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Abstract: This paper analyses three Granger noncausality hypotheses within a condition-
ally Gaussian MS-VAR model. Noncausality in mean is based on Granger’s original concept
for linear predictors by defining noncausality from the 1-step ahead forecast error variance
for the conditional expectation. Noncausality in mean-variance concerns the conditional
forecast error variance, while noncausality in distribution refers to the conditional distribu-
tion of the forecast errors. Necessary and sufficient parametric conditions for noncausality
are presented for all hypotheses. As an illustration, the hypotheses are tested usingmonthly
postwar U. S. data on money and income. We find that money is not Granger causal in mean
for income, but Granger causal in mean-variance, i.e. there is unique information in money
for predicting the next period regime and the regime affects the uncertainty about the in-
come forecast.
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1. Introduction

The most widely used concept of causality in time series econometrics is due to Granger

(1969). Founded on the linear least squares predictor for some information setX, Granger’s
definition of causality states that a variable m is causal for a variable y if the variance of

the 1-step ahead forecast error for y is smaller when the history ofm is included in X than

when it is excluded. Moreover, if these forecast error variances are equal, then m is said to

be noncausal for y .

Granger causality has primarily been studied within linear vector autoregressive (VAR)

models. For such models, the necessary and sufficient condition for m to be noncausal for

y is that all coefficients on lags of m are zero in the equation describing y . If the roots to

the VAR model are stable (outside the unit disc), then the Wald, LM, and LR statistics have

their usual limiting χ2 distribution (see e.g. Lütkepohl, 1991), while the case of some unit
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roots implies that the limiting distribution can be nonstandard; see Sims, Stock, and Watson

(1990) and Toda and Phillips (1993).

For linear statistical models, Granger noncausality in the above sense means that all

moments of the 1-step ahead forecast errors are equal for y conditional on X and for y

conditional on X less the history of m. Once we turn our attention to nonlinear models,

however, this result is no longer true. For instance, if the error process is conditionally

heteroskedastic, thenmmay contain unique information for predicting the conditional but

not the unconditional variance of the forecast errors; see e.g. Granger, Engle, and Robins

(1986).

Conditional variances have attracted considerable interest from, in particular, the liter-

ature on asset pricing in finance (see e.g. Ferson, 1993), but also from the literatures on

central bank independence (see e.g. Rogoff, 1985) and on inflation versus price level target-

ing (see e.g. Svensson, 1999 and references therein). While the latter bodies of literature

typically examine the variances of certain economic aggregates under different behavioral

and/or institutional assumptions, the result that changes in the parameters reflecting these

assumptions can affect the variances suggests that, from a time series perspective, the con-

ditional variances can depend on the probability that these parameters change at some

future date(s).

Since the publication of Hamilton’s (1989) paper, where the mean growth rate of U. S.

real GNP varies according to a latent 2-state Markov process, there has been a growing

literature on regime switching in applied macroeconomic and financial time series analysis;

see, for instance, Cecchetti, Lam, and Mark (1990), Diebold and Rudebusch (1996), Garcia

and Perron (1996), Ravn and Sola (1995), and Sola and Driffill (1994). There are several

theoretical reasons why such time series may be subject to switching regimes, e.g. changes

in economic policy, as in Vredin and Warne (2000) and Weise (1999), or, as suggested by

Jacobson, Lindh, and Warne (1998), fixed costs associated with the implementation of new

technologies.

Although we may have good a priori reasons to suspect that recurring regime shifts have

influenced the data, we often have considerably less information about when such shifts

have occurred or how many shifts there have been. A Markov switching model may often

be a good starting point under such circumstances.

In this paper, a q-state Markov switching vector autoregression (MS-VAR) model is used

to study three related Granger noncausality concepts. Apart from the unconditional and

conditional 1-step ahead forecast error variance versions mentioned above, the case of

conditional independence will also be examined (see Chamberlain, 1982, and Florens and

Mouchart, 1982). While it is difficult to justify the interest in conditional independence

from economic theory, it is nevertheless a useful concept for, at least, two reasons. First, it
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can serve as a benchmark when we attempt to interpret parametric restrictions that imply

e.g. noncausality in terms of the conditional mean and variance (typically the noncausality

restrictions will not be unique). Second, the parametric restrictions can depend on other

properties of the statistical model which, in turn, may contribute to making statistical in-

ference about these restrictions highly hazardous.1

The remainder of the paper is organized as follows. The basic assumptions and the

three noncausality concepts are presented in the next section, while the MS-VAR model is

introduced in Section 3. The main theoretical results on regime inference and noncausality

are offered and discussed in Section 4. As an illustration, the results are applied to monthly

U. S. data onmoney and income in Section 5. Themain findings of the paper are summarized

in Section 6 and, finally, proofs of the Propositions are given in the Mathematical Appendix.

2. Granger Causality

2.1. Notation and Basic Assumptions

To be concrete, letmt and yt denote money and income, respectively, and let the time series

of these variables up to and including period t be given byMt ≡ {mτ : τ = t, t−1, . . . ,1−p}
and Yt ≡ {yτ : τ = t, t − 1, . . . ,1 − p}, where p is a nonnegative integer. Also, let zt
denote a vector of other variables and Zt ≡ {zτ : τ = t, t − 1, . . . ,1 − p} its time series.
We decompose zt into two vectors, z1,t and z2,t , and define the n dimensional vector xt
such that xt ≡ [x′1,t x′2,t ]′, with x1,t ≡ [yt z′1,t]′ and x2,t ≡ [mt z′2,t]′ being ni dimensional

(i = 1,2). Hence, the time series of xt up to and including period t can, for instance, be

written Xt ≡ {Zt ,Yt ,Mt} ≡ {X1,t ,X2,t}.
Suppose XT is a vector valued time series of random variables and that there exists a

density (probability) function ft(xt |Xt−1;θ) for each t ∈ {1,2, . . . , T}. The parameters and
the parameter space are denoted by θ and Θ, where Θ is a subset of RK , the K dimen-

sional Euclidean space, and it is assumed that the density (probability) function is mea-

surable in xt |Xt−1 for every θ ∈ Θ and continuous in θ for every xt |Xt−1 in the sam-

ple space. The true value of θ is denoted by θ∗ ∈ Θ. Finally, suppose that the con-

ditional mean E[xt |Xt−1;θ∗] is finite and that the conditional covariance matrix E[(xt −
E[xt |Xt−1;θ∗])(xt − E[xt |Xt−1;θ∗])′|Xt−1;θ∗] is finite and positive definite for all finite t .

1 For instance, if the restrictions are nonlinear, then the first order partial derivatives can be linearly depen-
dent under the null hypothesis.
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2.2. Definitions

Let ut+1 denote the 1-step ahead forecast error for yt+1 conditional on Xt and θ∗ when the
predictor is given by the expectations operator. That is,

ut+1 ≡ yt+1 − E[yt+1|Xt ;θ∗]. (1)

By assumption ut+1 has conditional mean zero and positive and finite conditional variance

σ2
t . The concept of causality formulated by Granger (1969) concerns the optimal (minimum

MSE) unbiased 1-step ahead linear least squares predictor. Although the notion cannot

directly be translated into nonlinear models, three causality concepts, inspired by Granger’s

ideas, which have been proposed in the literature will be presented below.

A coarse version of Granger noncausality in nonlinear models is the following:

Definition 1: m is said to be noncausal in mean for y if and only if for all t

E[u2t+1;θ
∗] = E[ũ2t+1;θ∗] <∞, (2)

where ũt+1 ≡ yt+1 − E[yt+1|Zt ,Yt ;θ∗].

Analogously, we say that m is Granger causal in mean for y if E[u2t+1;θ∗] is smaller than

E[ũ2t+1;θ∗] for some t .

A logical refinement is to measure causal effects from the behavior of the conditional

forecast error variance. It is argued in the introduction that economic behavior can influence

the time profile of the conditional variance and, hence, it is possible that a variance based

causality measure is unfit for detecting certain relevant causal effects. Let us therefore

consider the following noncausality concept (see Granger, Engle, and Robins, 1986):

Definition 2: m is said to be noncausal in mean-variance for y if and only if for all t

E[u2t+1|Xt ;θ∗] = E[ũ2t+1|Zt ,Yt ;θ∗] <∞. (3)

Alternatively, m is Granger causal in mean-variance for y if the two random variables in (3)

are different for some t .

Further refined noncausality concepts can be introduced by requiring a sequence of mo-

ments (e.g. the first to the fourth) of the distributions for ut+1 conditional on Xt and for

ũt+1 conditional on Zt ,Yt to be equal. Since all such moments need not exist and economic
theory rarely provides statements about the behavior of moments higher than the second,

we will only consider the “limit” case. That is, noncausality in terms of the density (prob-

ability) functions for ut+1 given Xt , denoted by gt+1(ut+1|Xt ;θ), and for ũt+1 given Zt ,Yt ,
denoted by ht+1(ũt+1|Zt ,Yt ;θ).
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Definition 3: m is said to be noncausal in distribution for y if and only if for all t and all

but a finite number of probability zero events in the sample space

gt+1(ut+1|Xt ;θ∗) = ht+1(ũt+1|Zt ,Yt ;θ∗). (4)

In other words,m is Granger causal in distribution for y if the conditional distribution for

the 1-step ahead forecast error is not invariant with respect to the history of money. This

definition of noncausality is equivalent to the definition in Chamberlain (1982) and Florens

and Mouchart (1982), wherem is said to be noncausal for y if yt+1|Zt ,Yt is independent of
Mt ; see also Florens and Mouchart (1985) for additional noncausality concepts.

While noncausality in distribution gives a natural measure of causal effects from a statis-

tical perspective, it is difficult to envision an economic mechanism which implies that m is

noncausal in mean-variance for y but not in distribution. However, since the three causality

concepts are nested, noncausality in distribution provides a means for interpreting para-

metric restrictions implied by, say, noncausality in mean-variance.2 Moreover, for some

nonlinear models noncausality in mean and in mean-variance can, as will be shown below,

be highly difficult to test when certain sets of restrictions depend in complicated ways on

other properties of the model. Practical considerations can therefore force a researcher to

focus on a stronger hypothesis. Finally, it is worth emphasizing that under noncausality in

distribution, all predictors of y based on the distribution of y conditional onX are invariant

with respect to the history ofm. Hence, possibly biased predictors, such as the median, do

not depend onMt .

3. A Markov Switching VAR Model

In this section, I shall present a Markov switching vector autoregressive (MS-VAR) model

which is nested within the class of autoregressive models studied in Hamilton (1990) and

Krishnamurthy and Rydén (1998). A version of the model is discussed in more detail in

Warne (1999). We shall then examine the causality hypotheses in the next section.

To establish notation, let xt be generated by the following MS-VAR model:

xt = µstDt +
p∑
k=1

A(k)st xt−k + εt , t = 1,2, . . . , T , (5)

where p is finite, εt |st ∼ N(0,Ωst ) and Ωst is positive definite. The vector Dt is d dimen-

sional and deterministic, e.g. a constant and centered seasonal dummies. The initial values

x0, . . . , x1−p are taken as fixed.

