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1. Introduction

Estimated dynamic stochastic general equilibrium (DSGE) models are regularly used by many central

banks and other policy-oriented organizations to analyse macroeconomic conditions and to assess

future developments; see, e.g., Lindé, Smets, and Wouters (2016) and Christiano, Eichenbaum, and

Trabandt (2018) for recent surveys. Given the micro-foundations and optimization-based behavior

of economic agents in such models, an important reason for their popularity is that they facilitate

structural interpretations of the macroeconomic environment. Expectations are typically assumed to

be rational such that the joint probability distribution of the model variables is fully consistent with

the model and policy experiments are therefore not subject to the Lucas critique. Furthermore, the

rational expectations (RE) assumption provides strong cross-equation restrictions on the resulting

stochastic processes which describe the model variables and which help to better identify many

of the parameters. Bayesian inference is frequently used for estimation, while calibration of some

parameters that may be hard to identify from the macro data concerns relatively few parameters in

the benchmark models, such as the well-known Smets and Wouters (2007) model, and where instead

micro data may be consulted.

The main contribution of the current paper is the real-time density forecast comparison and

evaluation of a benchmark DSGE model under RE and adaptive learning (AL) using the Slobodyan
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and Wouters (2012a) approach. To my knowledge, such an empirical study is not available in the

literature and, as a complement to the out-of-sample investigation, the models are also compared

recursively within-sample to learn if the fit of a DSGE model subject to AL is better (or worse)

than under RE for the euro area data. The selected DSGE model is the euro area version of the

Galí, Smets, and Wouters (2012, SWU) model, which extends the Smets and Wouters (SW) model

to incorporate unemployment; see Smets, Warne, and Wouters (2014) and McAdam and Warne

(2019) for details on the euro area version of the SWU model. The real-time database for the euro

area, introduced by Giannone, Henry, Lalik, and Modugno (2012), is considered for the forecast

exercise, covering backcasts, nowcasts and up to eight-quarter-ahead forecasts over the forecast

sample 2001Q1–2019Q4. The density forecasts are compared using the log score as well as the

continuous ranked probability score (CRPS) and its multivariate version, the energy score, while the

predictive distributions are evaluated using formal tests based on the standard probability integral

transform and, in the case of multivariate distributions, Box’s (1980) density ordinate transform.

The forecasting methodology for DSGE models is discussed in Del Negro and Schorfheide (2013),

which also provides illustrations on the empirical performance of such models relative to survey data,

professional forecasts and reduced form models for the US; see Adolfson, Lindé, and Villani (2007)

and Christoffel, Coenen, and Warne (2011) for discussions on methodology and empirical evidence

from the euro area. The point and density forecasting performance of DSGE models compares well

with reduced form benchmark models, such as BVARs, especially over the medium term. This

general finding is also supported by Warne, Coenen, and Christoffel (2017) for a larger dimension

DSGE model, which is compared with a large BVAR using the Bańbura, Giannone, and Reichlin

(2010) approach, a DSGE-VAR model and a multivariate random-walk model for euro area data

covering the sample 1999Q1–2011Q4.

The above euro area studies do not make use of real-time or survey data. Smets et al. (2014)

utilizes such euro area data with the SWU model and focuses on point forecasts for the sample

2001Q1–2010Q4. One of the findings in that study is that adding one to two-year-ahead professional

forecasts on real GDP growth, inflation and unemployment to the conditioning information, without

otherwise changing the model, overall improves the forecasts of the SWU model, with the main

deterioration appearing in the short-term nominal interest rate forecasts. McAdam and Warne

(2019) extends the euro area real-time sample to 2014Q4 and focuses on comparing the density

forecasts of the SW model to the SWU model, and an extension which includes financial frictions

of the Bernanke, Gertler, and Gilchrist (1999, BGG) type. Using the log score to measure forecast

performance, their study reports that adding financial frictions of the BGG-type to the SW model

leads to a deterioration of the forecasts, not only of the density forecasts but also for the point

forecasts. Modelling and measuring unemployment, on the other hand, tends to moderately improve

the density forecasts of the SW model, especially since the onset of the Great Recession in 2008.

This finding is the main motivation for chosing the SWU model in the current paper.

It is arguably unrealistic to assume that agents in a model know all its details and collect all

necessary information such that their expectations about the future of the variables are fully model-

consistent. There is a growing empirical literature on replacing the RE hypothesis with alternative
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models of expectations. Evans and Honkapohja (2009) and Woodford (2013) provide surveys of such

alternatives, while Evans and Honkapohja (2001) gives a textbook treatment of the foundations of

learning theory in macroeconomics and Evans and McGough (2020) provides a recent survey of

studies that use AL in macroeconomic and financial applications.1

From an empirical perspective, it has been pointed out that a shortcoming of estimated DSGE

models under RE is that they require highly persistent exogenous shock processes to explain observed

persistence in the data. It is claimed by, for instance, Milani (2007, 2009) and Orphanides and

Williams (2005) that learning can influence the dynamic responses to shocks and thereby increase

the persistence in the shock responses. Milani (2007) estimates a small DSGE model on US data

and finds that learning reduces structural frictions (habit persistence and price indexation) while

also improving within-sample fit as measured by the marginal likelihood. Slobodyan and Wouters

(2012b) studies the influence of constant gain learning relative to RE and finds that learning has

little influence on the dynamics when the information set used for the learning process is the same

as under RE, while a restricted information set can improve the fit without having a sizeable effect

on the structural parameters related to real and nominal frictions.

Slobodyan and Wouters (2012a) estimate the SW model on US data under both RE and AL with a

small forecasting model and where the belief coefficients are time-varying. The AL specification with

the greatest marginal likelihood outperforms the RE version and displays much lower persistence of

the wage and price markup shocks. In fact, a variant which restricts the ARMA parameters to zero

for both these shock processes has a marginal likelihood very close to the best performer and, in

addition, has lower wage and price indexation than the RE version. Their study also finds that the

good within-sample fit is reflected in the out-of-sample point forecasting performance, especially for

the shorter-term horizons.2

The remainder of the paper is organized as follows. Section 2 discusses expectation formation in

log-linearized DSGE models with a focus on the AL approach considered in Slobodyan and Wouters

(2012a) and the importance of the selection of forward looking variables. The DSGE model is briefly

outlined in Section 3 and specification differences between the RE and AL cases are discussed.

Estimation of the DSGE model parameters is thereafter presented in Section 4 for the full sample,

including specification analysis, and within-sample fit for recursive annual vintages over the forecast

sample. The comparisons of the point and density forecasts for the baseline RE and AL models

are covered in Section 5, including density forecast evaluation and some sensitivity analysis. The

1 By utilizing survey data and adopting a DSGE-VAR approach to assess the extent and sources of model misspeci-
fication Cole and Milani (2019) finds that the RE assumption is the main reason their new Keynesian model fails to
match the data well.
2 Forecast comparisons for RE and AL models are otherwise very rare in the literature. In a recent paper, Carvalo,
Eusepi, Moench, and Preston (2023) develops a Rotemberg-pricing model with imperfect information to describe
long-term trends in inflation expectations and shows that it can explain developments in long-term forecast data from
US professional forecasters better than under RE. Elias (2022) estimates a small-scale new Keynesian model with
heterogeneous Euler equation AL on US data and finds that a model with heterogeneous AL fits the data better than
a model with homogeneous AL. Point forecasts of the output gap and inflation made by the three types of agents in
the model are compared over the pre-Great Moderation, Great Moderation and pre-Great Recession periods and the
RMSEs suggests heterogeneity matters. Still, these exercises are not carried out with an RE version of the model.
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main findings are summarized in Section 6, while technical details on DSGE models with AL-based

expectations as well as some additional empirical results are available in the Online Appendix.

2. Expectations in DSGE Models

DSGE models are usually estimated and analysed under the assumption that expectations are formed

rationally and therefore model consistent. The structural form of a log-linearized DSGE model is

represented by:

H−1zt−1 +H0zt +H1Et

[
zt+1

]
= Dηt, t = 1, 2, . . . , (1)

where zt is a p-dimensional vector of model or state variables, Et represents expectations at t and ηt

is a q-dimensional vector of i.i.d. Gaussian structural shocks with zero mean and identity covariance

matrix. Under the assumption of rational expectations (RE), Et is given by the mathematical

expectations operator using the history of zt and all parameters of the model as input. The unique

and convergent solution to this stochastic difference equation, when it exists, is given by

zt = Fzt−1 +Bηt, (2)

where F and B satisfy the cross equation restrictions B = (H0+H1F )−1D and H−1+H0F+H1F
2 =

0. When estimating such a DSGE model, the solution corresponds to the state equation, while the

measurement equation is given by

yt = μ+H ′zt + wt, (3)

where yt is an n-dimensional vector of observable variables and wt an i.i.d. Gaussian measurement

error, independent of ηt and with mean zero and covariance matrix R.

Over the last decades, alternative approaches to modelling expectations have been suggested in the

literature. These include but are not limited to the bounded rationality model of Sargent (1993),

rational inattention as in Sims (2003), the sticky information model of Mankiw and Reis (2002),

partial information as in Svensson and Woodford (2003) and the learning approach of Evans and

Honkapohja (2001). For a recent survey on adaptive learning (AL) in macroeconomics as well as

references to alternatives to AL, see Evans and McGough (2020). Below, the AL approach suggested

by Slobodyan and Wouters (2012a) is employed.

