therefore starts at the (large sample) initial value for

h+4 quarters before the weights can vary. The horizontal axis of the panels represents the dating of

the predicted variables, such that 2008Q4 concerns the weights used for the density forecast of real

GDP growth and inflation in 2008Q4. Notice that the weights of the SV model increases when the

first data on predictive likelihood values are assumed to be available, while the remaining weights

either move up or down marginally. The weight on the SV model thereafter trends upward until it

reaches a peak. The SV model weight then drops while the weights on the other models increase,

especially the SW and SWU models. This pattern can be observed across the horizons and the

largest weight on the SV model is recorded for the nowcast, which also records the largest fall.

To pinpoint where, for instance, information about 2008Q4 affects the four-quarter-ahead density

forecast weights, eight periods must be added, i.e., the weight estimates for the density forecast of

2010Q4. Based on the weight paths in Figure 5, the impact of the Great Recession on the model

weights is notable. However, the changes in the weights are not dramatic with all models obtaining

fairly large weights throughout the forecast sample. For example, at the four-quarter horizon the

combined weight of the DSGE models is around 27 percent at the end of the forecast sample, with

the SWU having the largest weight and the SWFF the smallest. The slowly changing model weights

14 The recursive estimates of the average log predictive scores of the marginal density forecasts of real GDP growth
and inflation and relative to the estimates from the dynamic prediction pool are shown in Figure I.7 of the Online
Appendix.
15 The weights for the two marginal cases of real GDP growth and inflation with the dynamic pool as well as all the
estimated weights based on the other methods with time-varying weights (SOP, BMA, DMA and ALS) are located
in the Online Appendix, Figures I.8–I.22.

– 19 –



of the dynamic pool is directly related to the estimated high persistence of the underlying process

with ρ being close or equal to 0.99 for most vintages.

Table 3 provides summary statistics of the DP weights for selected horizons, as well as of the

other methods that support time-varying weights. It is striking how much lower the sample standard

deviations of the DP weights are compared with, in particular, the SOP weights. Furthermore, the

range of values (maximum minus minimum) is narrow for the DP, while the SOP frequently has

the full range of possible weight values for the SV model. BMA and DMA also have large standard

deviations compared with the DP and much wider ranges. Based on the summary statistics, the

behavior of BMA and DMA in terms of their weights is more alike compared to the DP or the SOP,

especially at the longer horizons. As might be expected, this is mainly due to the posterior estimates

of the forgetting factor, ϕ, being close to unity for these cases. Finally, the ALS weights are often

less volatile than the DP weights and their ranges tend to be narrower in several cases.16

To summarize, the weights of the most successful density forecast combination method over the full

forecast sample, the DP and ALS, vary moderately over time, less as the forecast horizon increases,

and gives substantial weight to all models. By construction, the EW method shares these properties

which may explain its relative success over combination methods whose weights cover a wide range

of values.17

5.4. The Information Lag

The combination methods depend on specific assumptions that may affect the outcome of the empir-

ical exercises above. The information lag l = 4 is mechanical as it follows exactly the observation lag

and it neglects the fact that the minimum information lag for real GDP growth and inflation for the

RTD is often only one quarter. To simplify computational issues, we first consider the case of l = 1

with the measured values given by the actuals rather than taken from the corresponding vintage.

Consequently, the underlying log predictive likelihoods of the DSGE and BVAR models are not

re-estimated for the three additional time periods per vintage and horizon, but instead the timing

of the available information is shifted backwards.18 Specifically, the recursively obtained weights

16 The paths for the ALS weights on the joint density forecasts of the models are different from those of the DP; see
Figure I.8 of the Online Appendix.
17 It is noteworthy that DMA approximates the equal (fixed) weights method when the forgetting factor is low.
However, despite the fact that very low values of ϕ are allowed for when estimating this factor, the posterior mode
estimates are always in the upper most part of the considered grid.
18 In addition, all combination methods are based on having equal initial values of the model weights in one form or
another. To save space, an analysis of the impact of this assumption is available in the Online Appendix, Section H.
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on the models for the ALS, the BMA, the DMA and SOP are not affected by the information lag

other than by shifting the weights back in time three time periods and by computing three new

sets of weights at the end of the forecast sample.19 In the case of the DP, the effect of the shorter

information lag is also a simple time shift of the weights, provided that the number of particles of

the underlying Bayesian bootstrap filter, N , is large enough.