The random state or regime variable st is unobserved, conditional on st−1 independent

of past x, and assumed to follow a q-state Markov process. In other words, Pr[st = j|st−1 =
2 By nested it is understood that (4) implies (3) which implies (2). Alternatively, let H(i) be the set of all
parametric functions of θ which are consistent with Definition i, for i = 1,2,3. Then, H(3) ⊆ H(2) ⊆ H(1).
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i, st−2 = h2, . . . ,Xt−1] = Pr[st = j|st−1 = i] = pij , for all t and hl, i, j = 1,2, . . . , q, l ≥ 2. The

Markov transition probabilities satisfy
∑q
j=1 pij = 1 for all i. It is assumed that the Markov

process is irreducible (no absorbing states) and we collect its parameters into

P =



p11 · · · p1q
...

...

pq1 · · · pqq



. (6)

By construction one eigenvalue of P is always equal to unity and to ensure that st is ergodic

the remaining eigenvalues are assumed to lie inside the unit circle. The ergodic probabilities,

Pr[st = j] = πj , are collected into π , where P ′π = π .
The randommatrices µst , A

(k)
st and Ωst depend only on the regime variable st . Specifically,

if st = j , then µst = µj , A(k)st = A(k)j while Ωst = Ωj . Since st is ergodic it follows that µst ,
A(k)st and Ωst are ergodic as well.

Karlsen (1990) establishes a sufficient condition for xt to be covariance stationary. His

condition applies directly here when Dt does not include any deterministically trending

variables and it is noteworthy that it allows for unit and explosive roots within states as

long as some of the A(k)st matrices vary across states. Furthermore, the condition is also

valid when Dt includes trending variables and the random matrices µst and A
(k)
st satisfy

certain (nonlinear) restrictions. The interested reader is also referred to Holst, Lindgren,

Holst, and Thuvesholmen (1994).

In the next section we shall consider Markov chains that can be split into two independent

processes (where one can be a single regime process). This allows coefficients in two subsys-

tems of equation (5) to vary with the regime and, at the same time, be independent. Let s1,t
and s2,t be a q1 and a q2 state Markov process, respectively, with q = q1q2 and s1,t and s2,t
independent, i.e. pij = p(1)i1j1p

(2)
i2j2 where Pr[sl,t = jl|sl,t−1 = il] = p

(l)
iljl and

∑ql
jl=1 p

(l)
iljl = 1 for

il = 1, . . . , ql. Collecting the parameters into P(1) and P(2) and defining st ≡ s2,t+q2(s1,t−1)
for the pair (s1,t , s2,t) we have that P = (P(1) ⊗ P(2)). While the restrictions implied by in-

dependence appear to be nonlinear, they are in fact linear. The reason is that the elements

of each row of P(l) sum to unity.3 Moreover, the Markov process sl,t is serially independent

if and only if, for all il , jl = 1, . . . , ql, p
(l)
iljl = π(l)jl . Hence, a serially uncorrelated Markov

process is also equivalent to a set of linear constraints on the transition probabilities.

3 The restriction are directly available from inspection of the q×q1 matrix P
(
Iq1 ⊗ ıq2

)
and the q×q2 matrix

P
(
ıq1 ⊗ Iq2

)
, where ıql is a ql dimensional unit vector.
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4. Noncausality and Regime Inference

The issue ofmaking inference about theMarkov regime is closely linkedwith Granger causal-

ity. For instance, suppose that yt is equal to µ1,st plus an iid Gaussian residual. In this case,

m will be noncausal in mean for y if and only if the history ofm does not contain any unique

information about the next period regime. This is trivially satisfied when the Markov process

is serially uncorrelated but other, more interesting, possibilities also exist.

Although we focus on a conditionally Gaussian εt vector, the main result on regime in-

ference (cf. Proposition 1 below) can be extended to a set of general conditions that the

distribution function for (εt , st) must satisfy. This extension, which retains the assump-

tions about the regime process, is presented in the Mathematical Appendix and is used as

a means towards proving Proposition 1 below.

Based on the xi,t vectors that were introduced in Section 2.1, consider the following par-

tition of (5): 
x1,t
x2,t


 =


δ1,st
δ2,st


Dt +

p∑
k=1


α

(k)
11,st α(k)12,st

α(k)21,st α(k)22,st




x1,t−k
x2,t−k


+


ε1,t
ε2,t


 . (7)

Furthermore, let us partitionΩst conformably with εi,t , i.e.Ωij,st ≡ E[εi,tε′j,t|st]. We also have
use for a finer partition of (5). For that partition, it suffices to give the income equation:

yt = µ1,stDt +
p∑
k=1

(
a(k)11,st yt−k + a

(k)
12,st z1,t−k + a

(k)
13,stmt−k + a(k)14,st z2,t−k

)
+ ε1,t , (8)

whileω11,st is the variance of ε1,t conditional on st . We shall use the first partition when we

discuss regime predictions while the second partition is used in conjunction with Granger

causality.

4.1. Regime Inference

For expositional reasons, let us first assume that all regimes are known. The prediction of

next period’s income conditional on st+1 and Xt is then4

E[yt+1|st+1,Xt ] = yt+1 − ε1,t+1. (9)

Accordingly, the forecast error is given by ε1,t+1 and the conditional forecast error variance

byω11,st+1 . The necessary and sufficient condition for money not to Granger cause income

in mean, mean-variance, and in distribution is that a(k)13,st in equation (8) is equal to zero for

all k and t .

4 Formally, the expectation is also taken with respect to θ∗ and DT ≡ {Dτ : τ = 1, . . . , T}. To simplify nota-
tion, however, DT and, sometimes, θ∗ are not explicitly expressed as parts of the conditioning information.
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Let us now drop the assumption that the regimes are known. While the regime variable

st is independent of past x conditional on st−1, it can be predicted using only past x. Let

Pr[st+1|Xt ] denote the probability of a particular state occurring at t +1 conditional on the
information available at t . The prediction of next period’s income is then given by

E[yt+1|Xt ] =
∑
st+1

E[yt+1|st+1,Xt ]Pr[st+1|Xt ]. (10)

The role for money is different in (10) relative to (9) in that the history of money can now

predict income by containing information which helps predict next period’s state.

Since st+1 is independent of Xt conditional on st it follows that

Pr[st+1|Xt ] =
∑
st
Pr[st+1|st]Pr[st |Xt ]. (11)

From this relationship we may deduce that there are only two instances when there is no

additional information in the history of money for predicting next period’s state. The first

is when Pr[st+1|st] = Pr[st+1], i.e. the Markov process is serially uncorrelated. The second

case occurs when Pr[st |Xt ] = Pr[st |Zt ,Yt ].
This discussion presumes that the coefficients in the income equation vary freely with the

regime. It is possible, however, that these coefficients vary with s1,t+1 but not with s2,t+1.

Similarly, there may be information inMt for predicting s2,t+1 but not for predicting s1,t+1.

In such situations it may still be the case that the prediction of income in (10) does not

depend on the history of money. This leads us to the first result.

Proposition 1: The regime forecasts of s1,t+1 and s2,t+1 are independent and there is no

information in X2,t for predicting s1,t+1, i.e.

Pr[(s1,t+1, s2,t+1) = (j1, j2)|Xt ;θ∗] = Pr[s1,t+1 = j1|X1,t ;θ∗] Pr[s2,t+1 = j2|Xt ;θ∗], (12)

for all j1 ∈ {1, . . . , q1} with q1 ≥ 2, j2 ∈ {1, . . . , q2}, and t ∈ {1, . . . , T}, if and only if either

(A1): (I) P = (P(1) ⊗ P(2)), δi,st = δi,si,t , α(k)ij,st = α
(k)
ij,si,t , Ωii,st = Ωii,si,t , and Ω12,st =

0 for all i, j ∈ {1,2}, k ∈ {1, . . . , p}, st ∈ {1, . . . , q}, and

(II) α(k)12,s1,t = 0 for all k ∈ {1, . . . , p} and s1,t ∈ {1, . . . , q1}; or

(A2): P = (ıq1π(1)′ ⊗ P(2)),

is satisfied.

Notice first that all restrictions in (A1) and (A2) are linear. Furthermore, if we change the

restrictions in (A1.II) to α(k)21,s2,t = 0, then there is no information inX1,t for predicting s2,t+1.

Moreover, in the Appendix it is shown that
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Corollary 1: If and only if condition (A1.I) is satisfied, then

Pr[(s1,t , s2,t) = (i1, i2)|Xτ ;θ∗] = Pr[s1,t = i1|Xτ ;θ∗1 ]Pr[s2,t = i2|Xτ ;θ∗2 ],

for all i1 ∈ {1, . . . , q1} with q1 ≥ 2, i2 ∈ {1, . . . , q2} with q2 ≥ 2, and t, τ ∈ {1, . . . , T}, with

θ∗ = (θ∗1 , θ∗2 ).

Hence, for the predictions of s1,t and s2,t to be independent, it is not sufficient that the

Markov processes are independent. In fact, the joint distribution for xt conditional on st
(andXt−1) being equal to the product between the marginal distributions for xl,t conditional
on sl,t (andXt−1) for l = 1,2 must also be satisfied. Under these additional restrictions fore-

casting, filtering and smoothing inference about the two regime variables can be conducted

independently. Additionally,

Corollary 2: If and only if condition (A1) is satisfied, then

Pr[(s1,t , s2,t ) = (i1, i2)|Xτ ;θ∗] = Pr[s1,t = i1|X1,τ ;θ∗1 ]Pr[s2,t = i2|Xτ ;θ∗2 ],

for all i1 ∈ {1, . . . , q1}with q1 ≥ 2, i2 ∈ {1, . . . , q2}, and t, τ ∈ {1, . . . , T}, with θ∗ = (θ∗1 , θ∗2 ).

In the Appendix (see Lemma 2 and Lemma 3) I present necessary and sufficient conditions

for conducting optimal inference on s1,t and s2,t independently in Markov switching models

when the density function for εt |st meets the criteria for conducting optimal inference on
st using the algorithm in Hamilton (1994) and Kim (1994).

The intuition behind condition (A1) is, in fact, straightforward. Suppose p = Dt = 1,

n = q = q1 = 2, while ε2,t is iid. The restrictions on Ωst in (A1) are sufficient for the money

equation residual to be iid. Now consider the experiment of drawing twomt ’s, one for each

regime, when yt−1 and mt−1 are fixed. The difference between these two draws is:

mt|st=2 −mt|st=1 = (δ2,2 − δ2,1)+ (α21,2 −α21,1)yt−1 + (α22,2 −α22,1)mt−1. (13)

The right hand side of (13) is zero for all vectors (yt−1,mt−1) when the coefficients in the

money equation are constant across states. Accordingly, if these restrictions are satisfied,

then Pr[st |Yt ,Mt ] = Pr[st |Yt ,Mt−1] and all information about st is found in the income

equation. If the coefficient on money in that equation is zero for both states, then lags of

money play no role for predicting regime switches.