To relax the strict implications of the RE assumption, Slobodyan and Wouters (2012a) assume

that agents forecast the forward looking variables of the model as a reduced form of the lagged state

variables. A special case of this is given by the expression in equation (2), but it is also possible

that the reduced form model differs from the RE solution. First, the parameters of the reduced

form need not satisfy the cross-equation restrictions of the RE solution. Second, the reduced form

may involve additional lags of the state variables and/or include the deterministic variables, which

influence the law of motion of the forward looking variables in zt.

Direct use of the representation in (1) to solve the model with an assumed learning process is

called the Euler-equation approach to AL since the representation resembles a set of first-order

conditions, while agents behave like econometricians who estimate the parameters of their model

of the economy and use it to make forecasts; see, e.g., Evans and Honkapohja (2001) and Eusepi
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and Preston (2018b).3 The forward looking variables of the DSGE model in (1) may be equal

to the variables that appear in the expectation term, but need not be. The minimum number of

forward looking variables is often equal to the rank of H1. Potentially, all variables appearing in

expectations can be forward looking, but this need not be the case. For example, variables that are

assumed to be shock processes are exogenous and are therefore not forward looking although they

may appear in the expectations part of the model. In addition, such variables may affect the rank of

H1. Ruling out such variables, the rank of H1 is equal to the minimum number of forward looking

variables supported by the model, while the maximum is equal to the number of non-zero columns

of H1. Hence, the precise specification of the model matters when trying to identify possible forward

looking variables. The Online Appendix discusses how the model in (1) can be transformed based

on a given selection of forward looking variables.

The observation that the DSGE model can support several selections of forward looking variables

points at a deeper issue concerning the uniqueness of solutions under AL. Different but equivalent

formulations of a DSGE model with RE have the same unique solution, but this is typically not the

case when RE is replaced with AL. For example, the choice of forward looking variables may have

a direct implication for the solution of the model. How different the solutions are for the various

choices of forward looking variables depends on the assumed expectation process, but it needs to

be recognized. For example, the matrix H1 has rank five in the Slobodyan and Wouters (2012a)

model while the number of nonzero columns of this matrix is seven. This means that we may choose

between five and seven forward looking variables. In that paper the authors chose seven, but the

choices five and six are also supported by suitable model transformations as two of the variables

appearing in the expectation term can be substituted for.

The AL approach in Slobodyan and Wouters (2012a) involves a number of decisions that the

researcher needs to make. Apart from chosing the forward looking variables, the next step is to

specify the perceived law of motion (PLM) for these variables. In Slobodyan and Wouters (2012a),

the authors consider the simple approach of assuming that each forward looking variable is explained

by a constant term, two of its own lags and a residual. The belief coefficients in these equations are

time-varying and follow a VAR(1) process. This provides a state-space setup for the evolution of

expectations where an additional Kalman filter is needed. Some details on this are found in their

paper and additional details are available in the Online Appendix. The simple PLM from Slobodyan

and Wouters will also be used in the empirical part as the benchmark specification, but alternative

PLMs will also be considered in Section 5.4.

The state-space equations for the PLM and belief coefficients involve some additional parameters,

covering the innovations to the PLM, the VAR coefficients and innovations of the belief coefficient

equations. Slobodyan and Wouters (2012a) restricts the potential number of parameters to three, two

scale parameters for the initial belief coefficient covariance matrix (σr) and the innovation covariance

matrix to the belief coefficients (σε) and one common autoregressive parameter (ρ) for the assumed

3 See, for instance, Eusepi and Preston (2018b, Section 4.2) and references therein regarding the impact of the so-called
anticipated utility approach relative to the Euler-equation approach for the DSGE model solution(s) under learning
or imperfect information.
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diagonal VAR(1) matrix. Among these the scale parameters are calibrated while the autoregressive

parameter is estimated.4 Furthermore, the innovation matrices of the PLM and belief coefficients

are not diagonal and instead these moments are computed using the RE solution as well as the

SURE-type formulation of the PLM of the DSGE model.

The DSGE model can now be solved under AL and the solution is called the actual law of motion

(ALM). Since expectations under AL are typically not model consistent, the ALM and PLM differ

for the forward looking variables. The time-variation of the belief coefficients imply that also the

ALM coefficients are time-varying. The constant term in the PLM also feeds into the ALM such

that it has a time-varying drift term. Provided that the maximum number of lags in the PLM does

not exceed two, the ALM has the following form:

zt = μt + Ftzt−1 +Btηt, (4)

where μt, Ft and Bt depend on the update estimates at t of the belief coefficients in the PLM and

the structural form matrices of the DSGE model. Should the PLM have more than two lags, then

additional lags of the state variables would be included in (4).

Once the solution is available, the parameters of the DSGE model can be estimated via a double

Kalman filter algorithm, where first the state variables and likelihood function are estimated using

on the ALM from the previous time period. The belief coefficients are thereafter computed using

the estimated state variables from step one while the ALM is obtained in the last and third step

of the algorithm, taking the new belief coefficients into account. This ALM is used as input for

the next time period. The mathematical details of this filter, including its initialization, and the

corresponding Kalman smoother are described in the Online Appendix.

3. The DSGE Model

The well-known Smets and Wouters (2007) (SW) model is founded on a continuum of utility-

maximizing households and profit-maximizing intermediate-good-producing firms who, respectively,

supply labor and intermediate goods in monopolistic competition and set wages and prices. Final-

good-producers use these intermediate goods and operate under perfect competition. The model

incorporates several real and nominal rigidities, such as habit formation, investment adjustment

costs, variable capital utilization and Calvo staggering in prices and wages. The monetary author-

ity follows a Taylor-type rule when setting the nominal interest rate. There are seven stochastic

processes: a TFP shock; a price and a wage markup shock; a risk premium (preference) shock; an

exogenous spending shock; an investment-specific technology shock; and a monetary policy shock.

The observed variables of the euro area version in McAdam and Warne (2019) are: real GDP, real

private consumption, real total investment, total employment, real wages, the GDP deflator and the

short-term nominal interest rate.

The euro area version of the Galí et al. (2012) extension of the SW model is presented in Smets

et al. (2014). It explicitly provides a mechanism for explaining unemployment. This is accomplished

4 The σr parameter is denoted by σ0 in Slobodyan and Wouters (2012a) while σε is denoted by σv.
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by modelling the labor supply decisions on the extensive margin (whether to work or not) rather

than on the intensive margin (how many hours to work). As a consequence, the unemployment

rate is added as an observable variable, while labor supply shocks are allowed for. The extension

is motivated by the critique that the SW model cannot properly identify wage markup shocks; see

Chari, Kehoe, and McGrattan (2009). The inclusion of observable unemployment into the wage

equation can help to overcome that problem. Henceforth and following McAdam and Warne (2019),

this extension is called the SWU model.

Smets et al. (2014) conducts a point forecast study with this model and a few benchmarks utilizing

the real-time database (RTD) of the euro area for the sample 2001Q1–2011Q4; see Giannone et al.

(2012).5 McAdam and Warne (2019) also make use of the SWU model to compare its real-time

density forecasting properties with the SW model as well as with an extension of the latter subject to

financial frictions based on the financial accelerator mechanism of Bernanke et al. (1999). Estimating

these models on the vintages 2001Q1-2014Q4 from the euro area RTD, they find that the inclusion of

unemployment gives some, albeit small, improvements over the SW model when comparing density

forecasts of inflation and real GDP growth, while the financial frictions based extension overall has

much worse forecasting properties.

Slobodyan and Wouters (2012a) estimate the parameters of a variant of the SW model on US data

until 2008Q4 with RE and compare its behavior to an AL version. They deviate from the standard

SW model by assuming that the output gap is not the flexible-price-gap, but with potential output

determined by setting labor and capital to zero in the log-linearized production function such that

potential output is proportional to the TFP shock. For the AL case this has the advantage of

decreasing the number of forward looking variables as all those connected with the flexible price

part are excluded. Their baseline variant under AL assumes that the price and wage markup shocks

are i.i.d. rather than ARMA(1,1), while the two scale parameters for the initial belief coefficient

covariance matrix and the innovation covariance matrix of the belief coefficients are calibrated to

σr = 0.03 and σε = 0.003, respectively, and the prior of the autoregressive parameter ρ is assumed

to be standard uniform. The AL version of the SWU model makes use of some of these assumptions,

such as the output gap assumption, while the RE version is specified exactly like in McAdam and

Warne (2019). The estimation findings are discussed in the next section, including some sensitivity

analysis with respect to the baseline specifications.

4. Estimation of the SWU Model

The construction of the RTD combined with the AWM database is discussed in some detail by

Smets et al. (2014) and the extension until 2015Q4 is covered in McAdam and Warne (2019). For

the current study, the data vintages have been extended until 2020Q4 and the variables involved are

real GDP, real private consumption, real total investment, total employment, the GDP deflator, real

wages, the nominal 3-month Euribor interest rate and the unemployment rate. These variables are

5 A somewhat more detailed presentation of the log-linearized SWU model is available in the Online Appendix to
McAdam and Warne (2019), while the Appendix to McAdam and Warne (2018) contains even further details, including
the flexible price part of the model.
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transformed exactly as in the above two studies. For some further details on the data, see Table B.1

in the Online Appendix.

