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Abstract: This note discusses how to compute the asymptotic covariance matrix for a forecast
error variance decomposition. The theory relies on having an estimate of the asymptotic covari-
ance matrix for the impulse response function and on the variance of structural shocks being
normalized to unity. The results apply to a wide range of identification schemes, including con-
temporaneous and long run restrictions.
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1. Setup

Let ηt be a p dimensional i.i.d. shock with zero mean and identity covariance matrix. The
impulse response function for some p dimensional variable vector x at horizon h after a unit
shock to η is assumed to be respresented by:

resp
(
xt+h|ηt = Ip, ηt+1 = 0, . . . , ηt+h = 0

)
= Rh, h = 0,1, . . . , (1)

where Rh is a p × p matrix. In other words, it is assumed that the impulse response function
is invariant with respect to t, the point in time when the shock occurs. In linear models,
such as VAR models with or without cointegration relations, the impulse responses satisfy this
assumption.

Furthermore, it is assumed that Rh = Rh(θ) is a differentiable function of the vector θ ∈ Rk,
and that we have an estimator of θ for a sample size of T observations (θ̂) which satisfies:

√
T
(
θ̂ − θ

) d→ Nk

(
0,Σθ

)
, (2)

with Nk being a k-dimensional Gaussian distribution,
d→ denoting convergence in distribution,

and Σθ being positive semidefinite. Models which satisfy these assumptions include VARs with
an upper bound for the lag length, Gaussian error terms, and variables that are integrated of
order d (with d being some finite integer) and potentially cointegrated. Given such assumptions
it follows that the estimated impulse response function R̂h = Rh(θ̂) satisfies

√
T
(

vec
(
R̂h

) − vec
(
Rh

)) d→ Np2

(
0,ΣRh

)
, (3)

where vec is the column stacking operator, and

ΣRh =
∂vec(Rh)

∂θ′
Σθ

(
∂vec(Rh)

∂θ′

)′
.

The interested reader is referred to Lütkepohl (1990), Lütkepohl and Reimers (1992), Warne
(1993), Vlaar (2004), and references therein, for examples of parameterizations of the partial
derivatives ∂vec(Rh)/∂θ′.
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2. Variance Decompositions

Variance decompositions measure the fraction of the forecast error variance of some variable xi

that can be explained by shock ηj at the forecast horizon h. Denoting this variance decomposi-
tion by vij,h, it can be expressed relative to the impulse response function as:

vij,h = e′ivhej =
[
e′j ⊗ e′i

]
vec

(
vh
)
, (4)

where ei is the i:th column of Ip, ⊗ is the Kronecker product,

vh =
[h−1∑
i=0

(
RiR

′
i 
 Ip

)]−1[h−1∑
i=0

(
Ri 
 Ri

)]
, (5)

and 
 is the Hadamard (element-by-element) product.
Given that 0 < vij,h < 1 for all i, j = 1, . . . , p, it follows that vh is a differentiable function of

R0, . . . , Rh−1. Hence, the asymptotic distribution of vh can be directly obtained by differentiating
vh with respect to the impulse responses. This means that:

√
T
(
v̂ij,h − vij,h

) d→ N(0, σij,h). (6)

An expression for σij,h is, e.g., given by Lütkepohl (1990), but the computationally simplest
formula is found in Warne (1993) as it relies on differentiating vh directly.

Warne (1993) shows that

∂vec(vh)
∂θ′

=2
{
Ip ⊗

[h−1∑
i=0

(
RiR

′
i 
 Ip

)]−1}
×

h−1∑
j=0

{
diag

[
vec

(
Rj

)] − [
v′h ⊗ Ip

]
diag

[
vec

(
Ip
)][

Rj ⊗ Ip

]}∂vec(Rj)

∂θ′
,

(7)

where diag(a) is a diagonal matrix with the vector a in its diagonal. Hence, under the assump-
tion that each element of vh is inside the 0-1 interval, it follows that

√
T
(

vec
(
v̂h
) − vec

(
vh
)) d→ Np2(0,Σvh), (8)

where

Σvh =
∂vec(vh)

∂θ′
Σθ

(
∂vec(vh)

∂θ′

)′
,

whereas
σij,h =

[
e′j ⊗ e′i

]
Σvh

[
ej ⊗ ei

]
.

These expressions make it relatively easy to write computer code for estimating variance de-
compositions and their asymptotic standard errors.