4.2. Granger Noncausality

Before we present the next result, some additional notation is needed. Specifically, let

µ̄1,t ≡ E[µ1,st+1|Xt ;θ∗], (14)
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while

ā(k)1r ,t ≡ E[a(k)1r ,st+1|Xt ;θ∗], (15)

for all r ∈ {1, . . . ,4} and k ∈ {1, . . . , p}. The 1-step ahead forecast error for y is then given
by ut+1 = vt+1 + ε1,t+1, where

vt+1 ≡
(
µ1,st+1 − µ̄1,t

)
Dt+1 +

p∑
k=1

(
a(k)11,st+1 − ā

(k)
11,t

)
yt+1−k

+
p∑
k=1

(
a(k)12,st+1 − ā

(k)
12,t

)
z1,t+1−k +

p∑
k=1

(
a(k)13,st+1 − ā

(k)
13,t

)
mt+1−k

+
p∑
k=1

(
a(k)14,st+1 − ā

(k)
14,t

)
z2,t+1−k,

(16)

is (conditional onXt ) uncorrelated with ε1,t+1.5 A sufficient, but not necessary, condition for

vt+1 to be mean zero stationary is that income is covariance stationary. Another possibility

is that xt is cointegrated. For the remainder of this section I shall assume that ut+1 is mean

zero stationary.

Proposition 2: m is noncausal in mean for y if and only if either

(B1): (A1); or

(B2): (i)
∑q
j=1 µ1,jpij = µ̄1, (ii)

∑q
j=1 a

(k)
1r ,jpij = ā(k)1r , and (iii) ā(k)13 = 0 for all i ∈

{1, . . . , q}, r ∈ {1, . . . ,4}, and k ∈ {1, . . . , p},
is satisfied.

The nonlinear restrictions in condition (B2) state that given any regime i, the expected

value of each random coefficient in the income equation is constant and that the expected

values of the coefficients on lags of money are all zero. Hence, if we are willing to condi-

tion on P having full rank q, then condition (B2) implies that all coefficients in the income

equation must be constant, while the coefficients on lags of money are all zero.

This observation can be generalized as follows:

Corollary 3: Suppose that condition (A2) with rank[P(2)] = q2 is satisfied, then condition

(B2) is equivalent to

(B3): (i)
∑q1
j1=1 µ1,(j1,j2)π

(1)
j1 = µ̄1, (ii)

∑q1
j1=1 a

(k)
1r ,(j1,j2)π

(1)
j1 = ā(k)1r , and (iii) ā(k)13 = 0

for all j2 ∈ {1, . . . , q2}, r ∈ {1, . . . ,4}, and k ∈ {1, . . . , p}.

This Corollary is of particular interest when q = 2. For such Markov processes, the rank

of P can be either 1 or 2. In both cases, the conditions in Corollary 3 are satisfied and,

5 Blix (1997) derives a general formula for the expectation of xt+τ , τ ≥ 1, conditional on Xt and applies it to
rational expectations hypotheses.
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hence, condition (B3) gives two sets of parameter constraints that are equivalent to the set

of restrictions in (B2). If q2 = 1, then the 2-state Markov process is serially uncorrelated,

with P = ı2π(1)′ having rank 1. For this case, (B3) states that
∑2
j1=1 a

(k)
13,j1π

(1)
j1 = 0 for all k.

On the other hand, if q2 = 2, then the Markov process is serially correlated with P = P(2).
Now, condition (B3) states that all coefficients in the income equation are constant across

the regimes, and the coefficients on lags of money are zero.

The number of restrictions under (B2) and (B3) are typically very different. Suppose that

n = 2 and Dt = 1 for all t in the 2-state MS-VAR model. Here we find that there are 3p + 1

restrictions in (B2), whereas (B3) with q2 = 1 has p + 1 restrictions (the p constraints on

a(k)13,j above, and the reduced rank constraint p11 = p21), and (B3) with q2 = 2 has 3p + 1.
One difference between the two (B3) sets of restrictions is that the q2 = 1 set contains

nonlinear restrictions, while the q2 = 2 set only contains linear constraints. For the pur-

pose of testing and conducting statistical inference, the restrictions in (B2) are too gen-

eral. For instance, suppose condition (B3) with q2 = 1 is satisfied. It then follows that the

(3p+ 1)× (8p + 12) matrix with partial derivative of the (B2) constraints with respect to θ
has rank equal to p or p + 1.6 Under the assumption that the ML estimator of θ is asymp-

totically normal with a positive definite covariance matrix, the limiting distributions of the

Wald, LM, and LR statistics are generally unknown. In fact, the only case when the limiting

distributions of these statistics is known is when P has full rank 2, i.e. when (B3) with q2 = 2

in Corollary 3 holds.

The problems with testing (B2) for general choices of q are even more severe. Unless (B3)

with q2 = q is satisfied, the nonlinear restrictions in (B2) will always have a matrix with

partial derivatives with respect to the parameters which has a reduced row rank. Moreover,

the exact rank of this matrix depends not only on the rank of P , but also on the other

parameters of the model. Let us therefore turn to more restrictive forms of noncausality.

Proposition 3: m is noncausal in mean-variance for y if and only if either

(C1): (A1); or

(C2): (i) (B2), (ii)
∑q
j=1[(µ1,j − µ̄1)⊗ (µ1,j − µ̄1)]pij = σµ , (iii)

∑q
j=1[(a

(k)
1r ,j − ā(k)1r )⊗

(a(l)1s,j − ā(l)1s )]pij = σ(k,l)r ,s , (iv)
∑q
j=1[(µ1,j − µ̄1)⊗ (a(k)1r ,j − ā(k)1r )]pij = σ(k)µ,r , (v)∑q

j=1ω11,jpij = σω, and (vi) a(k)13,j = 0 for all i, j ∈ {1, . . . , q}, r , s ∈ {1,2,4},
and k, l ∈ {1, . . . , p},

is satisfied.

Compared with the conditions in Proposition 2 we now have that the coefficients on

money in the income equation must be zero for all lags and regimes when money is non-

causal in mean-variance for income. Moreover, under (C2), the mean and the covariances

6 The rank is p if and only if µ1,1 = µ1,2 and a(k)1r ,1 = a(k)1r ,2 for all k ∈ {1, . . . , p} and r ∈ {1,3}.
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of all random coefficients in the income equation are constant conditional on the previ-

ous regime. Notice that the covariance restrictions under this condition are algebraically

equivalent to
∑q
j=1(µ1,j ⊗ µ1,j)pij = σµ + (µ̄1 ⊗ µ̄1), etc.

The problems of testing and conducting statistical inference that were discussed in the

(B2) case above remain under the stricter condition (C2). If we are willing to condition on P

having full rank q, however, then (C2) is equivalent to (B2) and the additional requirement

that the variances of ε1,t+1 are constant across states. The following Corollary generalizes

this result.

Corollary 4: Suppose that condition (A2) with rank[P(2)] = q2 is satisfied, then condition

(C2) is equivalent to

(C3): (i) (B3), (ii)
∑q1
j1=1[(µ1,(j1,j2) − µ̄1)⊗ (µ1,(j1,j2) − µ̄1)]π

(1)
j1 = σµ , (iii)

∑q1
j1=1

[(a(k)1r ,(j1,j2) − ā
(k)
1r ) ⊗ (a(l)1s,(j1,j2) − ā

(l)
1s )]π

(1)
j1 = σ(k,l)r ,s , (iv)

∑q1
j1=1[(µ1,(j1,j2) −

µ̄1) ⊗ (a(k)1r ,(j1,j2) − ā
(k)
1r )]π

(1)
j1 = σ(k)µ,r , (v)

∑q1
j1=1ω11,(j1,j2)π

(1)
j1 = σω, and (vi)

a(k)13,j = 0 for all r , s ∈ {1,2,4}, j ∈ {1, . . . , q}, j2 ∈ {1, . . . , q2}, and k, l ∈
{1, . . . , p}.

In the case when q = 2, we now have that condition (C3) only contains linear restrictions.

To see this, note that q2 = 1 is equivalent to the restrictions p11 = p21, and a(k)13,j = 0 for all j

and k. Hence, compared with condition (B3) we now have p additional restrictions. Similarly,

the case when q2 = 2 means that all coefficients in the income equation are constant across

states, that the coefficients on lags of money are zero, and that the conditional variance of

ε1,t+1 is constant across states and over time.

For q ≥ 3, however, it is difficult to formulate restrictions which are equivalent to (C2)

conditional on various choices of rank[P], but which do not suffer from linearly dependent

partial derivatives. Let us therefore consider the limiting case.

Proposition 4: m is noncausal in distribution for y if and only if either

(D1): (A1); or

(D2): (i) (A2), (ii) µ1,j = µ1,j1 , (iii) a(k)1r ,j = a(k)1r ,j1 , (iv) a
(k)
13,j = 0, and (v)ω11,j =ω11,j1

for all j ∈ {1, . . . , q}, r ∈ {1,2,4}, and k ∈ {1, . . . , p},
is satisfied.

Hence, when the distribution for ut+1 conditional on Xt is invariant with respect toMt ,

then the parameters of the MS-VAR model satisfies linear restrictions. Accordingly, the ma-

trix with partial derivatives of the constraints with respect to the parameters has full row

rank. In addition, statistical inference can be conducted with the usual limiting distribu-

tions provided that the ML estimator of θ is asymptotically normal with a positive definite
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covariance matrix; for some preliminary results on ML estimation and the asymptotic dis-

tribution, the reader is referred to Bickel and Ritov (1996) and Bickel, Ritov, and Rydén

(1998).

The assumption that ut+1 is (weakly) stationary means that noncausality in distribution

implies noncausality in mean-variance. In other words, [(D1) or (D2)] is a sufficient condition

for [(C1) or (C2)]. Moreover, by Corollary 4 we have that the reverse is also true when q = 2

since (D2) is equivalent to (C3) with rank[P(2)] = q2 for suchmodels. In fact, this observation
can be generalized as follows:

Corollary 5: Suppose rank[P] ∈ {1, q}, then m is noncausal in distribution for y if and

only if it is noncausal in mean-variance for y .

For general rank[P], however, noncausality in mean-variance does not imply noncausality

in distribution. To understand this better, consider the following example. Suppose that

q1 = q2 = 2, with P satisfying condition (A2), and π(1)1 = π(1)2 = .5, while P(2) has full rank.
Moreover, suppose that yt = ε1,t , where ω11,(1,1) = ω11,(2,2) = 1 and ω11,(1,2) = ω11,(2,1) =
2. For this model it can easily be verified that condition (C3) in Corollary 4 is satisfied, with∑2
j1=1ω11,(j1,j2)π

(1)
j1 = 1.5 for both j2 ∈ {1,2}. Hence, m is noncausal in mean-variance for

y . However, m can be causal in distribution for y since ω11,(j1,j2) depends on s2,t+1 (i.e.

given j1, the value of ω11,(j1,j2) varies with j2) andMt can contain unique information for

predicting s2,t+1.

This example illustrates the intuition behind the linear restrictions in (D2). That is, non-

causality in distribution requires that the income equation coefficients are invariant with

respect to those regimes which Mt can help predict. The moment restrictions in (C2) are

not strict enough to rule out all cases whenMt is useful for predicting those regimes which

influence the income equation coefficients.

Finally, while the concepts of weak and strong exogeneity in Engle, Hendry, and Richard

(1983) have primarily been applied to linear time series models, they may also be examined

here since the definition of noncausality in distribution corresponds to their definition of

Granger noncausality. It is then straightforward to verify that condition (D1) is sufficient

for x1 (x2) to be weakly (strongly) exogenous for x2 (x1). Condition (D2), however, has no

such implications because the sequential cut condition need not be satisfied.