One important difference for the additional vintages concerns the total investment data. Due to

accounting issues regarding mainly multinational corporations in Ireland, but also for the Nether-

lands, some periods display extreme spikes. This is illustrated in Figure 1 for real total investment

growth over the full sample discussed in Section 4.1. It is noteworthy that the numbers in the time

periods 2015Q2–Q3, 2017Q2–Q3, and 2019Q2–Q4 are very big in an absolute sense compared with

the overall volatility of the variable. Moreover, the growth rate is unusually high (low) in Q2 (Q3),

consistent with accounting related data problems. Finally, these outliers appear since the 2018Q3

vintage and, hence, the number of affected vintages is fairly small.

Although the forecasting exercise does not attempt to predict investment growth, such outliers

can influence the estimated parameters in a recursive exercise. In this paper, the outlier values have

been replaced with the sample mean, but also the alternatives of keeping the data for those periods

as well as treating the outlier periods as missing data have been examined. The choice between

the mean-value replacement approach and the missing data approach is of lesser importance as the

parameter estimates for the full sample discussed below are robust to these outlier corrections.6

4.1. Full Sample Estimates and Marginal Likelihood

The forecasting exercise in Section 5 uses annual revisions for the actual (true) values of the variables

with the consequence that the last vintage used for prediction is 2019Q4. In this subsection the

parameter estimates of the SWU model under RE and AL are discussed. The focus is on the full

sample 1979Q4–2019Q4 using the latest update (2018) of the Area-Wide Model (AWM) database

combined with the RTD vintage 2020Q3.7 The third quarter corresponds to the time period when

the AWM database has typically been frozen with data until the end of the previous year and, hence,

mimics an update from 2020.

The estimated SWU model in Smets et al. (2014) is based on the assumption of log utility

in consumption and this variant is also used by McAdam and Warne (2019). This means that the

inverse elasticity of intertemporal substitution for constant labor, denoted by σc, is equal to 1. When

estimating the SWU model under AL this parameter is instead estimated and the prior distribution

is given by σc ∼ N(1, 0.252) so that it is centered around unity. Furthermore, and as in McAdam

and Warne (2019), the MA parameters of the price and wage markup shocks are set to 0 under RE

as well as under AL. Finally, and as mentioned above, the baseline RE model uses the flexible-price

6 Estimating the AL baseline model with the outliers has an impact on investment related parameters. Both the
elasticity of the capital adjustment and of the capital utilization cost functions drop as does the estimated capital share.
Furthermore, the estimated persistence parameter of the investment-specific technology shock falls, while the estimated
shock standard deviation increases. For the RE baseline version the use of the outliers have a somewhat smaller effect
on the two elasticities, while the impacts on the capital share and investment-technology shock parameters are very
present. In addition, the steady-state growth rate drops for the RE baseline model.
7 The observed variables are plotted in the Online Appendix, Figure C.1, where total investment growth is plotted
with the sample mean correction for the selected outlier periods.
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output gap and is therefore the same specification as in McAdam and Warne (2019), while under

AL the output gap is defined as in Slobodyan and Wouters (2012a).8

Concerning the AL baseline model, the scale parameters are calibrated to σr = 0.03 and σε =

0.003, as in Slobodyan and Wouters (2012a), while the prior distribution of the autoregressive

parameter ρ is a standard beta with mean 0.25 and standard deviation 0.1 in the baseline version.9

This informative prior implies that the belief coefficients return fairly quickly to their steady-state

values. Moreover, the forward looking variables are eight and given by consumption, investment,

inflation, hours worked, the value of the capital stock, the rental rate of capital, real wages and

employment. The PLM for each of these variables is equal to a constant and two own lags with

time-varying parameters. Finally, the autoregressive parameter of the price markup shock process

is calibrated to zero, such that this process is i.i.d. in the baseline model.

A selection of parameter estimates of the baseline models is shown in Table 1, which also provides

some details on the estimation procedure.10 The focus is on the wage and price markup shock related

parameters, but also the inverse elasticity of intertemporal substitution (σc) and the autoregressive

parameter of the belief coefficients (ρ) are included. The baseline model under RE is shown in

the first column and the baseline model under AL in the second column. Concerning the inverse

elasticity of intertemporal substitution, the posterior mean under AL is somewhat greater than 1

and a 90 percent equal-tails credible region lies quite tightly around the posterior mean and above

unity.

Regarding the wage related parameters, the indexation and stickiness parameters are lower under

AL than under RE, while the wage markup shock persistence is higher. The price indexation and

stickiness parameters are almost equal under AL and RE, while the price markup persistence is quite

low under RE and nearly equal to the belief coefficient persistence under AL. These parameters are

very different from an economic viewpoint, but seem to serve a similar purpose from a statistical

perspective. In Slobodyan and Wouters (2012a), the baseline AL version has zero persistence for

both the price and wage markup shocks and their estimate of ρ is around 0.96. From Table 1, the

estimate of the baseline model is around 0.17, while the 90 percent credible region lies far from the

estimate in Slobodyan and Wouters (2012a).

In terms of log marginal likelihood, the AL model obtains a much greater value with a difference

relative to the RE model of about 22 log-units. The question is then if some of the specification

differences between the RE and AL models can account for the large posterior odds ratio? In column

three of Table 1, the RE model with the output gap specification from the AL model is shown. For

this model the wage markup shock persistence is close to the AL model, while wage stickiness is

now somewhat lower than for the AL model. However, the log marginal likelihood is substantially

lower than for the baseline RE model. Hence, the within-sample improvement in fit of the AL model

relative to the RE model is not explained by having a “better” definition of the output gap.

8 The prior distributions of all parameters are shown in the Online Appendix, Tables B.3–B.4.
9 For comparisons, keep in mind that a standard uniform distribution is equivalent to a standard beta distribution
with mean 1/2 and standard deviation 1/

√
12 ≈ 0.28868.

10 All parameter estimates are available in the Online Appendix, Tables B.5–B.6.
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Turn next to the RE case when the inverse elasticity of intertemporal substition, σc, is estimated

using the same prior as for the AL model. In column four of Table 1, the posterior mean of this

parameter is somewhat greater than unity, while the other parameters are essentially unchanged

relative to the baseline RE model. There is some improvement in the log marginal likelihood but

not on the scale of the baseline AL. Hence, it is probably the expectations mechanism that accounts

for the better within-sample fit under AL.

Given the informative prior on the common persistence parameter of the belief coefficients in the

baseline AL model, the fifth column of Table 1 covers the case of a standard uniform prior of ρ, as

in Slobodyan and Wouters (2012a). It is noteworthy that the posterior mean at 0.10 is lower than

in the baseline model, but the width of the marginal posterior distribution is such that the posterior

mean in the baseline AL model is located at around the 80th percentile. The other parameters in

the Table for the two AL models are very close and their marginal likelihoods are roughly of the

same magnitude. Hence, the selected prior for ρ in the baseline AL model does not affect the finding

that the persistence of the belief coefficients is low in the euro area, especially when compared with

Slobodyan and Wouters (2012a).11

4.2. Recursive Estimates of the Marginal Likelihood

Based on the evidence in the previous section, there is empirical support for the view that learning

improves the within-sample fit of DSGE models. This is in line with empirical studies on US data,

such as Milani (2007) and Slobodyan and Wouters (2012a,b). In this subsection, the within-sample

fit of the baseline SWU models under RE and AL are estimated on vintages from the RTD that are

used in the forecasting exercises in Section 5. Following McAdam and Warne (2019), the models are

re-estimated on an annual frequency using the Q1 vintage with a sample covering the vintages from

2001 to 2019. The selected frequency mimics, under the best of circumstances, how often structural

models are re-estimated in practise at policy institutions.

The recursive estimates are displayed in Figure 2. In the upper panel posterior-mode-based

goodness-of-fit estimates are shown, while in the lower panel two estimators of the log marginal

likelihood, the modified harmonic mean and the Laplace approximation, are plotted. Turning first

to the upper panel, the estimated log likelihood (solid lines), the log posterior kernel (dash-dotted

lines) and the Laplace approximation of the log marginal likelihood (dashed lines) are plotted with

red lines for the RE model and blue for the AL model.12 It is noteworthy that the difference between

the blue and the red lines for each statistica over the sample is visually very similar. This suggests

that mainly the data are driving these results, while the influence of the prior is negligible. Moreover,

the AL model always has a greater value and the gap to the RE model is slowly increasing over time.

11 The log marginal likelihood for the case when ρ = 0 (the belief coefficients are white noise around the steady-state)
is estimated at -423.79. The posterior parameter estimates are generally similar to the models where ρ is estimated
with the exception of the wage markup shock persistence parameter, which is substantially lower for the ρ = 0 case
with a posterior mean of 0.22.
12 The inverse Hessian used for computing the Laplace approximation is based on a finite difference estimator available
in the well-known software Dynare.
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In the lower panel we find both the Laplace approximation of the log marginal likelihood from the

upper panel with dashed lines, and the modified harmonic mean (MHM) estimator using a selection

of the post-burnin sample of draws from the posterior distributions. It is striking how small the

differences between the two estimators are, with mainly visible differences for the AL model. The

finding from the full sample that the AL model fits the euro area data better than the RE model is

therefore also supported by the recursive estimates from the real-time sample 2001–2019.