Second, we also consider the case of l = 1∗ when all the log predictive likelihoods are estimated

using the first release, the second quarter and the third quarter releases for the measured values.

This allows for the use of the available information on the variables of interest in periods τ −1, τ −2

and τ − 3 when computing the weights based on vintage τ data. Specifically, the measured values

for period τ − 3 of vintage τ correspond to the third quarter release, those for period τ − 2 to the

second quarter release, while the τ − 1 measured values are the first release data. The main interest

of this case is to investigate if using the available information at τ on measured values relative to

the annual revisions actuals matters for the overall findings on the information lag or if the latter

computationally cheaper case is sufficient.

Table 4 shows the full sample log predictive scores of the joint real GDP growth and inflation

density forecasts for the combination methods with time-varying weights, along with the log scores

for the EW method, the best performing model (BPM) and the upper bound. Turning first to the

case when l = 1 is compared with l = 4, it is notable that mainly the short-term horizons are

affected by the shortened information lag for all methods. In particular, substantially higher log

scores are recorded for the nowcast of the BMA, DMA and SOP approaches, while the gains are

smaller at the four-quarter-ahead horizon and thereafter. Furthermore, the DP or ALS typically

obtains the largest log predictive score among the combination methods, with the exception of the

nowcast where DMA has a larger value for l = 1.

The improvement in log predictive scores based on the shorter information lag is mainly due to

being able to react earlier to the large forecast errors in real GDP growth (relative to the forecast

error variance) recorded for the BVARs at the onset of the Great Recession.20 This can be inferred

by plotting the difference between the recursively estimated log predictive scores under l = 1 and

19 The DP weights when l = 4 are shown in Figure 5, while those for the case l = 1 are visualized by lagging those
weights three quarters. The weights for l = 1 of the other combination methods can likewise be obtained by lagging
the weights in Figures I.8–I.22 three quarters.
20 The impact on the log scores for the marginal density forecasts of real GDP growth and inflation from the infor-
mation lag change are shown in the Online Appendix; see Table I.5 for the full sample and in Figure I.23 for the
recursive log scores. The pattern recorded in Table 4 also applies to the log predictive scores for real GDP growth,
while the log scores of inflation are only marginally affected by the shorter information lag.

– 21 –



l = 4; see Figure 6. In the case of DMA, the improvement for the nowcast is in excess of 10 log

units for the full sample and the largest improvement occurs in 2009Q1 by having access to the log

predictive likelihood for 2008Q4. As a consequence, the DMA method attaches a lower weights on

the SV model, and a larger weight on the SW model at an earlier date. The SOP also gains in

log score from the more timely information regarding real GDP growth at the onset of the Great

Recession, although the impact on the log score is less pronounced than for the DMA.

With the exception of the nowcast and the DP, it is striking how little the recursive log score of the

ALS and DP methods are affected by the information lag. From Table 3 we know that their weights

are substantially less volatile than those of the other combination methods and, hence, shifting

the weights back in time only has a moderate effect on the log score. This applies to all forecast

horizons and also explains why they are robust to the choice of information lag for the vintages of

2001Q1 until 2019Q4. Furthermore, given the pool of models, the log scores of the models and the

corresponding upper bounds, the full sample gains from using the best combination methods over

the best models are noteworthy, especially for an information lag of 1.

Turning finally to the comparison of the l = 1 and l = 1∗ cases, where the former is an ap-

proximation of the latter, it is notable that the log scores are overall similar and the ranking of the

combination methods is not much affected.21 Interestingly, the differences in log predictive scores for

the lower weight volatility methods DP and ALS are small. The model averaging methods as well as

SOP, however, display some larger differences, especially BMA where the scores are notably higher

when h ≥ 1. Overall, however, the results suggest that the model weights are not so much affected

by using the available real-time information on the measured values relative to the approximation in

l = 1. Since the latter case uses future information when computing the weights, it cannot be used

in practise, but is nevertheless of interest when comparing forecasts ex post from an information lag

perspective as it greatly reduces the computational burden.