5. An Application to Money and Income

In this section we shall analyse the causality restrictions for monthly U. S. data on money

and income. The variables are M1 and industrial production for the sample period 1959:1

to 1995:2. Both series are seasonally adjusted (as in many previous studies using these
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data; e.g. Christiano and Ljungqvist, 1988) and taken from Citibase.7 To avoid numerical

problems in the estimation the log levels of the variables are multiplied by 1200. Moreover,

Dt is a constant.

Initially we look at a single regime VAR model with 12 lags for the levels and 11 lags for a

first differences. Some of the evidence is presented in Table 1. From the top panel it can be

seen that we can reject that money is noncausal (in mean) for income at the 5 percent level

of marginal significance for the log levels, but not for the first differences. This result is thus

consistent with what has been found by e.g. Christiano and Ljungqvist (1988). Moreover, if

we include a linear trend in the vector of deterministic variables (as suggested by Stock and

Watson, 1989), the p-value for the levels model is unaffected, while it falls to 6.5 percent

for the first difference specification.

In the bottom panel we have computed the likelihood ratio statistics (trace) for the hy-

potheses of 2 and at least 1 unit root against the alternatives of fewer unit roots. For the

levels model we cannot reject the hypothesis of 2 unit roots,8 while for the first differences

we can reject the hypothesis of at least 1 unit root against the alternative that the variables

are stationary. Looking at the modulus of the eigenvalues for the levels system we find

that the largest eigenvalue is .999 while the second largest is .987. Hence, by the results in

e.g. Sims et al. (1990) the limiting distribution for the F statistic in the levels model with a

constant is not F(12,∞) if there are 2 unit roots and the actual p-value may very well be

higher than that reported in Table 1.9

Still, these two models both seem to be misspecified. In particular, there are strong

signs of conditional heteroskedastocity for the residuals in both systems and in the levels

specification there are also signs of serial correlation. If an MS-VAR model with a serially

correlated regime process has generated the data, then we would expect to find such forms

of misspecification. If this is indeed the case then, as we have seen from the theoretical

analysis above, the hypothesis of Granger noncausality (in mean) needs to be parametrically

respecified.

7 The use of seasonally adjusted data is far from ideal. I have chosen to use such data here to facilitate
comparisons with other studies. For more recent studies on the issue of money-income causality and the use
of nonlinear time series models, see e.g. Swanson (1998) and Rothman, Dijk, and Franses (1999).
8 The p-values have been calculated using the software developed in connection with MacKinnon, Haug, and
Michelis (1999) and can be downloaded from http://qed.econ.queensu.ca/pub/faculty/mackinnon/johtest/ .
9 See e.g. Warne (1997) for an example of how the limiting distribution of the Wald statistic compares with
the χ2 distribution once unit roots are taken into account.
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In Table 2 some stylized facts10 about the behavior of money and income growth are pre-

sented for an MS-VAR model with two states and two lags.11 On average, income grows at

about 3 percent per year with a standard deviation of approximately 11 percent. The aver-

age growth in money is somewhat higher than that of income, while the standard deviation

is about 5 percent. Moreover, income and money growth do not seem to be contemporane-

ously correlated.

Turning to the two states, we find that the estimates of the MS-VAR model roughly sug-

gests a zero average income growth in State 1 and a 50 percent higher volatility than on

average. In State 2, income growth is roughly 4 percent and the volatility is quite modest.

Money, on the other hand, grows at about the same rate in both states and is somewhat

more volatile in State 1. Concerning the contemporaneous correlations, there is a negative

correlation in State 1 and a positive in State 2. Both correlations are, however, very small.

The estimated smooth probabilities of being in State 1 are graphed in the upper box of

Figure 1. The shaded regions represent the periods from peak to trough according to the

NBER dating scheme. In the lower box, the maximum posterior estimates of the regime

process are depicted, i.e.

ŝt = arg max
j∈{1,2}

Pr
[
st = j

∣∣∣XT ; θ̂].
Here we see that the estimated regimes tend to switch from State 2 (1) to State 1 (2) around

the NBER peaks (troughs). Summing up, these simple moments and plots suggest that we

can interpret State 1 as “the bad state” and State 2 as “the good state”.12

With q = 2 it follows that either q1 or q2 is equal to unity. Accordingly, the coefficients

in the money and income equations cannot both vary over time and be independent. The

ML estimates of all 28 parameters are reported in Table 3.13 The estimates are computed

via the EM algorithm; for more details the reader is referred to Lindgren (1978), Hamilton

(1990, 1994), and references therein. Standard errors for the point estimates are calculated

from the conditional scores (as in Hamilton, 1996) and are reported within parentheses. The

point estimates for the bad state (Regime 1) are generally more uncertain than those for the

10 Formulas for computing the mean and the autocovariance conditional on the state are given in Warne
(1999); see also Timmermann (2000). Standard errors are given within parenthesis. The latter statistics are
computed using the delta method, with numerical partials of the moment expressions. The covariance matrix
for the ML estimator of θ has been estimated from the conditional scores.
11 Based on the misspecification tests discussed in Hamilton (1996) this model is consistent with the data;
see Warne (1999) for details.
12 The interpretation of the two regimes is discussed in more detail by Warne (1999).
13 The statistic max |eig(Â)| refers to Karlsen’s (1990) condition for stationarity. If the true value of this
statistic is less than unity, then xt is stationary.
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good state. This is related to the good state being roughly 3 times as likely (unconditionally)

as the bad state.14

The sets of necessary and sufficient conditions for money to be conditionally uninfor-

mative about the regime process that influences income and to be noncausal for income,

respectively, are given in Table 4 for the case when n = q = 2. Since the constraints in (A1)

when q1 = 1 and q2 = 2 is a special case of (C3) (and thus of (D2)), we shall not test this

hypothesis.

Let us first consider the hypothesis that, conditional on the state, money does not Granger

cause income. That is, α(1)12,st = α
(2)
12,st = 0 for each state separately. The results from using

Wald and F -statistics are reported in Table 5. For the good state, this hypothesis is rejected

at the 5 percent level, and for the bad state at the 60 percent level. Hence, money does not

cause income when we know that next period’s state is the bad state, while it may cause

income if next period’s state is the good state.

Next, consider the hypothesis that the history of money is uninformative about next

period’s state. According to the evidence in Table 5, both sets of restrictions, (A1) with

q1 = 2, q2 = 1 and (A2) (see Table 4), are strongly rejected by the data. Moreover, if (A2)

is false, then the Markov process is serially correlated. Based on the point estimates of

the transition probabilities in Table 3, good (bad) states are typically followed by good (bad)

states. Together with the conclusion from testing (A2), this suggests that the regime process

is subject to positive serial correlation.

While various aspects of the noncausality hypotheses have already been examined, the

tests of all sufficient conditions have not been addressed. From Proposition 2 and Corol-

lary 3 we have that if and only if [(B1) or (B3) and q2 = 1 or (B3) and q2 = 2] is true, then

money is noncausal in mean for income. Given the evidence about (A2) it is not surprising

that [(B3) and q2 = 1] is strongly rejected as well. Now, if (A2) is false then P must have

full rank 2 and, thus, q2 = 2. According to the results in Table 5 the hypothesis [(B3) and

q2 = 2] is rejected at the 10 percent level, but not at the 5 percent level. Hence, there is

some evidence that the conditional mean of income is invariant with respect to the history

of money.

Finally, from Proposition 3, Proposition 4, and Corollary 4 we know that money does

not Granger cause income in mean-variance and in distribution if and only if [(C1) or (C3)

and q2 = 1 or (C3) and q2 = 2] is true. These three sets of restrictions are, individually,

14 The estimated number of observation for State 1 is approximately 111 and for State 2 about 320. These
estimates are calculated as

∑T
t=1 Pr[st = j|XT ; θ̂]. Note that this number is approximately equal to π̂jT , where

π̂j is the ML estimator of πj ; for details see Warne (1999). 95 percent confidence intervals for the estimated
number of observations are given within parenthesis. These bands have been computed from the estimated
standard error for π̂j .
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rejected at conventional levels of marginal significance, suggesting that there is information

in money about the conditional forecast error variance of income.

Reestimating the MS-VAR model under the noncausality in mean restrictions (B3) with

q1 = 1 and q2 = 2 (i.e. the hypothesis that cannot be rejected at the 5 percent level of mar-

ginal significance) we obtain the results presented in Tables 6 and 7. The conditional mean

of income growth is now, by assumption, equal for the two states. The remaining estimated

moments (cf. Table 6) are, however, very similar to those reported in Table 4. Moreover,

from Table 7 it can be seen that neither the estimated money equation parameters nor the

Markov probabilities are greatly affected by the imposed restrictions on the income equa-

tion. Hence, it seems reasonable to conclude that an MS-VAR model of money and income

growth where the income equation coefficients are constant across states, the coefficients

on lags of money are zero, but where the variance of the income equation residual varies

with the regime, is a suitable representation of the data.

To examine the effects on the standard Granger noncausality tests for single regime VARs

(cf. Table 1) when data has actually been generated by an MS-VAR model, a small Monte

Carlo study has been undertaken. As the null model, I selected the MS-VAR specification

in Table 7, i.e. when the growth rate of money is noncausal in mean for the growth rate of

income. The alternative model is given by the MS-VARmodel in Table 3. Residuals have been

drawn from a standard normal bivariate distribution and the regimes have been generated

from a uniform distribution over the interval [0,1], with the initial regime determined by

the ergodic probability.15

In the top panel of Table 8 the estimated critical values at the 10, 5, and 1 percent level

are given along with p-values taken from the estimated distributions. Since data have been

generated by a model with 2 unit roots it is not surprising that we can no longer reject

the null hypothesis that money does not Granger causes income in the single regime VAR

system for the levels at the 5 percent level (the estimated p-value is roughly 12 percent).

Looking at the size distortions in the bottom panel we find that the levels test is highly

oversized. Part of this is most likely due to not using a reference distribution in Table 1

that takes the number of unit roots into account, but the first difference test is also oversized

and, hence, the effect of misspecification may also be very important.16 Still, despite size

distortions, the size adjusted power of these tests is decent under the alternative model.

At the 5 percent level, we reject a false null in about 62 percent of the cases for the levels

VAR and in 71 percent of the cases for the first difference VAR.