5. Forecasting under RE and AL

In this Section four topics are covered. First, we examine the point forecasts of the RE and AL

models using the recursive posterior mean paths. Second, we turn to the density forecast where

two scoring rules are considered: (i) the log score, and (ii) the continuous rank probability score

for univariate forecasts and the energy score for multivariate forecasts; see, for instance, Gneiting

and Raftery (2007) for a survey on scoring rules and Gneiting and Katzfuss (2014) for a review on

probabilistic forecasting. Third, we consider some sensitivity analysis with respect to the PLM by

including some additional variables. While these topics cover forecast comparisions, the last topic is

concerned with forecast evaluation using the probability integral transform (PIT) in the univariate

and Box’s density ordinate transform (BOT) in the multivariate case.

The forecast sample involves a total of 76 vintages from 2001Q1 until 2019Q4, while annual

revisions are used as actual (true) values for the variables, i.e., actual values in 2001Q1 are taken

from vintage 2002Q1, and so on. The focus is on quarterly real GDP growth and quarterly GDP

deflator inflation, both individually and for the density forecasts also jointly. Given the ragged

edge of the real-time data, the analysis involves mainly nowcasts and one- to eight-quarter-ahead

forecasts, but some vintages also allow for backcasts. Since the number of vintages with backcasts

is quite low (3 for real GDP growth and 22 for inflation), formal tests are not applied for them.13

5.1. Point Forecasts

The point forecast is given by the mean of the predictive distribution and is estimated by averaging

the point forecast conditional on the parameters over the posterior draws; see, e.g., McAdam and

Warne (2019, Section 5.2). These calculations have been performed using 10,000 equally spaced

posterior draws from the 500,000 post burn-in draws of the random-walk Metropolis sampler, where

the size of the burn-in sample is 250,000 draws. The resulting “spaghetti” plots are displayed in

Figure 3 for real GDP growth in the upper panel and GDP deflator inflation in the lower panel. The

forecasts from the baseline RE model are plotted to the left with red solid lines and the forecasts

from the baseline AL model to the right with blue solid lines.14 The actual values are given by

the black solid line, while the black dashed line provides the recursive posterior mean estimates of

13 The ragged edge of the real-time data is displayed in Table B.2 of the Online Appendix.
14 It should be noted that the forecasts for the AL model are computed under the assumption that the belief coefficients
are held fixed over the forecast horizon. This is common in the learning literature; see, e.g., Eusepi and Preston (2018b)
for discussions on this and related matters. The dynamic responses to an impulse/shock in any given time period are
also computed under the assumption of fixed beliefs while updating of the beliefs occurs once the time period for the
impulse moves forward one period.
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steady-state real GDP growth and GDP deflator inflation, respectively. Similarly, the mean forecast

errors (actual values minus prediction) and the Diebold-Mariano tests for equal mean square forecast

errors (MSFE) are located in Table 2.15

Turning first to the real GDP growth forecasts in the upper panel of Figure 3, the forecasts from

the AL model are overall flatter and are typically greater than the ones from the RE model. This

is confirmed in Table 2 where the mean errors are negative and bigger in absolute terms for the AL

model. In addition, the difference in the mean errors is overall increasing with the horizon. This is

further supported by the Diebold-Mariano tests, where the small cdf-values for the longer horizons

indicate that the RE model forecasts real GDP growth better than the AL model.

The point forecasts of inflation in the lower panel of Figure 3 visualizes the path contrasts between

the RE and AL models. While the former are typically strongly upward-sloping, concave and tend

to over-predict inflation, the latter paths are often u-shaped and fairly close to the actual values

for the outer quarters of the horizon. This visual impression is confirmed by the results in Table 2

where the RE model has negative mean errors which increase in absolute terms with the forecast

horizon. By contrast, the AL model under-predicts inflation but the mean errors are approaching

zero as the horizon increases. The Diebold-Mariano tests support the view that the point forecasts

from the AL model are better (worse) than those of the RE model for the outer (inner) quarters of

the forecast horizon.16

On balance, however, the point forecasts give more support for the RE model than the AL model.

The evidence is not clear-cut, but especially the real GDP growth mean forecast errors are big for

the AL model and frequently more than 50 percent greater than those from the RE model. Given

the typically flatter forecast paths from the AL model, it is tempting to consider higher persistence

of the latter model as a possible explanation for the outcome.

In fact, the dynamic responses to the underlying shocks can be highly dissimilar under RE and

AL. In Figure 4 the impulse responses of quarterly real GDP growth and inflation to a monetary

policy shock are shown for the full sample posterior mode estimates of the baseline AL model. As

a comparison, the responses under RE are also depicted using the posterior mode estimates from

the AL model to avoid any influence from using different parameter estimates.17 The responses in

real GDP growth are plotted in the upper panel and those of inflation in the lower. Since the ALM

is time-varying with the belief coefficients, the responses to a one standard deviation shock change

over time, but for real GDP growth the changes are not substantial and overall the response curve

for each quarter is quite flat. Under RE, the response is initially much stronger, but also returns

more quickly to the steady-state than for the AL baseline model.

15 The prediction errors for the individual horizons of real GDP growth and inflation are plotted in the Online
Appendix, Figures C.2–C.3.
16 See Diebold (2015) for discussions on the use and abuse of the Diebold-Mariano test and more generally on the
usefulness of out-of-sample forecast comparisons.
17 The overall dynamic pattern of the impulse responses under RE does not change much from the choice of estimates.
For instance, the real GDP impulse responses in the baseline RE model at its posterior mode estimates are approxi-
mately the same, while the inflation responses have the same shape as for RE in Figure 4, but the initial response is
much weaker at around −0.015.
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Turning to inflation, the pattern under AL is a gradual drop from a one standard deviation

monetary policy shock before it begins to return to steady-state after about 20 quarters. The RE

case is again a stronger early response of inflation and a faster convergence to steady-state. Overall,

these impulse responses portray that the AL model has greater persistence than the RE model, a

finding already supported by the point forecasts paths.

5.2. The Log Score

Density forecasts are typically compared across models using a scoring rule and below two such rules

are utilized, focusing on either a single point of the predictive distribution or the full distribution.

Technically, a scoring rule is said to be proper if a forecaster who maximizes the expected score

provides the true subjective predictive distribution, and it is said to be local if the rule only depends

on the predictive density at the realized value of the predicted variables. In this section the log score

is used and, being the only proper local scoring rule, is equal to the sum (over the vintages in the

comparison sample) of the log predictive likelihood evaluated at the actual value. This scoring rule

is estimated using the approach described by, for example, Warne et al. (2017) and McAdam and

Warne (2019), i.e., by averaging the predictive likelihood conditional on the parameter vector over

the posterior draws. Section 5.3 discusses the empirical evidence using a proper scoring rule which

also gives weight to other values of the predictive distribution than at the actual value. This aspect

may be especially relevant in a real-time setting where the measured value of a variable is typically

subject to revision.

The log scores for all 76 vintages in the forecast sample 2001Q1–2019Q4 are shown in Table 3 along

with cdf-values of the Amisano and Giacomini (2007) weighted LR test and the Diebold-Mariano

test of the hypothesis that the log scores of the RE and AL models are equal. The evidence from the

density forecasts of the individual variables is broadly in line with the point forecast results, albeit

with less extreme cdf-values for the real GDP growth tests. The joint real GDP and inflation density

forecasts strongly support the RE baseline model up to the one-year-ahead forecasts, and weakly

for the longer term forecasts. The first finding appears to be related to the inflation forecasts under

RE which obtain a much larger log score than under AL. The real GDP growth up to the one-year

horizon are similar under the two expectation formations. For the longer-term forecasts, the real

GDP growth log scores under RE are larger than those under AL, while the inflation log scores are

smaller under RE than AL. The joint log scores are consistent with these marginal log scores.

It is well known for a single database (vintage) that the log marginal likelihood over a sample

is equal to the sum of the one-step-ahead log predictive likelihoods over the same sample. It may

therefore seem surprising that the AL model with consistently higher marginal likelihoods has lower

log scores than the RE model over the forecast sample. In the case of multiple databases, this

result does not hold as the measured values of the observed variables are revised. Second, even

without revisions, the ragged edge of the real-time database also breaks the relationship between

these two likelihood concepts for one-step-ahead forecasts. Third, the likelihood relationship is

only valid when the same variables are compared. In the SWU model case, the predictive likelihoods

concern at most two of the observed variables, while the marginal likelihoods cover all eight observed
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variables. Hence, even if we ignore the real-time dimension and only treat the issue in terms of a

single database, the likelihood relationship implies that we would need to include the predictive

likelihood of the remaining six (or seven) variables conditional on the actual value of real GDP

growth and/or inflation for the equality to hold for each one of the two models at the one-step-ahead

horizon.18 It is therefore not contradictory to find a reversal of ranking between the models when

studying both within-sample and out-of-sample likelihood-based evidence.

The recursive estimates of the average log scores of the joint density forecasts are displayed in

Figure 5; the case “Alt. PLM” with green dashed lines is discussed in Section 5.4. For the nowcast

and up to four-quarter-ahead forecasts, the results from the full sample are confirmed. The ranking

of the models is overall unchanged, especially since the onset of the Great Recession in 2008Q4.

Turning to the longer-term joint density forecasts, the AL model appears to be better until 2008Q4,

when the RE model takes the lead and then in 2016Q1 the average log score of the RE model

decreases temporarily while that of the AL model increases.