6. Summary And Conclusions

We examine finite mixture density forecast combinations of three DSGE and three BVARs across

six methods: equal weights (EW), static optimal and dynamic prediction pools (SOP and DP),

Bayesian and dynamic model averaging (BMA and DMA), and KLIC-based weights through the

21 The recursively estimated average log predictive scores of the joint density forecasts for the models using the four
releases as actual values are displayed in Figures I.28–I.31 in the Online Appendix. As can be seen from those graphs,
the scores are not strongly affected by the choice of data release, suggesting that the combination methods will not
be strongly affected by using l = 1 or l = 1∗.
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average log scores (ALS). The models are estimated on real-time euro area data and the forecasts

cover 2001–2019, focusing on the joint inflation and real GDP growth forecast.

In so doing, we argue that the literature on density forecast combinations has not formalized

important real-time data considerations. Apart from fixed-weight combinations, model weights are

computed using information about each model’s past predictive performance. In a real-time context,

model weighting emerges when outcomes are imperfectly known. This implies that the information

set should be suitably lagged when computing the weights. To that end, we introduce the terms

observation lag and information lag. The former denotes the time difference between the date of a

variable and the vintage its actual value is taken from; the latter gives the time difference between the

date of the vintage and the last data point of the predicted variables which is used to compute model

weights when forecasting with this vintage. While the information lag affects the data available when

computing model weights for predictions, the observation lag concerns the data used to compute

predictive performance in a forecast comparison exercise. In the standard case of a single database

both lags are zero, and this distinction is suppressed.

Furthermore, we introduce ex post based upper and lower bounds for the density forecasts for

benchmarking the models and finite mixture combinations, and where the former also serves as a

diagnostic aid to determine if it is worthwhile to pursue such combinations with the given models

or if additional models or compound methods should be considered.

Regarding the weighting structure itself, for real GDP growth and joint forecasts with inflation,

DP generally performs better than the other combination methods, with ALS and EW also obtaining

competitive scores, and the individual models. For the joint forecasts, the BVAR models perform

better than the DSGE models over the full sample, but they are also more sensitive to large forecast

errors, such as over the Great Recession. For inflation, outcomes are more fluid with a DSGE or

BVAR model typically obtaining the highest log score over the short-term and a BVAR model over

the other horizons. The results for the joint forecasts are instead mainly driven by the real GDP

growth forecasts, where ALS, DP and EW generally do better than the other combination methods

and models. A common feature for the successful methods is a narrow range of the weight values

covering the equal weights initialization.

Another dimension in which the ALS and DP are robust relates to the information lag. Shortening

the lag from four quarters to one has small effects on their log scores, but strongly increases the

log scores for some of the other methods and especially so for the DMA and SOP—although these
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improvements abate after two or more quarter-ahead-forecasts. The gains are mainly due to being

able to react earlier to the large growth forecast errors relative to the forecast uncertainty of the

BVARs at the onset of the Great Recession. This illustrates the case where better models (SW,

SWU) are under -utilized since the historical performance of the BVARs is maintained by the long

information lag. The treatment of this lag, therefore, reveals a trade-off as to the degree to which

combination schemes react quickly or slowly to the most recently available information.

The exercises can be extended in several directions. First, the setup of the DP involves an inherent

equal-weights force through the innovation process. In one exercise, we introduce a parameterization

which gives a low weight on SWFF over the initialization phase, i.e., until predictive likelihood

values from the forecast sample can be observed; see the Online Appendix, Section H. One may also

allow for model-dependent persistence for the weights as an alternative to the common persistence

parameter. Second, compound methods have not been examined and may prove very useful. For

instance, it would be interesting to examine if the dynamic Bayesian predictive synthesis approach

of McAlinn and West (2019) can outperform the mixture methods and improve upon the upper

bound in the euro area context. Finally, it might be interesting to extend our analysis to additional

models, such as to dynamic factor models. Since our focus is not to find the best forecasting model

or combination method but to learn about which properties are shared by successful finite mixture

combination methods we leave these topics for future research.
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Table 1: Log predictive scores for the joint density forecasts of real GDP growth
and GDP deflator inflation of the six models over the vintages 2001Q1–
2019Q4.