15 The total number of replications is 10,000 for each data model, the initial values from the actual series
have been used, and the levels series have been directly generated from the first differences. RATS code for
the simulation experiment is available from my web site at: http://www.research.texlips.org/.
16 For samples of the size we are dealing with here (421 usable observations), we may expect the reference
distribution to provide a good approximation when the estimated model is consistent with the data.
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Summing up, if data is generated by a bivariate 2-state conditionally Gaussian MS-VAR(2)

model, then money Granger causes income for monthly U. S. data in log growth rates. There

is some evidence that money is noncausal in mean for income, but the hypotheses imply-

ing noncausality in mean-variance (distribution) are all strongly rejected at conventional

marginal levels of significance. This can be contrasted with single regime VAR’s where the

opposite conclusion is reached in first difference models. In fact, noncausality in such mod-

els is very robust with respect to the selection of sample period and lag order (except for

very short lag orders, when the estimated residuals do not pass standard serial correla-

tion diagnostics). For example, Christiano and Ljungqvist (1988) show that money Granger

causes income in a bivariate single regime VAR (with 12 lags) for log levels, but not for log

growth rates. They argue, based on evidence from bootstrapped empirical distributions,

that the conclusion for the first difference model is wrong. The evidence from the 2-state

MS-VAR(2) model supports Christiano and Ljungqvist’s conclusion that money does Granger

cause income in the bivariate case, although for a very different reason. Specifically, the re-

sults in this paper suggest that the “cause” stems from a signal extraction problem where

the history of money is useful for predicting the regime variable.

The suggestion that money and income are correlated because of a signal extraction

problem rather than a causal link frommoney to income goes back to (at least) Lucas (1972)

in the macroeconomics literature. The signal extraction problem in the (reduced form)

regime switching VAR is primarily about the uncertainty of the regimes, but it may also, at

a deeper level, reflect a Lucas type problem through the parameters.

6. Concluding Remarks

The concern in this paper is the determination of a set of (economically and statistically

meaningful) parametric Granger noncausality restrictions for a q-state MS-VAR model. To

this end we examine three related types of noncausality that have been suggested elsewhere

in the literature. The starting point for these concepts is the 1-step ahead forecast errors

for the conditional expectations operator.

The weakest form of noncausality that we consider is based on Granger’s original version,

called noncausality in mean, where the forecast error variances are compared for two infor-

mation sets, with one set being a strict subset of the other. The second form compares both

the conditional means and the conditional variances (noncausality in mean-variance), while

the third form deals with the conditional distribution of the forecast errors (noncausality

in distribution or conditional independence).

It is shown that noncausality in any one of the three forms is not associated with a

unique set of restrictions on the parameters of the MS-VAR. For each noncausality concept,

however, the number of such sets is finite and depends on the dimension of the observable
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variable vector and on the number of Markov regimes. The noncausality in mean and in

mean-variance cases generally result in some of these sets containing nonlinear restrictions,

with the nonlinearity being dependent on the rank of the matrix with Markov transition

probabilities. Moreover, the number of restrictions actually being tested depends on the

rank of this matrix, thereby making these concepts difficult to deal with in applied analysis.

For noncausality in mean-variance, however, the restrictions are always linear when we

condition on either a full or a unit rank, as we can e.g. do when the number of regimes is

exactly two.

Noncausality in distribution, on the other hand, always means that some set of linear

restrictions is satisfied by the MS-VAR model. For each such set, the number of restrictions

is known and does not depend on the rank of the Markov transition matrix. Accordingly,

statistical inference may be conducted using standard methods as long as the ML estimator

of the parameters is asymptotically normal; see e.g. Bickel and Ritov (1996), Bickel, Ritov,

and Rydén (1998), and Giudici, Rydén, and Vandekerkhove (1999)

In the process of discussing Granger noncausality in MS-VAR models, we have also stud-

ied regime inference in some detail. Specifically, one quickly realizes that if, say, money

is noncausal in mean for income, then the history of money cannot contain any unique

information for predicting those next period states that influence the conditional mean of

income. In the case of two regimes, this means that (i) the Markov regimes do not influence

the conditional mean of income, (ii) money is conditionally independent of the regimes, or

(iii) the regime process is serially uncorrelated.

To illustrate the concepts we have tested the implied restrictions on U. S. monthly data

on the first differences of money and income for the 2 regime case as well as for the levels

and first differences in single regime VARs. Here we have found some evidence supporting

the view that money is not Granger causal in mean for income. In particular, the income

equation may very well have constant coefficients, with those on lags of money being zero.

Still, the conditional variance of income seems to vary with the regime process and the

history of money appears to contain unique information for predicting the next period

regime. Accordingly, the hypothesis that money is Granger causal in mean-variance (and in

distribution) for income is strongly rejected by the data.

To examine the effects of not taking the regime process into account when testing Granger

noncausality in standard VAR models a small Monte Carlo study has been undertaken. We

find the F -test in the single regime levels model is highly oversized and that the F -test for

the single regime first difference model is also oversized (although to a lesser extent) when

data is generated from a 2-state MS-VAR model for the first differences. An explanation for

the poor performance of the levels test is, of course, that the reference distribution does

not take unit roots into account and is therefore asymptotically invalid. But since the test
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in the first difference model is also oversized, model misspecification also seems to play an

important role. Furthermore, the (size corrected) power of the single regime tests is decent

against the alternative we consider, but given the sample size, far from spectacular.
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Table 1: Evidence from single regime VARmodels on money and income causality and coin-
tegration in the U. S. for the sample 1959:1–1995:2.

Granger Noncausality

System Hypothesis # d. f. F p-value

y a(k)12 = 0 (12,397) 2.034 .020

m k = 1, . . . ,12

∆y a(k)12 = 0 (11,399) 1.534 .117

∆m k = 1, . . . ,11

Cointegration Tests

System Hypothesis eigenvalue LRtr p-value

y # unit roots = 2 .022 9.38 .33

m # unit roots ≥ 1 .000 .01 .92

∆y # unit roots = 2 .076 53.59 .00

∆m # unit roots ≥ 1 .047 20.45 .00
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Table 2: ML estimates and standard errors of conditional and unconditional means and
covariances for a 2-state MS-VAR(2) model of money and income growth in the US
for the sample 1959:1–1995:2.

Unconditional moments

variable mean variance covariance

∆y 3.32 118.07

(.98) (17.05) .57

∆m 5.98 34.48 (5.21)

(.54) (3.83)

Conditional moments

Regime 1

∆y .63 286.86

(3.22) (41.70) −10.75
∆m 5.21 59.24 (18.89)

(1.04) (9.85)

Regime 2

∆y 4.22 58.22

(.69) (6.67) 3.44

∆m 6.24 29.91 (3.17)

(.61) (3.51)
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Table 3:ML estimates and standard errors for a 2-state MS-VAR(2) model of money and
income growth in the US for the sample 1959:1–1995:2.

Income equation Money equation

coefficient st = 1 st = 2 coefficient st = 1 st = 2

δ1,st −1.006 1.648 δ2,st 4.742 2.410

(2.897) (.759) (1.444) (.446)

α(1)11,st .447 .274 α(1)21,st .067 −.025
(.128) (.057) (.070) (.035)

α(1)12,st .378 −.104 α(1)22,st .232 .476

(.359) (.112) (.122) (.056)

α(2)11,st −.084 .127 α(2)21,st −.031 −.064
(.144) (.054) (.083) (.033)

α(2)12,st −.167 .274 α(2)22,st −.149 .203

(.312) (.110) (.137) (.056)

Ω11,st 242.546 46.535 Ω22,st 55.940 14.483

(32.767) (5.297) (9.766) (1.426)

Ω12,st −19.168 2.872

(15.268) (1.734)

Markov probabilities

p11 .744 p22 .914

(.071) (.030)

max |eig(Â)| = .408 lnL(XT ; θ̂) = −2852.6 π̂1 = .251 (.060)

Estimated # obs: st = 1 : 111 (59,163); st = 2 : 320 (268,372)
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Table 4: Noncausality and conditional regime independence restrictions in a 2-state MS-
VAR(p) model with xt = (∆yt ,∆mt).

Hypothesis Restrictions # restrictions

(A1); q1 = 1, q2 = 2 δ1,st = δ1, α
(k)
11,st = α(k)11 , α

(k)
12,st = 0,

Ω11,st = Ω11, Ω12,st = 0
3p+4

(A1); q1 = 2, q2 = 1 δ2,st = δ2, α
(k)
21,st = α(k)21 , α

(k)
22,st = α(k)22 ,

Ω22,st = Ω22, Ω12,st = 0, α(k)12,st = 0

4p+4

(A2); q1 = 2, q2 = 1 p11 = p21 1

(B3); q1 = 1, q2 = 2 δ1,st = δ1, α(k)11,st = α(k)11 , α
(k)
12,st = 0 3p+1

(B3); q1 = 2, q2 = 1 p11 = p21,
∑2
j=1α

(k)
12,jπj = 0 p+1

(C3); q1 = 1, q2 = 2 δ1,st = δ1, α
(k)
11,st = α(k)11 , α

(k)
12,st = 0,

Ω11,st = Ω11

3p+2

(C3); q1 = 2, q2 = 1, p11 = p21, α(k)12,st = 0 2p+1
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Table 5: Wald and F -tests of the Granger noncausality restrictions in the 2-state MS-VAR(2)
model of money and income growth in the US for the sample 1959:1–1995:2.

Hypothesis # rest. W p-value F p-value

α(k)12,1 = 0 2 1.113 .573 .540 .583

α(k)12,2 = 0 2 6.600 .037 3.201 .042

Money and Regime Forecasts

(A1); q1 = 2, q2 = 1 12 60.390 .000 4.939 .000

(A2); q1 = 2, q2 = 1 1 53.696 .000 51.951 .000

Noncausality in mean

(B1); q1 = 2, q2 = 1 12 60.390 .000 4.939 .000

(B3); q1 = 2, q2 = 1 3 55.267 .000 17.910 .000

(B3); q1 = 1, q2 = 2 7 13.261 .066 1.850 .076

Noncausality in mean-variance

(C1); q1 = 2, q2 = 1 12 60.390 .000 4.939 .000

(C3); q1 = 2, q2 = 1 5 71.542 .000 13.910 .000

(C3); q1 = 1, q2 = 2 8 74.204 .000 9.060 .000

Noncausality in distribution

(D1); q1 = 2, q2 = 1 12 60.390 .000 4.939 .000

(D2); q1 = 2, q2 = 1 5 71.542 .000 13.910 .000

(D2); q1 = 1, q2 = 2 8 74.204 .000 9.060 .000

Notes: For the Wald statistic (W ) the reference distribution is χ2 with de-
grees of freedom equal to the number of restrictions, and for the F statistic
the distribution is approximated by an F distribution with degrees of free-
dom given by the number of restrictions and the number of observations,
T = 431, minus the average number of free parameters per equation.
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Table 6: ML estimates and standard errors of conditional and unconditional means and
covariances for a 2-state MS-VAR(2) model of money and income growth in the US
for the sample 1959:1–1995:2 under the linear noncausality in mean restrictions
(B3) with q1 = 1 and q2 = 2.

Unconditional moments

variable mean variance covariance

∆y 3.85 117.88

(1.44) (17.53) −3.18
∆m 5.99 34.94 (5.28)

(.59) (3.79)

Conditional moments

Regime 1

∆y 3.85 303.70

(1.44) (38.44) −13.04
∆m 5.25 59.74 (18.44)

(1.09) (9.56)

Regime 2

∆y 3.85 58.19

(1.44) (8.92) −.01
∆m 6.23 26.74 (2.81)

(.66) (3.65)
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Table 7: ML estimates and standard errors for a 2-state MS-VAR(2) model of money and in-
come growth in the US for the sample 1959:1–1995:2 under the linear noncausality
in mean restrictions (B3) with q1 = 1 and q2 = 2.