The fall in log score of the RE model in 2016Q1 is also matched by the inflation density forecasts,

but not by the real GDP forecasts; see Figures C.4–C.5 in the Online Appendix. Moreover, the

point forecasts are the main reason for the performance fall of the RE model with big negative mean

errors. This can also be seen in Figure 3, where actual inflation falls at least temporarily in early

2016 while the longer-term point forecasts for the RE model appear to increase, a pattern which is

in sharp contrast to the point forecasts for the AL model. Moreover, the predictive inflation variance

of the RE model is lower than the variance of the AL model, which suggests that the RE model is

punished also by its lower forecast uncertainty.

As a possible explanation, it may first of all be kept in mind that the short-term nominal interest

rate fell below zero in 2015Q2 and has remained negative throughout the remainder of the sample.

Second, the models do not take the effective lower bound (ELB) on the short-term nominal interest

rate into account when forecasting. It is conceivable that the less persistent RE model is more

sensitive to the very low interest rates than the AL model and, hence, more prone to forecast higher

inflation when the short-term rate is far from its steady-state value.

The forecasts of inflation and the short-term nominal interest rate from the 2014Q4 vintage are

displayed in Figure 6, along with equal-tails credible intervals at 70 and 90 percent. In the upper

left chart, the inflation forecast of the RE model are plotted as a red solid line along with its grey

credible intervals. The forecast from the AL model are given by the blue dash-dotted line, 70 and 90

percent equal-tails credible intervals are portrayed by the region between the dashed and solid blue

lines, respectively, whereas the black solid line with x-markers for each quarter gives the actual values

of inflation. Notice that for the five-quarter to seven-quarter-ahead forecasts, the actual values lie

at the 5:th percentile of the predictive distribution from the RE model and close to the predictive

18 It should also be kept in mind that the samples over which the log marginal likelihood and the log score are
computed differ. However, the evidence in Figure 2 shows that the difference in log marginal likelihoods between the
AL and RE models is increasing since 2001. This is consistent with a log score for one-step-ahead forecasts of all eight
observed variables being higher for the AL model than for the RE model. Density forecast evidence on the remaining
six observed variables is provided in Table B.8 of the Online Appendix, focusing on one of the scoring rules discussed
in Section 5.3.
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mean forecasts of the AL model. Overall, the RE model over-predicts inflation substantially and

especially in the quarters of 2016, while the AL model slightly over-predicts in 2016. In terms of

the log predictive likelihood, the RE model suffers considerably in 2016 from both its poor point

forecasts and its comparatively narrow predictive distribution, while the AL model performs much

better.19

Turning to the forecasts of the short-term nominal interest rate in the upper right corner, the

RE model’s point forecasts are firmly upward sloping and the predicted value in 2016Q4 is equal to

1.9%, while the AL model forecasts are moderately upward sloping with a predicted value of 0.6% in

2016Q4. Hence, the AL model predicts stronger monetary accommodation than the RE model and,

ceteris paribus, this seems contradictory since lower interest rates are expected to boost inflation.

However, the dynamic responses in the AL model are more persistent than in the RE model with the

effect that the predictions are expected to be smoother and more drawn-out in the former model.

A simple and approximate approach to investigate the effects on the predictive distribution from

imposing the ELB is to condition the forecasts of the model on the actual values of the short-term

nominal interests rate over the forecast horizon 2015Q1–2016Q4, i.e., on the black solid line with

x-marks in the upper right chart. Turning to the lower left chart, the forecasts of inflation under RE

are compared with the conditional point and interval forecasts from the same model, where the latter

point forecasts are plotted as the green dash-dotted line. The conditional forecasts are computed

with the Waggoner and Zha (1999) approach and the 70 and 90 percent equal-tails credible intervals

from the predictive distribution are represented by the region between the dashed and solid green

lines, respectively. For this case, the actual values of inflation lie around the 15:th percentile rather

than the 5:th percentile of the relevant predictive distribution. In addition, the conditional point

forecasts of inflation are well below the unconditional point forecasts (red solid line) and closer to

the actual values.

The relevance of the ELB for the predictive distributions may also be studied by dividing the

forecast sample into two parts, where the first covers the period until 2014Q4 and the second sample

the remaining 20 quarters with nominal interest rates close to or at the ELB. The log scores and test

statistics from these sub-samples are shown in Table 4, where the evidence on the first sub-sample

is widely consistent with the results from the full sample.

Turning to the ELB sub-sample since 2015, it is interesting to note that the RE model seems to

predict real GDP growth better than the AL model when compared with the first sub-sample, also

at the shorter horizons. Concerning inflation, the evidence in favor of the AL model is now also

supported for the shorter horizons, while the joint scores are consistent with the marginal scores and

do not favor any model.

19 The estimated log predictive likelihood values of the RE (AL) model in 2016 are for each quarter respectively −0.726
(0.012), −1.108 (−0.104), −0.942 (−0.131) and −0.243 (−0.140). The numerical standard errors of these estimates
are very small and around 0.01 for the RE model and less than half of that for the AL model.
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5.3. CRPS and the Energy Score

The log score uses only information about the predictive density at the actual value while, for

instance, values near it and that have a high likelihood are ignored. Scoring rules based on the

predictive cdf allows for a wide range of possible values and therefore provide a more comprehensive

measure of density forecast performance than the log score. Furthermore, it is shown by Krüger,

Lerch, Thorarinsdottir, and Gneiting (2021) that the theoretical conditions for the log score to be

consistent when using MCMC draws of the parameters are stronger than for some alternative scoring

rules. For univariate forecasts, they show that the continuous ranked probability score (CRPS) is

consistent under weaker conditions. In addition, the CRPS is proper and, under certain conditions,

even strictly proper; see Gneiting and Raftery (2007) for details. This scoring rule can be expressed

as:

CRPS(h, i) =
1

2
EPD

[∣∣∣yi,T+h − y
(c)
i,T+h

∣∣∣] − EPD

[∣∣∣yi,T+h − y
(o)
i,T+h

∣∣∣] , i = 1, . . . , np, (5)

where np is the number of predicted variables, yi,T+h and y
(c)
i,T+h are independent copies of the

predicted variable i in time period T + h given the information at T with (posterior) predictive

distribution PD, and with actual values y(o)i,T+h for the h-quarter-ahead forecasts. For a given vintage

T , this scoring rule can be consistently estimated using P simulated forecasts paths based on the

posterior draws of the parameters by

CRPS(h, i) =
1

2P 2

P∑
j1=1

P∑
j2=1

∣∣∣y(j1)i,T+h − y
(j2)
i,T+h

∣∣∣ − 1

P

P∑
j=1

∣∣∣y(j)i,T+h − y
(o)
i,T+h

∣∣∣, i = 1, . . . , np, (6)

where y
(j)
i,T+h is the value of variable i in simulated path j at T + h. For the distributional forecast

comparisons, the CRPS is given by the sum of (6) over the 76 vintages at hand.

A multivariate extension of the CRPS, called the energy score, was introduced by Gneiting and

Raftery (2007) and applied by, e.g., Gneiting, Stanberry, Grimit, Held, and Johnson (2008). It can

be expressed as

ES(h) =
1

2
EPD

[∥∥∥y1:np,T+h − y
(c)
1:np,T+h

∥∥∥]
− EPD

[∥∥∥y1:np,T+h − y
(o)
1:np,T+h

∥∥∥]
, (7)

where ‖x‖ =
√
x′x is the Euclidean norm, and y1:np,T+h is a vector with the np predicted variables.

This expression can be consistently estimated using P paths from the predictive distribution as

ES(h) =
1

2P 2

P∑
j1=1

P∑
j2=1

∥∥∥y(j1)1:np,T+h − y
(j2)
1:np,T+h

∥∥∥ − 1

P

P∑
j=1

∥∥∥y(j)1:np,T+h − y
(o)
1:np,T+h

∥∥∥ . (8)

It can be noted that the CRPS for a deterministic forecast system reduces to minus the absolute

point forecast error. Hence, the CRPS (and ES) encompasses both probabilistic and deterministic

scoring rules.

Distributional forecasts can be simulated with DSGE models using the algorithm proposed by

Adolfson et al. (2007) and which is an extension of the Thompson and Miller (1986) approach. The

nowcasts and backcasts are not included in the exercise below but may be simulated through an

algorithm based on, for instance, the Waggoner and Zha (1999) conditioning approach for those

– 16 –



time periods and where the conditioning variables are given by the vintage data for the observed

variables. The precise choice of conditioning methodology influences the CRPS and ES as it has

a direct impact on the distribution of the shocks over the conditioning period. Below we instead

simulate shocks from period T + 1 and initial state variables for period T using the Kalman filter

estimates which take the ragged edge into account.

For the RE and AL baseline models a total of 100,000 prediction paths per vintage and model

have been computed using 1,000 parameter draws of the available 500,000 post-burnin draws and

100 path draws per parameter value based on the distributions of the structural shocks of the model

and the state variables at T . The estimated CRPS and ES for the full sample are shown in Table 5

for the individual variables as well as the joint case.

The RE baseline model again obtains the highest score for the real GDP forecasts and its inflation

forecast scores are greater than those from the AL model up to the four-quarter-ahead horizon. For

the longer horizon inflation forecasts the AL model again has the largest scores. Turning to the joint

forecasts, the RE model has a higher score for all horizons, but the gap to the AL model decreases

for the longer horizons, also taking the number of observations into account.