DSGE BVAR Bounds

h SW SWFF SWU SoC PLR SV Upper Lower

−1 −5.14 −6.31 −4.94 −1.45 −1.24 0.00

−4.06 −4.06 −10.70

0 −18.90 −61.21 −13.43 −7.66 −8.99 0.00

−28.82 7.15 −125.46

1 −14.90 −78.10 −8.68 0.00 −0.36 −0.74

−47.68 −10.54 −150.39

2 −15.23 −77.13 −8.32 0.00 −2.34 −4.44

−56.89 −18.38 −159.41

3 −20.13 −72.42 −11.32 0.00 −3.12 −5.33

−60.15 −24.93 −160.68

4 −21.08 −62.02 −12.16 0.00 −2.25 −2.36

−62.76 −28.31 −155.62

5 −20.59 −52.43 −11.13 0.00 −2.56 −2.55

−65.25 −32.21 −149.12

6 −21.91 −45.77 −12.88 0.00 −4.95 −0.66

−66.02 −34.63 −144.43

7 −21.94 −37.90 −14.26 −1.49 −6.06 0.00

−67.15 −35.69 −140.62

8 −23.50 −34.30 −17.47 −4.23 −10.20 0.00

−66.25 −36.10 −137.10

Notes: The log scores are displayed in deviation from the largest value of the best performing
model for each horizon. The largest log score is shown in the row below for the model which
achieves this value. The backcast horizon is denoted by h = −1 while the nowcast horizon is given
by h = 0. The ex-post-based upper and lower bounds for combination methods are shown in the
last two columns; see equation (3).
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Table 2: Predictions error, variance and log predictive likelihood of real GDP
growth in 2008Q4 and 2009Q1.