Income equation Money equation

coefficient st = 1 st = 2 coefficient st = 1 st = 2

δ1,st 2.193 2.193 δ2,st 4.640 2.514

(.436) (.436) (1.490) (.446)

α(1)11,st .323 .323 α(1)21,st .084 −.028
(.048) (.048) (.068) (.035)

α(1)12,st 0 0 α(1)22,st .249 .475

(.129) (.056)

α(2)11,st .107 .107 α(2)21,st −.044 −.062
(.046) (.046) (.076) (.033)

α(2)12,st 0 0 α(2)22,st −.162 .188

(.135) (.055)

Ω11,st 272.670 46.212 Ω22,st 55.537 15.012

(32.750) (5.007) (9.288) (1.463)

Ω12,st −17.791 2.599

(15.826) (1.764)

Markov probabilities

p11 .708 p22 .906

(.079) (.031)

max |eig(Â)| = .488 lnL(XT ; θ̂) = −2860.2 π̂1 = .243 (.055)

Estimated # obs: st = 1 : 107 (60,154); st = 2 : 324 (277,371)
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Table 8: Monte Carlo evidence on tests for Granger noncausality (in mean) in single regime
VAR models with 12 (11) lags for the levels (first differences) when data has been
generated by a 2-state MS-VAR(2) model for the first differences.

Granger Noncausality

(B3), q1 = 1, q2 = 2

System Fobs p-value 90 % 95 % 99 %

(y,m) 2.034 .116 2.089 2.365 2.919

(∆y,∆m) 1.534 .166 1.735 1.986 2.524

Unrestricted

(y,m) 2.034 .723 4.626 5.340 6.703

(∆y,∆m) 1.534 .846 4.698 5.423 6.946

Size & Size Adjusted Power

size power

System 10 % 5 % 1 % 10 % 5 % 1 %

(y,m) .33 .21 .07 .709 .619 .441

(∆y,∆m) .14 .08 .02 .789 .708 .538

Notes: For each bootstrap model 10,000 samples
have been generated for first differences and lev-
els. To calculate the size, the critical values from
the F(12,397) and F(11,399) distributions have been
used, i.e. (1.56,1.78,2.23) at the 10, 5, and 1 percent
level in the former case, and (1.59,1.81,2.29) in the
latter.

– 28 –



Figure 1: Estimated smooth probabilities (top) and regimes (bottom) for a 2-state MS-VAR(2)
model of money and income growth in the US for the sample 1959:1–1995:2
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Mathematical Appendix

Proof of Proposition 1

It is straightforward to show that (A2) implies that there is no information in X2,t for predicting

s1,t+1 since it implies that Pr[s1,t+1|Xt ] = Pr[s1,t+1]. Let us therefore focus on the only remain-

ing possibility, i.e. that Pr[s1,t|Xt ] = Pr[s1,t|X1,t ]. To prove that condition (A1) is necessary and

sufficient for this to hold, we shall proceed in two steps. The first step involves finding a general

condition for predictions of s1,t (and s2,t ) to be invariant with respect to alternative information

sets. In the second step we show that when εt|st is Gaussian, then the parameter restrictions in

(A1) are necessary and sufficient for the invariance condition in the first step to be satisfied under

the two information sets of interest.

Let ξt|τ(j) = Pr[st = j|xτ,Wτ], where xt is a vector of variables and Wτ is the history of an

observable vector wt up to and including period τ. The vector wt can, for example, be defined

such that it contains xt−1 and various exogenous variables observable at time t . Furthermore, let

ηt(j) = fxj (xt|st = j,Wt) be the density function for xt conditional on the state and the history of

w . We stack these functions into q × 1 vectors ξt|τ and ηt , respectively. From e.g. Hamilton (1994)

we have that ξt|t , ξt|t−1, and ηt are related according to:

ξt|t =
(
ξt|t−1 � ηt

)
ı′q
(
ξt|t−1 � ηt

) , t = 1,2, . . . , (A.1)

while

ξt|t−1 = P ′ξt−1|t−1, t = 2,3, . . . , (A.2)

and ξ1|0 = ρ, a q×1 vector of positive constants summing to unity. Here, � denotes the Hadamard

(element-by-element) product and ıq the q × 1 unit vector.
Let st be represented by two Markov processes, s1,t and s2,t , which are not necessarily indepen-

dent. Define j such that j ≡ j2+q2(j1−1)when (s1,t , s2,t ) = (j1, j2), where q1, q2 ≥ 1 and q = q1q2 ≥
2. Then ξt|τ(j) = ξt|τ(j1, j2) = Pr[s1,t = j1, s2,t = j2|xτ,Wτ], while ξ

(1)
t|τ (j1) =

∑q2
j2=1 ξt|τ(j1, j2) and

similarly for ξ(2)t|τ (j2). More compactly, this means that ξ
(1)
t|τ = [Iq1⊗ ı′q2]ξt|τ and ξ(2)t|τ = [ı′q1⊗Iq2]ξt|τ .

The following result about Hadamard and Kronecker products will prove useful below:

Lemma 1: If and only if ηt = (η(1)t ⊗ η(2)t ) with η(l)t being ql × 1 for l = 1,2, then

(
Iq1 ⊗ ı′q2

)(
ξt|t−1 � ηt

)
=
([
Iq1 ⊗ η(2)′t

]
ξt|t−1

)
� η(1)t , (A.3)

while

(
ı′q1 ⊗ Iq2

)(
ξt|t−1 � ηt

)
=
([
η(1)′t ⊗ Iq2

]
ξt|t−1

)
� η(2)t . (A.4)

Proof: The j :th element of (ξt|t−1�ηt) is given by ξt|t−1(j1, j2)η(1)t (j1)η
(2)
t (j2). Premultiplying this

q × 1 vector by [Iq1 ⊗ ı′q2] we obtain a q1 × 1 vector whose j1:th element is

η(1)t (j1)
q2∑
j2=1

ξt|t−1(j1, j2)η
(2)
t (j2).
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Now define

γt|t−1(j1) ≡




ξt|t−1(j1,1)
...

ξt|t−1(j1, q2)



, j1 = 1, . . . , q1. (A.5)

Then

γt|t−1(j1)′η
(2)
t =

q2∑
j2=1

ξt|t−1(j1, j2)η
(2)
t (j2).

Collecting these results we find that

[
Iq1 ⊗ ı′q2

][
ξt|t−1 �

(
η(1)t ⊗ η(2)t

)]
=




γt|t−1(1)′η
(2)
t

...

γt|t−1(q1)′η
(2)
t



� η(1)t . (A.6)

Define the q2×q1 matrix γt|t−1 according to γt|t−1 ≡ [γt|t−1(1) · · · γt|t−1(q1)]. It then follows that

γ′t|t−1η
(2)
t =




γt|t−1(1)′η(2)t
...

γt|t−1(q1)′η(2)t



. (A.7)

Moreover, ξt|t−1 = vec(γt|t−1), with vec being the column stacking operator. Next,

γ′t|t−1η
(2)
t =

[
η(2)′t ⊗ Iq1

]
vec

(
γ′t|t−1

)
=
[
η(2)′t ⊗ Iq1

]
Kq2,q1vec

(
γt|t−1

)
= Kq1,1

[
Iq1 ⊗ η(2)′t

]
ξt|t−1

=
[
Iq1 ⊗ η(2)′t

]
ξt|t−1,

(A.8)

where Km,n is the mn × mn commutation matrix, Km,1 = Im, and the third equality follows by

Theorem 3.9 in Magnus and Neudecker (1988). Collecting these last results we have established

(A.3). The result (A.4) follows by similar arguments.

If s1,t and s2,t are independent, it follows that

ξ(1)t|t−1 =
[
Iq1 ⊗ ı′q2

][
P(1)′ ⊗ P(2)′

]
ξt−1|t−1

= P(1)′ξ(1)t−1|t−1,
(A.9)

since P(2)ıq2 = ıq2 . Similarly, ξ
(2)
t|t−1 = P(2)′ξ(2)t−1|t−1. However, this does not mean that ξ(1)t|t−1 and

ξ(2)t|t−1 are independent since ξ
(1)
t−1|t−1 and ξ

(2)
t−1|t−1 need not be independent.

Lemma 2: If and only if (i) ηt = ϕt(η
(1)
t ⊗ η(2)t ) where ϕt is a scalar and η(l)t a ql × 1 vector, (ii) η(1)t

and η(2)t are vectors of density functions for independent random variables, and (iii) s1,t and s2,t are
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independent, then for all t = 1, . . . , T

ξ(l)t|t =
(
ξ(l)t|t−1 � η(l)t

)
ı′ql
(
ξ(l)t|t−1 � η(l)t

) , l = 1,2, (A.10)

with ξt|τ = (ξ(1)t|τ ⊗ ξ(2)t|τ ), where ξ(1)t|τ and ξ(2)t|τ are independent for τ = t, t − 1.

Proof: Note first that ı′q = ı′q1(Iq1 ⊗ ı′q2) = ı′q2(ı′q1 ⊗ Iq2). For l = 1 we know that ξ(1)t|t = [Iq1 ⊗ ı′q2]ξt|t .
From equation (A.1) we thus have that

ξ(1)t|t =
[
Iq1 ⊗ ı′q2

][
ξt|t−1 � ηt

][
ı′q1
(
Iq1 ⊗ ı′q2

)(
ξt|t−1 � ηt

)]−1

=
[([

Iq1 ⊗ η(2)′t

]
ξt|t−1

)
� η(1)t

][
ı′q1

([(
Iq1 ⊗ η(2)′t

)
ξt|t−1

]
� η(1)t

)]−1
,

(A.11)

by Lemma 1 and since the scalar ϕt cancels. A similar expression is obtained for ξ(2)t|t . Let ρ =
(ρ(1) ⊗ ρ(2)) where the elements of ρ(l) are positive and sum to unity. Then

ξ(1)1|1 =
[(
ρ(1) ⊗ η(2)′1 ρ(2)

)
� η(1)1

][
ı′q1
([
ρ(1) ⊗ η(2)′1 ρ(2)

]
� η(1)1

)]−1

=
[
ρ(1) � η(1)1

][
ı′q1
(
ρ(1) � η(1)1

)]−1
,

(A.12)

and similarly for ξ(2)1|1. By (ii) it follows that ξ
(1)
1|1 and ξ

(2)
1|1 are independent. Thus, ξ1|1 = (ξ(1)1|1⊗ξ(2)1|1).

Moreover, by (iii) we have that ξ(l)2|1 = P(l)′ξ(l)1|1, which are also independent for l = 1,2. Thus,

ξ2|1 = (ξ(1)2|1 ⊗ ξ(2)2|1) and so on for t = 2,3, . . . , T , thereby establishing sufficiency.

To prove necessity, suppose (i) is not true. Let ηt = (η(1)t ⊗ η(2)t )�ψt , where ψt ≠ (ψ(1)t ⊗ψ(2)t )

for ql × 1 vectors ψ(l)t . Then, for example

ξ(1)t|t =
[(
Iq1 ⊗ η(2)′t

)(
ξt|t−1 �ψt

)
� η(1)t

][
ı′q1
([
Iq1 ⊗ η(2)′t

][
ξt|t−1 �ψt

]
� η(1)t

)]−1

≠
[([

Iq1 ⊗ η(2)′t

]
ξt|t−1

)
� η(1)t

][
ı′q1

([(
Iq1 ⊗ η(2)′t

)
ξt|t−1

]
� η(1)t

)]−1
.