The recursively estimated average ES of the models are shown in Figure 7. For the shorter-term

forecasts it can be seen that the difference in score is similar over the sample, while the Great

Recession appears to strengthen the first rank of the RE model over the longer-term forecasts. The

influence of inflation in 2016 can be seen also for the recursive ES, albeit that this score appears to

be less affected than the log score. It may also be noted that the impact of the inflation forecasts

since 2016 are strong on the CRPS for the RE model.20

Overall, the forecast comparisons using point and density forecasts agree that the RE model

forecasts real GDP growth better than the AL model and especially for the outer quarters of the

forecast horizon, while the performance is mixed for inflation with RE winning for the shorter-term

and AL for the longer term. In addition, the RE model obtains larger scores than the AL model for

the joint forecasts.

5.4. Alternative PLMs

The PLM for the adaptive learning case has so far been assumed to be an AR(2) process with a

constant term for each forward looking variable. This simple PLM was suggested by Slobodyan and

Wouters (2012a), but given the relatively poor forecasting performance of the AL model compared

with the RE version an important reason for this failure may be the assumed PLM.

The theoretical learning literature provides some guidance on the selection of a PLM, such as using

a forecasting model based on the RE solution form in (2) where the agents know the functional form

for the forward looking variables but not the belief coefficients; see, e.g., Hommes and Zhu (2014)

and Evans, Evans, and McGough (2022). This RE-based form of AL includes the time-varying

specification of the belief coefficients and having a constant term which underlies the ALM in (4).

20 The recursive average CRPS values for real GDP growth and inflation, respectively, are shown in Figures C.6–C.7
of the Online Appendix. In addition, Table B.8 provides the CRPS scores and Diebold-Mariano test p-values for the
remaining six observed variables.
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When the functional form of the PLM is correctly specified, convergence of AL to a RE equilibrium

can occur.

From a time series perspective we may instead consider, for example, VARs of the forward looking

variables. Such PLMs are, like the benchmark PLM, misspecified since some variables which are

typically present in the RE solution equations of the forward looking variables are themselves not

forward looking. In addition, it can be very cumbersome from a computational perspective to

estimate DSGE models with many belief coefficients and, as noted by Slobodyan and Wouters

(2012a), VARs are therefore likely to suffer from overfitting. The RE-based functional form of the

PLM is also likely to involve overfitting as each equation can have many belief coefficients. In the

case of the baseline SWU model for AL with 8 forward looking variables, each equation of the PLM

has 17 unknown belief coefficients when using the functional form of the RE solution. This amounts

to 136 belief coefficients in total compared with 24 for the benchmark PLM. It may therefore be

useful to investigate the economic model for simpler suggestions than the full-blown functional form

of the RE solution.

The alternative PLM considered in this section uses the AR(2) process with a constant term as

a basis and adds at most one variable to each one of the eight processes and limited to the first

lag. Specifically, for real private consumption the lag of the nominal interest rate is included, for

real investment the lag of the real value of the capital stock is used, inflation is linked to the lag

of unemployment, hours worked makes use of the lag of employment, the rental rate of capital

considers the lag of capital services used in production as potentially informative, real wages to the

lag of inflation and, finally, employment to the lag of real wages. The only process for a forward

looking variable which remains unchanged is the real value of the capital stock.21

For the results on the average log scores of the joint real GDP growth and inflation case we

return to Figure 5. Generally, the alternative PLM appears to provide some improvement over the

benchmark PLM, especially for the nowcasts and the one-quarter-ahead forecasts. While the average

log scores of the two- and three-quarter-ahead forecasts are similar, the benchmark PLM tends to

forecast better until the Great Recession for the four-quarter-ahead to eight-quarter-ahead forecasts,

while the alternative PLM overtakes the benchmark PLM thereafter and up to the last periods of

the forecast sample. Still and with the exception of the nowcasts, the alternative PLM does not

alter the main findings regarding log score comparisons with the RE and AL models for the selected

sample.

Turning to the average energy scores in Figure 7, the alternative PLM is competititive with the

RE model for the one-quarter-ahead forecasts and better than the benchmark PLM. For the other

forecast horizons the alternative PLM remains competitive with the RE model until around 2012–

13, where it gradually loses ground and approaches the score of the benchmark PLM. Hence, the

alternative PLM can in part improve the density forecasts relative to the benchmark PLM, but not

to the extent that it implies an AL model which forecasts better than the RE model.

21 Note that this alternative PLM is similar to one of the alternatives discussed in Slobodyan and Wouters (2012a,
Section V.A). The structural equations for the forward looking variables provide the inspiration for this PLM; see, for
instance, Smets et al. (2014, Section 2).
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5.5. PITs and BOTs

The probability integral transform (PIT) has long been used to assess if a forecasting model is well

calibrated. An early paper which considered this idea for density forecasting purposes in econometrics

is Diebold, Gunther, and Tay (1998), but it has earlier been emphasized by Dawid (1984). Rosenblatt

(1952) shows that for a correctly specified model

πi,T+1|T = F
(
yi,T+1

∣∣YT

)
, i = 1, . . . , np,

is independent and uniformly distributed on the unit interval, where F (·) is the cdf and YT is the

information set available at T . Smith (1985) further noted that zi,T+1|T = Φ−1(πi,T+1|T ), where

Φ(·) is the cdf of the normal distribution, is i.i.d. N(0, 1).

Amisano and Geweke (2017) construct a test statistic based on the normality property of the

inverse cdf; details are available in their Online Appendix. Specifically, let

π
(j)
i,T+1|T = Φ

(
y
(o)
i,T+1

∣∣∣∣μ(j)
i,T+1|T , σ

(j)
ii,T+1|T

)
, j = 1, . . . , N

where μ
(j)
i,T+1|T is the one-quarter-ahead point forecast of predicted variable i = 1, . . . , np using the

j:th posterior draw of θ, the vector of estimated parameters, while σ
(j)
ii,T+1|T is the one-quarter-ahead

forecast standard deviation of variable i using θ(j).

Next, the Monte Carlo average of the N values of the uniform variable is taken such that

πi,T+1|T =
1

N

N∑
j=1

π
(j)
i,T+1|T , (9)

while

zi,T+1|T = Φ−1
(
πi,T+1|T

)
. (10)

Under the assumption that the model forecasts are well calibrated, the variable zi,T+1|T is normally

distributed with zero mean and unit variance. This assumption is tested in Amisano and Geweke

(2017) using the first q moments and p lags of the zi,T+1|T process with a test statistic which is

asymptotically χ2
q+p.

The uniformity of the PIT does not hold for multivariate forecasts; see Genest and Rivest (2001).

As pointed out by Gneiting et al. (2008), an option is then to utilize the Box density ordinate

transform (BOT). The BOT was, e.g., proposed by Box (1980), and is defined as

πT+1|T = 1 − Pr
[
p
(
y1:np,T+1

∣∣YT

) ≤ p
(
y
(o)
1:np,T+1

∣∣YT

)]
.

If y1:np,T+1 is distributed as p(·) and this density is continuous, then πT+1|T is standard uniform.

For example, if the density p(·) is Gaussian with mean vector μ and covariance matrix Σ, then

πT+1|T = 1 − χ2
np

((
y
(o)
1:np,T+1 − μ

)′
Σ−1

(
y
(o)
1:np,T+1 − μ

))
. (11)

Using the Kolmogorov-Smirnov test with the SWU model under RE for the euro area RTD

McAdam and Warne (2019, Table 8) finds that the empirical distribution of the predictive likelihood

is not statistically different from a normal distribution with predictive mean and covariance matrix
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estimated with Monte Carlo integration and evaluated at the actual value. These tests have been

recomputed with the extended real-time sample under the RE and the AL baseline models and the

conclusion is confirmed also for these cases; see Table B.7 in the Online Appendix. In the current

study, the BOT expression in (11) is therefore used to estimate πT+1|T for the multivariate case.

Furthermore, the expression in (10) is applied to transform this variable to a standard normal and

the test statistic in Amisano and Geweke (2017) is thereafter used.

The evidence from the tests is provided in Table 6 for the nowcasts and the one-quarter-ahead

forecasts with p = q = 2. The 95:th percentile value of the χ2
4 distribution is around 9.49 and for

the RE model the test value for the nowcasts of inflation is far below this value, while the value for

the one-quarter-ahead forecasts is closer and above the 90:th percentile value. All other test values

are larger than the 95:th percentile value and the overall assessment suggest is that the predictions

of the two models are not well calibrated.

Histograms of the underlying π estimates for the BOTs are shown in Figure 8 using ten bins. In

the case of the RE model the frequency of occurence for the higher value bins is considerably greater

than for the lower value bins, while the AL model displays greater occurences for some of the bins

above 0.5. Hence both models tend to have too many realizations in the tails of the joint predictive

distributions. One important source for this is likely to be that they overpredict real GDP growth.22

6. Summary and Conclusions

This paper compares and evaluates real-time density forecasts of real GDP growth and inflation for

the euro area using an unemployment-based extension of the well-known Smets and Wouters (2007)

model, which supports either rational expectations (RE) or adaptive learning (AL), as modelled in

Slobodyan and Wouters (2012a). The forecast comparison sample begins with the first real-time

database vintage in 2001Q1 and ends in 2019Q4, thereby covering the period of wage moderation,

the global financial crisis, the Great Recession that followed, the European sovereign debt crisis,

and the period in which policy rates are close to the effective lower bound (ELB). The selection of

actual values of the observed variables follows “good practise” in the real-time literature and therefore

takes the annual revisions such that vintages until 2020Q4 are also required. This means that noisy

early estimates are avoided, such as first releases, but also that major changes to the computational

methodology are less likely to influence the outcome of the forecast analysis, as may be expected for

the euro area if the latest vintage would instead be used for the actual values; see, e.g., Croushore

and Stark (2001) and Croushore (2006, 2011) for discussions on using real-time data.