2008Q4 2009Q1

DSGE BVAR DSGE BVAR

h Type SW SWFF SWU SoC PLR SV SW SWFF SWU SoC PLR SV

PE −1.85 −2.13 −2.03 −1.98 −1.93 −2.10 −1.81 −1.82 −2.74 −2.37 −2.32 −2.23

0 PV 0.45 0.46 0.42 0.15 0.14 0.15 0.48 0.50 0.43 0.19 0.18 0.29

LPL −4.30 −5.42 −5.32 −12.08 −12.09 −9.83 −3.95 −3.96 −8.92 −13.29 −13.80 −6.40

PE −1.92 −2.31 −1.99 −2.26 −2.27 −2.32 −2.69 −3.00 −2.80 −2.71 −2.69 −2.91

1 PV 0.54 0.55 0.59 0.20 0.18 0.12 0.54 0.55 0.59 0.20 0.19 0.18

LPL −3.98 −5.38 −4.00 −11.98 −12.66 −13.42 −7.07 −8.46 −7.12 −16.09 −16.79 −12.88

PE −2.11 −2.41 −2.08 −2.25 −2.26 −2.37 −2.68 −3.06 −2.72 −2.80 −2.79 −2.99

2 PV 0.56 0.56 0.64 0.22 0.20 0.13 0.56 0.56 0.64 0.21 0.20 0.12

LPL −4.54 −5.69 −4.04 −10.88 −11.78 −13.45 −6.79 −8.61 −6.33 −16.16 −17.18 −19.64

PE −2.23 −2.55 −2.17 −2.28 −2.17 −2.35 −2.92 −3.18 −2.93 −2.89 −2.82 −2.99

4 PV 0.59 0.60 0.68 0.24 0.21 0.15 0.58 0.57 0.67 0.24 0.21 0.14

LPL −4.85 −6.06 −4.16 −10.22 −10.25 −14.58 −7.74 −9.15 −6.96 −14.87 −16.03 −21.01

PE −2.29 −2.65 −2.24 −2.23 −2.10 −2.36 −2.98 −3.25 −2.86 −2.83 −2.70 −2.98

8 PV 0.63 0.63 0.71 0.26 0.23 0.19 0.60 0.60 0.72 0.26 0.22 0.18

LPL −4.82 −6.19 −4.29 −8.83 −9.24 −13.75 −7.78 −9.18 −6.30 −12.83 −14.23 −22.40

Notes: The three types of predictive distribution estimates are: prediction error (PE), predictive variance (PV) and
log predictive likelihood (LPL). The forecast horizon, h, determines which euro area RTD vintage is used to predict
real GDP growth in 2008Q4 and 2009Q1, respectively. For example, h = 4 when predicting the outcome in 2008Q4
implies that the 2007Q4 vintage is employed. The actual values of quarterly real GDP growth in 2008Q4 and 2009Q1
are given by −1.89 and −2.53 percent, respectively.
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Table 4: The impact of the information lag for the log predictive scores of joint
real GDP growth and GDP deflator inflation density forecast comparisons
over the vintages 2001Q1–2019Q4.

h l SOP DP BMA DMA ALS EW BPM Upper

0 1 −24.78 −24.72 −30.61 −19.38 −27.55 −29.88 −28.82 7.15

1∗ −26.65 −24.51 −30.58 −20.02 −27.67

4 −31.82 −27.11 −37.18 −30.13 −28.44

1 1 −48.55 −40.63 −56.76 −41.49 −43.61 −47.12 −47.68 −10.54

1∗ −49.32 −40.55 −54.16 −42.07 −43.61

4 −51.06 −41.97 −58.64 −48.93 −44.38

2 1 −66.22 −50.46 −71.29 −55.85 −53.46 −56.16 −56.89 −18.38

1∗ −66.81 −50.11 −67.92 −53.77 −53.59

4 −69.33 −51.70 −73.10 −58.22 −54.24

4 1 −68.26 −58.48 −78.46 −64.43 −61.04 −63.22 −62.76 −28.31

1∗ −68.22 −58.30 −76.00 −61.39 −60.98

4 −69.14 −59.54 −79.17 −66.54 −61.51

8 1 −69.90 −65.48 −78.98 −66.46 −68.44 −69.17 −66.25 −36.10

1∗ −72.24 −66.26 −75.54 −66.11 −68.46

4 −72.02 −65.78 −78.87 −66.57 −68.57

Notes: The case when l = 1 refers to letting the measured values of the predicted variables
in time periods τ − 1, τ − 2, τ − 3 for vintage τ when computing weights using an information
lag of 1 be given by the actual values of the predicted variables, while l = 1∗ is based on using
the measured values in those time periods from vintage τ . The equal weights and the upper
bound log predictive scores are, by construction, invariant to the information lag, where the
best performing model (BPM) is given by the individual DSGE/BVAR model with the largest
log predictive score for each horizon (as taken from Table 1).
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Figure 1: Recursive estimates of the average log predictive scores of the joint den-
sity forecasts of real GDP growth and GDP deflator inflation for the
vintages 2001Q1–2019Q4.
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Figure 2: Recursive estimates of the average log predictive scores of the marginal
density forecasts of real GDP growth and GDP deflator inflation for the
vintages 2001Q1–2019Q4.
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Figure 3: Log predictive scores for nowcasts and one-quarter-ahead to eight-
quarter-ahead forecasts of DSGE models, BVAR models and combina-
tion methods in deviation from the log score of the dynamic prediction
pool over the vintages 2001Q1–2019Q4.
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Notes: All full sample log predictive scores are measured in deviation from the log score of the dynamic
prediction pool (DP). The other density forecast combination methods are given by equal weight (EW), static
optimal prediction pool (SOP), Bayesian model averaging (BMA), dynamic model averaging (DMA) and average
log score (ALS). The DP, SOP, BMA, DMA and ALS combination methods are based on an information lag of
four quarters.
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Figure 4: Recursive estimates of the average log predictive scores of the joint den-
sity forecasts of real GDP growth and GDP deflator inflation and in
deviation from the recursive estimates of the average log scores of the
dynamic prediction pool covering the vintages 2001Q1–2019Q4.
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Figure 5: Posterior estimates of the model weights for the dynamic prediction pool
of the joint density forecasts of real GDP growth and GDP deflator in-
flation covering the vintages 2001Q1–2019Q4.
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Figure 6: Recursive estimates of the differences of log predictive scores of joint real
GDP growth and GDP deflator inflation density forecasts with informa-
tion lag 1 and 4 covering the vintages 2001Q1–2019Q4.
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