(A.13)

The only case when the inequality can be replaced with an equality is if ψt = (ψ(1)t ⊗ψ(2)t ). Next,

if (ii) does not hold, then for instance ξ(1)1|1 and ξ
(2)
1|1 cannot be independent. Finally, if (iii) does

not hold, then ξ(1)t|t−1 ≠ P(1)′ξ
(1)
t−1|t−1 and depends on ξ

(2)
t−1|t−1 as well. Thus, ξ

(1)
2|1 and ξ

(2)
2|1 cannot be

independent even if ξ(1)1|1 and ξ
(2)
1|1 are.

Note that assumptions (i) and (ii) are often closely related. For the Gaussian distribution, for

example, (i) implies (ii) and vice versa. However, there may exist some perverse distributions which

can satisfy (i) but not (ii) unless additional parametric conditions hold.

We can always select ρ = (ρ(1) ⊗ρ(2)) when the parameters are assumed to be known. However,
Hamilton (1990) shows that when parameters are unknown, the ML estimator of ρ is given by the

estimate of ξ1|T . The following Lemma ensures that the results in Lemma 2 also hold when the ML

estimator of θ is consistent; see Krishnamurthy and Rydén (1998).
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Lemma 3: If and only if the conditions in Lemma 2 are satisfied, then

ξt|τ =
(
ξ(1)t|τ ⊗ ξ(2)t|τ

)
, (A.14)

for all t, τ = 1, . . . , T , with ξ(1)t|τ and ξ(2)t|τ being independent.

Proof: Let us first prove this for all τ < t . We have already established in Lemma 2 that ξ(1)τ|τ
and ξ(2)τ|τ are independent for all τ. By equation (22.3.13) in Hamilton (1994) we have that ξt|τ =
(P ′)t−τξτ|τ for τ = 1, . . . , t − 1. By independence of s1,t and s2,t and of ξ(1)τ|τ and ξ

(2)
τ|τ we obtain

ξt|τ = [(P(1)′)t−τξ(1)τ|τ ⊗ (P(2)′)t−τξ(2)τ|τ] = (ξ(1)t|τ ⊗ ξ(2)t|τ ), which are thus independent.
To show (A.14) for τ > t it is sufficient to consider τ = T since the algorithm for computing

smooth probabilities is valid for any τ > t . From Kim (1994) (see also Lindgren, 1978; Hamilton,

1994) we get

ξt|T = ξt|t �
[
P
(
ξt+1|T > ξt+1|t

)]
, t = 1, . . . , T − 1, (A.15)

where > denotes element-by-element division. To show that ξt|T = (ξ(1)t|T ⊗ ξ(2)t|T ), with ξ(l)t|T inde-

pendent for l = 1,2, we begin with t = T − 1. By Lemma 2 we have that ξT |τ = (ξ(1)T |τ ⊗ ξ(2)T |τ) for
τ = T , T − 1. Accordingly,

[
ξT |T > ξT |T−1

]
=
[(
ξ(1)T |T > ξ

(1)
T |T−1

)
⊗
(
ξ(2)T |T > ξ

(2)
T |T−1

)]
. (A.16)

Let ψ(l)T ≡ P(l)(ξ(l)T |T > ξ(l)T |T−1) for l = 1,2. We then obtain

P
[
ξT |T > ξT |T−1

]
=
[
ψ(1)T ⊗ψ(2)T

]
≡ ψT . (A.17)

Hence, ξT−1|T = (ξT−1|T−1 � ψT). With ξ(1)t|T = [Iq1 ⊗ ı′q2]ξt|T it follows by Lemma 1 and Lemma 2

that

ξ(1)T−1|T =
[(
Iq1 ⊗ψ(2)′T

)
ξT−1|T−1

]
�ψ(1)T

= ψ(2)′T ξ(2)T−1|T−1
(
ξ(1)T−1|T−1 �ψ(1)T

)
,

(A.18)

since ξT−1|T−1 = (ξ(1)T−1|T−1 ⊗ ξ(2)T−1|T−1). From the definition of ψ(2)T we find that

ψ(2)′T ξ(2)T−1|T−1 =
(
ξ(2)T |T > ξ

(2)
T |T−1

)′
P(2)′ξ(2)T−1|T−1

=
(
ξ(2)T |T > ξ

(2)
T |T−1

)′
ξ(2)T |T−1

=
q2∑
j2=1

ξ(2)T |T (j2).

(A.19)

This is equal to unity and we thus get

ξ(1)T−1|T = ξ(1)T−1|T−1 �
[
P(1)

(
ξ(1)T |T > ξ

(1)
T |T−1

)]
. (A.20)

Proceeding with ξ(2)T−1|T , the above arguments imply that

ξ(2)T−1|T = ξ(2)T−1|T−1 �
[
P(2)

(
ξ(2)T |T > ξ

(2)
T |T−1

)]
, (A.21)
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and, hence, by Lemma 2, ξ(l)T−1|T are independent for l = 1,2 and ξT−1|T = (ξ(1)T−1|T ⊗ ξ(2)T−1|T ). For
the remaining t , backwards recursions, using the above arguments, implies the result. Necessity

follows by the arguments in Lemma 2.

Note that conditions (i) and (ii) are only sufficient in forecast situations. If st is serially uncorre-

lated, then P ′ = πı′q, with π being the vector of ergodic probabilities. Accordingly, for all τ < t ,

ξt|τ = (P ′)t−τξτ|τ = π since ı′qπ = ı′qξτ|τ = 1. Hence, if s1,t and s2,t are independent and serially

uncorrelated, then ξt|τ = (ξ(1)t|τ ⊗ ξ(2)t|τ ) = (π(1) ⊗π(2)) for all τ < t .
This completes step one in the proof of Proposition 1. We have established necessary and suffi-

cient conditions for how the information used to predict st can be split into information valuable

for predicting s1,t but not s2,t , and vice versa, and when information can be “thrown away” without

affecting the regime predictions. Note that the conditions in Lemma 2 are very general in the sense

that they apply to any vector of density functions ηt . For example, the functional form can vary over

t as well as over states. The crucial underlying assumption is that st is independent of information

available at time t − 1 conditional on st−1. If this assumption is violated, then the algorithms for

computing regime predictions are no longer valid.

The assumption that s1,t and s2,t are independent, in fact, increases the level of generality of the

results. For example, it allows q2 = 1 in which case ηt = ϕtη
(1)
t (with the scalar ϕt being invariant

with respect to st ) is necessary and sufficient for regime predictions based on the vector densities

ηt and η
(1)
t to be equivalent. The scalar ϕt can, for instance, be a marginal density.

When q1, q2 ≥ 2 we allow for the possibility that two subsystems of the model can contain

information for predicting one independent regime process each but not the other regime process,

while a third subsystem is completely noninformative about regimes. By considering r independent

Markov chains, these results can be generalized further. For my purposes, however, the above

results are sufficient.

Now let us return to the MS-VAR with conditionally Gaussian residuals. Here we find that for

each j ∈ {1, . . . , q} the joint log density is

ln
(
ηt(j)

) = −n
2
ln(2π)− 1

2
ln
(
det

[
Ωj
])− 1

2
ε′t|jΩ

−1
j εt|j , (A.22)

where εt|j = xt − µjDt −
∑p
k=1A

(k)
j xt−k. Let n1 and n2 be the number of x1,t and x2,t variables,

respectively, with n1 + n2 = n. The marginal density for x2,t , conditional on st = j and Xt−1, is

ln
(
η(2)t (j)

)
= −n2

2
ln(2π)− 1

2
ln
(
det

[
Ω22,j

])− 1
2
ε′2,t|jΩ

−1
22,jε2,t|j . (A.23)

If this density is invariant with respect to s1,t , then (i) Ω22,(j1,j2) = Ω22,j2 , δ2,(j1,j2) = δ2,j2 , and

α(k)2r ,(j1,j2) = α
(k)
2r ,j2 for all j1 ∈ {1, . . . , q1}, j2 ∈ {1, . . . , q2}, r ∈ {1,2}, and k ∈ {1, . . . , p}. For q2 = 1

these restrictions imply that the parameters in the marginal density for x2,t are constant across

states.
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Under these restrictions, the density for x1,t , conditional on st = j = j2 + q2(j1 − 1), x2,t , and

Xt−1, is

ln
(
η(1)t (j)

)
= −n1

2
ln(2π)− 1

2
ln
(
det

[
Ω̃11,j

])+ ε′2,t|j2Ω−122,j2Ω′12,jΩ̃−111,jε1,t|j
− 1
2
ε′1,t|jΩ̃

−1
11,jε1,t|j −

1
2
ε′2,t|j2Ω

−1
22,j2Ω

′
12,jΩ̃

−1
11,jΩ12,jΩ−122,j2ε2,t|j2 ,

(A.24)

where Ω̃11,j ≡ Ω11,j − Ω12,jΩ−122,j2Ω
′
12,j . If this density function is invariant with respect to s2,t for

q2 ≥ 2, then (ii) Ω11,(j1,j2) = Ω11,j1 , δ1,(j1,j2) = δ1,j1 , and α(k)1r ,(j1,j2) = α
(k)
1r ,j1 for all j1 ∈ {1, . . . , q1},

j2 ∈ {1, . . . , q2}, r ∈ {1,2}, and k ∈ {1, . . . , p}; and (iii) Ω12,j = 0 for all j ∈ {1, . . . , q}. Under (i) to
(iii) we find that ηt = (η(1)t ⊗ η(2)t ) for all t , with η(l)t being the marginal density of xl,t conditional

on sl,t and Xt−1. If these linear restrictions are not satisfied, then ηt cannot be decomposed into

the (Kronecker) product between a q1 and a q2 vector density. For q2 = 1, restrictions (iii) can be

dispensed with. In that case, ηt = ϕtη
(1)
t , with ϕt being given by the marginal density for x2,t .

To satisfy the remaining two conditions in Lemma 2 we only need to let s1,t and s2,t be inde-

pendent. For q2 ≥ 2 we have that η(1)t and η(2)t are vectors of densities for independent random

variables (ε1,t|s1,t and ε2,t|s2,t ) from, in particular, restrictions (iii), and for q2 = 1 this is not needed

since ϕt is just a scalar which cancels in (A.1). By Lemma 2 it then follows that

Pr
[
st = j|Xt ;θ∗

] = Pr
[
s1,t = j1

∣∣X1,t ,X2,t ;θ∗1
]
Pr
[
s2,t = j2

∣∣X1,t−1,X2,t ;θ∗2
]
.

When q2 ≥ 2 it also follows that Pr[s1,t = j1|X1,t ,X2,t ;θ∗1 ] = Pr[s1,t = j1|X1,t ,X2,t−1;θ∗1 ].

The final stage is now straightforward. Since X2,t is assumed to be noninformative about s1,t , (iii)

must also hold for q2 = 1, and (iv) α(k)12,j1 = 0 for all j1 ∈ {1, . . . , q1} and k ∈ {1, . . . , p} for q2 ≥ 1.