Concerning within-sample fit, the AL model has a greater log marginal likelihood than the RE

model by about 22 log-units for the full estimation sample, i.e., when both models are estimated

until 2019Q4.23 This confirms the findings from US data by, e.g., Milani (2007) and Slobodyan and

Wouters (2012a) that DSGE models subject to AL fit the estimation data better than under RE.

Furthermore, the two models are also compared within-sample for each Q1 vintage over the real-time

22 Histograms of the π estimates for the PITs are provided in the Online Appendix, Figures C.8–C.9.
23 In terms of the base-10 log-scale, 22.07 natural log-units corresponds to about 9.58 log-10 units.
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forecast sample, 2001–2019. Again, the AL model obtains larger log marginal likelihood values for

each such vintage.

Turning to the forecast comparison exercise, the RE model overall predicts real GDP growth

more accurately than the AL model from a point forecast perspective. Both models over-predict

real GDP growth on average and the AL model substantially for the four-quarter-ahead to eight-

quarter-ahead forecasts. The inflation forecast paths reflect a sharp difference between the dynamic

behavior of the two expectation mechanisms. The paths from the RE model are typically upwarding

sloping with a concave curvature during the comparison sample and result in an over-prediction of

inflation on average, while the AL model paths tend to be u-shaped and lead to an under-prediction

of inflation, albeit with average forecast errors close to zero for the outer quarters. As a consequence,

the Diebold-Mariano tests indicate that the RE model forecasts inflation better for the short-term

forecasts, while the AL model predicts better for the outer quarters of the horizon.

The density forecasts are compared using the log score as well as the continuous ranked probability

score (CRPS) and the corresponding multivariate energy score (ES). The log score measures the

height of the predictive density at the actual values, while the CRPS/ES covers the full predictive

distribution. Overall, these scoring rules agree with the results from the point forecast exercise and

therefore lend support to the RE model having a better out-of-sample fit than the AL model. Since

the within-sample and out-of-sample fit measures do not cover the same variables, the model ranking

findings are not contradictory.

Finally, it should be stressed that the AL model used in this study represents only one approach to

taking learning or incomplete information into account and that other approaches, such as constant

gain learning or the learning about long-term drifts approach in Eusepi and Preston (2018a), may

fare better when faced with the baseline RE model in a forecast comparison exercise. An important

feature of the AL model is that its dynamics shows greater persistence than the RE model’s and this

may be one reason why the AL model overall has greater difficulties forecasting real GDP growth,

especially during a period as challenging as the one examined in this paper. At the same time, the

backward expectations formation under AL and the model’s greater persistence may explain why it

provides better within-sample fit than the RE model. We leave these interesting questions open for

future research.
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Table 1: Selected parameter estimates of the SWU model of the euro area under
rational expectations (RE) and adaptive learning (AL) for the sample
1985Q1–2019Q4.

RE AL RE RE AL

baseline baseline alt: gap alt: σc alt: ρ

subst. elasticity (σc) 1 1.07 1 1.14 1.07

[calibrated] [1.04, 1.09] [calibrated] [1.05, 1.27] [1.04, 1.09]

belief persistence (ρ) – 0.17 – – 0.10

[0.07, 0.28] [0.01, 0.25]

Wage markup (AR) 0.73 0.85 0.88 0.77 0.84

[0.56, 0.86] [0.80, 0.88] [0.74, 0.96] [0.63, 0.88] [0.80, 0.87]

Wage indexation 0.25 0.19 0.25 0.24 0.19

[0.12, 0.40] [0.10, 0.29] [0.12, 0.40] [0.12, 0.39] [0.10, 0.30]

Wage stickiness 0.62 0.54 0.48 0.59 0.55

[0.54, 0.70] [0.48, 0.61] [0.40, 0.59] [0.52, 0.67] [0.49, 0.62]

Price markup (AR) 0.19 0 0.42 0.20 0

[0.05, 0.35] [calibrated] [0.18, 0.59] [0.07, 0.36] [calibrated]

Price indexation 0.22 0.23 0.15 0.21 0.23

[0.09, 0.35] [0.14, 0.33] [0.06, 0.32] [0.09, 0.34] [0.15, 0.33]

Price stickiness 0.80 0.80 0.72 0.79 0.80

[0.76, 0.84] [0.76, 0.84] [0.64, 0.80] [0.74, 0.84] [0.76, 0.84]

Log marg. like. −443.08 −421.01 −462.81 −441.53 −421.46

Notes: Posterior mean estimates are reported along with the 5th and 95th percentiles from the posterior
distribution in brackets. The models are estimated with the random-walk Metropolis algorithm using 750,000
posterior draws, where the first 250,000 are treated as burn-in sample. The data from 1980Q1–1984Q4 are used
as a training sample for the Kalman filter state variables. The log marginal likelihood is estimated with the
modified harmonic mean estimator. The gap alternative model under RE uses the output gap specification from
AL, while the σc alternative model under RE estimates the inverse elasticity of intertemporal substitution for
constant labor σc using the prior σc ∼ N(1, 0.252). The ρ alternative model under AL uses a standard uniform
prior distribution for the belief coefficients persistence parameter.
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Table 2: Mean forecast errors based on the posterior predictive mean as the point
forecast and p-values for the Diebold-Mariano test of equal mean squared
forecast errors for the sample 2001Q1–2019Q4.

Real GDP growth Inflation

Mean errors cdf-values Mean errors cdf-values

h RE AL DM RE AL DM

−1 −0.218 −0.219 – 0.087 0.140 –

0 −0.250 −0.348 0.38 0.019 0.123 0.00

1 −0.357 −0.450 0.01 −0.028 0.146 0.00

2 −0.388 −0.478 0.15 −0.072 0.152 0.02

3 −0.380 −0.483 0.16 −0.112 0.144 0.11

4 −0.346 −0.474 0.03 −0.153 0.124 0.29

5 −0.311 −0.470 0.00 −0.187 0.100 0.67

6 −0.276 −0.465 0.00 −0.214 0.076 0.90

7 −0.241 −0.458 0.00 −0.240 0.046 0.99

8 −0.206 −0.446 0.00 −0.260 0.016 1.00

Notes: The cdf-values from the Diebold-Mariano (DM) test for the null hypothesis of equal mean squared
forecast errors (MSFE) are calculated as in Harvey, Leybourne, and Newbold (1997), equation (9). The cdf-
values shown above are taken from the Student’s t-distribution with Nh − 1 degrees of freedom, with Nh being
the number of h-quarter-ahead forecasts, Nh = 76 − h. A cdf-value close to zero suggests that the predictions of
the RE model are better in an MSFE sense than the those of the AL model, and a value close to one that the
reverse case is supported.
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Table 3: Log scores as well as cdf-values of the Amisano-Giacomini weighted LR
test and of the modified Diebold-Mariano test of the null hypothesis that
the log scores of the RE and AL baseline models are equal for the full
sample 2001Q1–2019Q4.

Real GDP growth Inflation Joint

Log scores cdf-values Log scores cdf-values Log scores cdf-values

h RE AL LR DM RE AL LR DM RE AL LR DM

−1 −2.38 −2.14 – – −1.01 −3.17 – – −8.99 −10.12 – –

0 −63.12 −63.30 0.47 0.47 21.07 11.74 0.00 0.00 −42.25 −51.02 0.01 0.01

1 −73.45 −75.60 0.19 0.15 16.57 6.79 0.00 0.00 −56.36 −71.86 0.00 0.00

2 −75.57 −76.79 0.34 0.36 9.88 0.62 0.01 0.01 −65.21 −79.68 0.00 0.00

3 −75.47 −76.52 0.34 0.38 3.78 −3.97 0.04 0.06 −71.47 −83.85 0.01 0.01

4 −73.37 −75.92 0.20 0.25 −1.34 −6.43 0.13 0.15 −74.92 −84.88 0.03 0.03

5 −70.59 −75.30 0.11 0.14 −5.15 −6.38 0.37 0.39 −76.38 −83.28 0.08 0.08

6 −68.79 −74.46 0.08 0.09 −9.24 −8.33 0.60 0.60 −78.90 −83.81 0.16 0.13

7 −67.36 −73.47 0.06 0.07 −13.02 −9.89 0.80 0.82 −81.41 −84.10 0.30 0.30

8 −66.16 −72.74 0.06 0.07 −16.50 −12.69 0.84 0.87 −83.72 −85.75 0.35 0.35

Notes: The full sample covers the vintages 2001Q1–2019Q4. The cdf-values for the Amisano-Giacomini weighted
LR test are taken from its asymptotic normal distribution using 1 lag for the HAC estimator and equal weights;
see Amisano and Giacomini (2007) for details. The cdf-values for the Diebold-Mariano test are taken from the
Student’s t-distribution with Nh − 1 degrees of freedom, with Nh being the number of h-quarter-ahead forecasts,
Nh = 76 − h. The DM test statistic is based on the difference of minus the log scores rather than the difference
in mean-squared forecast errors as in Harvey et al. (1997), equation (9). A cdf-value close to zero suggests that
the predictions of the RE model are better in a log score sense than those of the AL model, and a value close to
one that the reverse case is supported.
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Table 4: Log scores as well as cdf-values of the Amisano-Giacomini weighted LR
test and of the modified Diebold-Mariano test of the null hypothesis that
the log scores of the RE and AL baseline models are equal for the sub-
samples 2001Q1–2014Q4 and 2015Q1–2019Q4.

2001Q1-2014Q4

Real GDP growth Inflation Joint

Log scores cdf-values Log scores cdf-values Log scores cdf-values

h RE AL LR DM RE AL LR DM RE AL LR DM

−1 −2.38 −2.14 – – −3.95 −5.71 – – −8.99 −10.12 – –

0 −52.24 −52.24 0.50 0.50 13.30 5.87 0.01 0.00 −39.17 −46.33 0.02 0.03

1 −60.69 −61.41 0.38 0.36 11.57 1.54 0.00 0.00 −48.71 −62.49 0.00 0.00

2 −62.88 −62.69 0.53 0.52 7.59 −3.01 0.00 0.00 −54.92 −68.91 0.00 0.00

3 −63.44 −63.08 0.56 0.54 3.42 −6.36 0.01 0.01 −59.88 −72.66 0.00 0.00

4 −61.96 −63.20 0.34 0.37 −0.36 −7.70 0.03 0.04 −62.60 −73.44 0.01 0.01

5 −59.84 −63.37 0.18 0.21 −4.05 −7.20 0.18 0.20 −64.60 −72.23 0.05 0.02

6 −58.71 −63.49 0.11 0.13 −8.27 −8.02 0.53 0.53 −67.95 −72.59 0.16 0.09

7 −57.90 −63.28 0.08 0.10 −12.32 −9.09 0.81 0.85 −71.36 −73.17 0.36 0.35

8 −57.31 −63.27 0.08 0.09 −15.45 −11.23 0.87 0.91 −73.95 −74.89 0.43 0.42

2015Q1-2019Q4

−1 – – – – 2.94 2.54 – – – – – –

0 −10.89 −11.06 0.32 0.29 7.77 5.86 0.15 0.15 −3.08 −4.69 0.18 0.18

1 −12.76 −14.18 0.01 0.00 5.00 5.25 0.56 0.56 −7.64 −9.38 0.18 0.17

2 −12.69 −14.09 0.01 0.01 2.29 3.62 0.78 0.78 −10.30 −10.77 0.40 0.40

3 −12.03 −13.44 0.02 0.04 0.36 2.38 0.86 0.86 −11.58 −11.19 0.58 0.57

4 −11.40 −12.72 0.02 0.06 −0.98 1.27 0.88 0.78 −12.32 −11.44 0.68 0.60

5 −10.75 −11.93 0.02 0.06 −1.09 0.82 0.88 0.81 −11.79 −11.04 0.68 0.60

6 −10.08 −10.97 0.04 0.16 −0.97 −0.30 0.73 0.65 −10.95 −11.22 0.42 0.46

7 −9.47 −10.19 0.08 0.25 −0.70 −0.80 0.45 0.48 −10.04 −10.93 0.20 0.37

8 −8.84 −9.47 0.09 0.30 −1.05 −1.46 0.31 0.42 −9.78 −10.86 0.16 0.36

Notes: The cdf-values for the Diebold-Mariano test are taken from the Student’s t-distribution with Nh−1 degrees of
freedom, with Nh being the number of h-quarter-ahead forecasts, Nh = 56−h for the first sub-sample and Nh = 20−h

for the second. The cdf-values should be interpreted with a large grain of salt for the short samples. See also Table 3
for details.
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Table 5: Continuous ranked probability and energy scores for the full sample
2001Q1–2019Q4.

Real GDP growth Inflation Joint

CRPS cdf-values CRPS cdf-values ES cdf-values

h RE AL DM RE AL DM RE AL DM

1 −24.99 −26.09 0.03 −7.33 −9.12 0.00 −27.33 −29.47 0.00

2 −26.03 −26.75 0.23 −7.90 −9.78 0.02 −28.59 −30.43 0.01

3 −25.80 −26.76 0.20 −8.70 −10.13 0.09 −28.85 −30.66 0.01

4 −24.70 −26.27 0.08 −9.50 −10.18 0.28 −28.30 −30.34 0.01

5 −23.48 −25.95 0.00 −10.10 −9.72 0.64 −27.49 −29.72 0.00

6 −22.50 −25.64 0.00 −10.79 −9.61 0.91 −27.00 −29.33 0.02

7 −21.67 −25.25 0.00 −11.45 −9.40 0.99 −26.67 −28.80 0.06

8 −21.08 −24.76 0.00 −12.07 −9.71 0.99 −26.51 −28.51 0.09

Notes: The cdf-values from the Diebold-Mariano (DM) test for the null hypothesis of equal CRPS/ES are
calculated as in Harvey et al. (1997), equation (9), with minus the CRPS/ES values replacing the mean-squared
forecast errors. The cdf-values shown above are taken from the Student’s t-distribution with Nh − 1 degrees of
freedom, with Nh being the number of h-quarter-ahead forecasts, Nh = 76−h. A cdf-value close to zero suggests
that the predictions of the RE model are better in a CRPS/ES sense than those of the AL model, and a value
close to one that the reverse case is supported.
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Table 6: PIT and BOT tests for the marginal and joint nowcasts and one-quarter-
ahead density forecasts of real GDP growth and GDP deflator inflation
over the vintages 2001Q1–2019Q4.

Real GDP growth Inflation Joint

h Model AG p-value AG p-value AG p-value

0 RE 32.37 0.00 3.30 0.50 49.51 0.00

AL 61.66 0.00 16.80 0.00 27.21 0.00

1 RE 36.49 0.00 7.29 0.12 152.85 0.00

AL 57.88 0.00 26.11 0.00 26.98 0.00

Notes: The Amisano-Geweke tests are described in the Online Appendix of Amisano and Geweke (2017).
The statistics above are based on p = 2 lags and q = 2 moments such that the asymptotic distribution is
χ2
4. The PIT (BOT) tests concern the marginal (joint) nowcasts and forecasts.
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Figure 1: The euro area data on total investment growth, 1980Q1–2019Q4.
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Figure 2: Recursive estimates of the log marginal likelihood, the log posterior kernel
and the log likelihood of the rational expectations (RE) and adaptive
learning (AL) models using the RTD annual vintages 2001–2019.

A. Posterior mode based estimates.
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B. Posterior draws/mode based estimates
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Notes: The log marginal likelihood is estimated with (i) the modified harmonic mean (MHM) estimator using
10,000 equally spaced posterior draws from the 500,000 post burn-in draws of the random-walk Metropolis sampler
with a burn-in sample of 250,000 draws, and (ii) the Laplace approximation for the joint posterior mode. The
log likelihood and the log posterior kernel are also estimated at the joint posterior mode of the respective annual
vintage, each taken from Q1.
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Figure 3: Recursive point backcasts, nowcasts and up to eight-quarters-ahead fore-
casts of quarterly real GDP growth and quarterly GDP deflator inflation
using the RTD vintages 2001Q1–2019Q4.
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Notes: The actual values are plotted as solid black lines. Recursively estimated posterior predictive mean values
of real GDP growth and inflation are plotted as solid red and blue lines under RE and AL, respectively, while
the dashed black lines are the recursive posterior mean estimates of steady-state real GDP growth and inflation.
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Figure 4: Responses to real GDP growth and inflation from a one standard de-
viation shock to monetary policy using the full sample posterior mode
estimates from the baseline AL model.
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Figure 5: Recursive estimates of the average log scores of the joint real GDP growth
and inflation density forecasts covering the vintages 2001Q1–2019Q4.
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Figure 6: Predictive distributions of one-quarter until eight-quarter-ahead GDP de-
flator inflation and the short-term nominal interest rate for the 2014Q4
vintage.
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Notes: The unconditional forecasts of the baseline RE model are plotted as a solid red line, while the 90 % (70
%) equal-tails credible interval of these forecasts are shown as a dark-grey (light-grey) area. The unconditional
forecasts of the baseline AL model are given by a dash-dotted blue line, while the borders of the 90 % (70 %)
equal-tails credible interval are plotted as solid (dashed) blue lines. Finally, the conditional forecasts of the
baseline RE model are given by the dash-dotted green line, while the borders of its 90 % (70 %) equal-tails
credible interval are plotted as solid (dashed) green lines. The conditional forecast of inflation are based on the
actual values of the short-term nominal interest rate in 2015Q1–2016Q4 using the Waggoner and Zha (1999)
conditioning approach.
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Figure 7: Recursive estimates of the average energy scores of the joint real
GDP growth and inflation distributional forecasts covering the vintages
2001Q1–2019Q4.
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Figure 8: Histograms of the estimated πT+h|T values for the BOTs of the joint real
GDP growth and inflation density forecasts at the nowcast (h = 0) and
one-step-ahead (h = 1) horizons for 2001Q1–2019Q4.
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B. One-quarter-ahead forecasts
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Notes: The horizontal axis shows the 10 bins while the vertical axis shows the occurence frequency for the
estimated π’s. If these variables are uniformly distributed for a model, then the occurence in large samples is
0.10 for all bins.
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