Hence, we have shown that

Pr
[
(s1,t , s2,t ) = (j1, j2)

∣∣Xt ;θ∗] = Pr
[
s1,t = j1

∣∣X1,t ;θ∗1
]
Pr
[
s2,t = j2

∣∣Xt ;θ∗2 ],
implies that (A1) is satisfied. To prove the reverse is straightforward. Q.E.D.

Proof of Proposition 2

Given that ut+1 is mean zero stationary we know that E[u2t+1] ≤ E[ũ2t+1] since (Yt ,Zt ) ⊂ Xt for all
t . In particular,

E
[
ũ2t+1

]
= E

[
u2t+1

]
+ E

[(
E
[
yt+1

∣∣Xt]− E[yt+1∣∣Yt ,Zt])2]. (A.25)

Accordingly, the variances of ut+1 and ũt+1 are equal if and only if E[yt+1|Xt ] = E[yt+1|Yt ,Zt ] for
all t .

The prediction of yt+1 conditional on Xt is given by

E
[
yt+1|Xt

]
= µ̄1,tDt+1 +

p∑
k=1

(
ā(k)11,tyt+1−k + ā(k)12,tz1,t+1−k

+ ā(k)13,tmt+1−k + ā(k)14,tz2,t+1−k
)
.

(A.26)
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The necessary and sufficient conditions for this expression to be invariant with respect toMt are,

for all t , given by

(i) µ̄1,t = E
[
µ1,st+1

∣∣∣Yt ,Zt],
(ii) ā(k)1r ,t = E

[
a(k)1r ,st+1

∣∣∣Yt ,Zt], r ∈ {1, . . . ,4} and k ∈ {1, . . . , p},

(iii) ā(k)13,t = 0, k ∈ {1, . . . , p}.

To prove the claim in Proposition 2 we therefore have to show that (i)–(iii) are equivalent to [(B1) or

(B2)].

Noncausality in mean ⇒ [
(B1) or (B2)

]

From the definitions of µ̄1,t and ā
(k)
1r ,t in equations (14) and (15) we find that these random matrices

can be expressed as

µ̄1,t =
q∑
i=1

q∑
j=1

µ1,jpij Pr
[
st = i

∣∣Xt], (A.27)

and

ā(k)1r ,t =
q∑
i=1

q∑
j=1

a(k)1r ,jpij Pr
[
st = i

∣∣Xt]. (A.28)

From these two equations it can be seen that µ̄1,t and ā
(k)
1r ,t depend on t , and thus potentially onMt ,

only via the filter probabilities Pr[st = i|Xt].
Suppose first that (µ̄1,t , ā

(k)
1r ,t) indeed varies with t . It now follows that noncausality in mean

implies that

Pr
[
(s1,t , s2,t ) = (i1, i2)

∣∣Xt] = Pr
[
s1,t = i1

∣∣X1,t
]
Pr
[
s2,t = i2

∣∣Xt], (A.29)

must hold for all i1, i2, and t , while (µ1,(j1,j2), a
(k)
1r ,(j1j2)) only depends on j2. By Corollary 2 we know

that equation (A.29) can only be satisfied under (A1) and, thus, under (B1). The remaining parameter

restrictions, pij = p(1)i1j1p(2)i2j2 , are also satisfied under (B1).
Notice that the formulation in (A.29) covers the case when n2 = 1, i.e. X1,t = (Yt ,Zt ), as well as

the cases when n2 ≥ 2. It is therefore more general than one where Pr[s1,t = i1|X1,t ] is replaced

with Pr[s1,t = i1|Yt ,Zt ].
It remains to examine the case when (µ̄1,t , ā

(k)
1r ,t) is invariant with respect to t . From equations

(A.27)–(A.28) we now have that
∑q
j=1 µ1,jpij = µ̄1,

∑q
j=1 a

(k)
1r ,jpij = ā(k)1r , with ā

(k)
13 = 0 for all i, r , and

k. Hence, condition (B2) is satisfied.

[
(B1) or (B2)

] ⇒ Noncausality in mean

Evaluating equation (A.26) under (B1) and (B2), respectively, gives the result. Q.E.D.
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Proof of Proposition 3

Let B(k)st ≡ [a(k)11,st a
(k)
12,st a

(k)
14,st ] for all k and st , wt ≡ [yt z′t ]′, while B̄(k)t ≡ E[B(k)st+1|Xt ] for all t and k.

Since vt+1 and ε1,t+1 are uncorrelated conditional on Xt , it follows that the conditional variance of
ut+1 is

E
[
u2t+1

∣∣Xt] = σ 2
v,t +

q∑
j=1

ω11,j Pr
[
st+1 = j

∣∣Xt], (A.30)

where

σ 2
v,t ≡

q∑
j=1

(
µ1,j − µ̄1,t

)
Dt+1D′t+1

(
µ1,j − µ̄1,t

)′
Pr
[
st+1 = j

∣∣Xt]

+
q∑
j=1

p∑
k=1

p∑
l=1

(
B(k)j − B̄(k)j

)
wt+1−kw ′t+1−l

(
B(l)j − B̄(l)j

)′
Pr
[
st+1 = j

∣∣Xt]

+
q∑
j=1

p∑
k=1

p∑
l=1

(
a(k)13,j − ā(k)13,t

)(
a(l)13,j − ā(l)13,t

)
mt+1−kmt+1−l Pr

[
st+1 = j

∣∣Xt]

+ 2
q∑
j=1

p∑
k=1

(
µ1,j − µ̄1,t

)
Dt+1w ′t+1−k

(
B(k)j − B̄(k)j

)′
Pr
[
st+1 = j

∣∣Xt]

+ 2
q∑
j=1

p∑
k=1

(
a(k)13,j − ā(k)13,t

)(
µ1,j − µ̄1,t

)
Dt+1mt+1−k Pr

[
st+1 = j

∣∣Xt]

+ 2
q∑
j=1

p∑
k=1

p∑
l=1

(
a(k)13,j − ā(k)13,t

)(
B(l)j − B̄(l)j

)
wt+1−lmt+1−k Pr

[
st+1 = j

∣∣Xt].

(A.31)

Noncausality in mean-variance ⇒ [
(C1) or (C2)

]

FromDefinition 1 andDefinition 2we know that noncausality inmean-variance implies noncausality

in mean when ut+1 is stationary, i.e. that either (B1) or (B2) is satisfied.

If (B1) holds, then by construction (C1) is satisfied. On the other hand, if (B2) holds, then µ̄1,t = µ̄1,
B̄(k)t = B̄(k), and ā(k)13,t = 0 for all t and k. Evaluating equation (A.30) under these restrictions, we find

that the third term in equation (A.31) is

q∑
i=1

p∑
k=1

p∑
l=1

( q∑
j=1

a(k)13,ja
(l)
13,jpij

)
mt+1−kmt+1−l Pr

[
st = i

∣∣Xt].
Under noncausality in mean-variance, this term is invariant with respect to Mt . For each triple

(i, k, l) with k = l, this means that
q∑
j=1

(
a(k)13,j

)2
pij = 0. (A.32)

Since (a(k)13,j)2 ≥ 0 and pij ≥ 0, with strict inequality for some j for each i, the restrictions in (A.32)

can only be satisfied when a(k)13,j = 0 for all j and k.
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Let us now turn to the first term in equation (A.31). Under (B2), it can be rewritten as

q∑
i=1

( q∑
j=1

[(
µ1,j − µ̄1

)⊗ (µ1,j − µ̄1)]pij
)(
Dt+1 ⊗Dt+1

)
Pr
[
st = i

∣∣Xt].
Noncausality in mean-variance now implies that either

q∑
j=1

[(
µ1,j − µ̄1

)⊗ (µ1,j − µ̄1)]pij = σµ, (A.33)

or

q1∑
j1=1

q2∑
j2=1

[(
µ1,(j1,j2) − µ̄1

)⊗ (µ1,(j1,j2) − µ̄1)]p(1)i1j1p(2)i2j2 = σµ,i1 ,
and equation (A.29) is satisfied. The latter case means that condition (C1) is satisfied. Let us

therefore continue with the case when equation (A.33) holds.

Evaluating the remaining terms in equation (A.31) and the second term on the right hand side of

(A.30) in the same manner gives us that noncausality in mean-variance implies that either (C1) or

an additional set of restrictions from (C2) is satisfied. Once the last term has been examined, the

conclusion follows.

[
(C1) or (C2)

] ⇒ Noncausality in mean-variance

Evaluating equation (A.30) under (C1) and (C2), respectively, gives the result. Q.E.D.

Proof of Proposition 4

The density function for ut+1 conditional on Xt (and θ∗) can be expressed as

gt+1
(
ut+1

∣∣Xt) =
q∑
j=1

f
(
ut+1

∣∣st+1 = j,Xt)Pr[st+1 = j∣∣Xt]. (A.34)

With ut+1 = vt+1+ ε1,t+1, and vt+1|j ≡ (vt+1|st+1 = j) being given by vt+1 in equation (16) evaluated
at st+1 = j , we have that

ut+1
∣∣(st+1 = j,Xt) ∼ N(vt+1|j ,ω11,j

)
. (A.35)

for each j ∈ {1, . . . , q}.

Noncausality in distribution ⇒ [
(D1) or (D2)

]

Sincem is assumed to be noncausal in distribution for y , we know that the density function for ut+1
conditional onXt is invariant with respect toMt . Thismeans that the density function f (ut+1|st+1 =
j,Xt) is also invariant with respect to Mt . Moreover, this density function does not depend on

those values of st+1 for whichMt provides unique forecasting information. That is, noncausality
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in distribution is equivalent to

gt+1
(
ut+1

∣∣Xt) =
q1∑
j1=1

q2∑
j2=1

f
(
ut+1

∣∣s1,t+1 = j1,Yt ,Zt)Pr[s1,t+1 = j1∣∣Yt ,Zt]

× Pr[s2,t+1 = j2∣∣Xt]

=
q1∑
j1=1

f
(
ut+1

∣∣s1,t+1 = j1,Yt ,Zt)Pr[s1,t+1 = j1∣∣Yt ,Zt]

= ht+1
(
ũt+1

∣∣Yt ,Zt).

(A.36)

From Proposition 1 we know that either (A1) or (A2) must hold for the regime forecasts of s1,t+1 and

s2,t+1 to be independent and for Mt to be noninformative about s1,t+1 once we have conditioned

on (Yt ,Zt ). If (A1) holds, then condition (D1) is by construction satisfied. On the other hand, if

(A2) holds, then Pr[s1,t+1 = j1|Xt] = π(1)j1 for all j1 and t . The restrictions on the density function

f (·) in equation (A.36) for the Gaussian case imply that µ1,j = µ1,j1 , a
(k)
1r ,j = a(k)1r ,j1 , a

(k)
13,j = 0, and

ω11,j = ω11,j1 for all j ∈ {1, . . . , q}, r ∈ {1,2,4}, and k ∈ {1, . . . , p}. Hence, condition (D2) is

satisfied.

[
(D1) or (D2)

] ⇒ Noncausality in distribution

Evaluating equation (A.34) under (D1) and (D2), respectively, gives the result. Q.E.D.
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