3. Remarks

It is worth pointing out that if vij,h is zero or unity for some i, j and h, then σij,h = 0 by
construction. The reasons for this are that (i)

(
RiR

′
i 
 Ip

)
is a diagonal matrix, and (ii)

[
e′j ⊗ e′i

]{
diag

[
vec

(
Rl

)] − [
v′
h
⊗ Ip

]
diag

[
vec

(
Ip
)][

Rl ⊗ Ip

]}
= 0,

for all l ∈ {0,1, . . . , h − 1} when vij,h = 0 or vij,h = 1. For example, let p = 2, i = 2, and j = 1
so that we are considering v21,h. The left hand side of the above relation is now:[

0 (1 − v21,h)R21,l 0 −v21,hR22,l

]
,

where Rij,l is the (i, j):th element of Rl. If v21,h = 0, then R21,l = 0 and, thus, the result is a
zero vector. Similarly, if v21,h = 1, then R22,l = 0 and again we obtain a zero vector. This means
that we cannot test if a variance decomposition is zero or unity using a t or a Wald test based
on the above results.
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In fact, the asymptotic covariance matrices Σvh takes into account that the rows of vh sum to
unity. Letting ıp be a vector with ones, we will show that[

ı′p ⊗ Ip
]
Σvh

[
ıp ⊗ Ip

]
= 0.

The results in the previous paragraph are simple consequences of this property of the asymptotic
covariance matrices. Hence, we know that the rank of Σvh is at most p(p − 1). To prove this we
note that vhıp ≡ ıp. Accordingly, the differential dvhıp = 0, i.e.,[

ı′p ⊗ Ip
]
dvec

(
vh
)

= 0.

Based on this differential we find that the partial derivatives satisfy:
[
ı′p ⊗ Ip

]∂vec(vh)
∂θ′

= 0.

Hence, premultiplication of Σvh by
[
ı′p ⊗ Ip

]
and postmultiplication by its transpose gives us a

p × p zero matrix.
While this is rather trivial, it leads us to an additional property of the asymptotic covariance

matrix. Namely, that two linear combinations of the shocks, denoted by the vectors a and
b, which satisfy a + b ≡ ıp, will always have the same asymptotic covariance matrix. Post-
multiplying vh by a we have that vha ≡ ıp − vhb. The differentials of vha therefore satisfies
dvha = −dvhb. Accordingly,

[
a′ ⊗ Ip

]∂vec(vh)
∂θ′

= −[b′ ⊗ Ip
]∂vec(vh)

∂θ′
,

so that [
a′ ⊗ Ip

]
Σvh

[
a⊗ Ip

]
=

[
b′ ⊗ Ip

]
Σvh

[
b⊗ Ip

]
.

The simplest example is when p = 2 and we consider a = e1 and b = e2. This gives us vi1,h+vi2,h
= 1 for i = 1,2, and thus we find that σi1,h = σi2,h for i = 1,2.

Generally, we expect estimates of the asymptotic variance σij,h to represent the unknown
small-sample uncertainty of the variance decomposition v̂ij,h better when the variance decom-
position is sufficiently far away from zero or unity. What far away means depends on the size
of the t-ratio v̂ij,h/

√
(σ̂ij,h/T). The smaller this ratio is, the more likely it is that, e.g., a confi-

dence band for v̂ij,h based on the asymptotic distribution includes either zero or unity. Since a
variance decomposition, by construction, cannot be less than zero or greater than unity, a confi-
dence band which includes those limits cannot be correct and is bound to be a poor estimate of
the unknown small-sample confidence band. In practise, estimated asymptotic standard errors
for v̂ij,h should therefore be treated with great caution.

An alternative to applying the asymptotic results to variance decompositions is to use boot-
strapping. Theoretically, bootstraps often provide an asymptotic refinement over asymptotics,
but the requirement is usually that we bootstrap statistics that are (asymptotically) pivotal; see,
e.g., Horowitz (2001). That is, bootstrap theory tells us that bootstrapping is more reliable than
asymptotics when we evaluate a statistic which (asymptotically) does not depend on nuisance
parameters. Applied to variance decompositions, this tells us that we should not bootstrap
the variance decompositions themselves since these are not asymptotically pivotal. Rather, we
should bootstrap, e.g., the t-ratios. But the t-ratios do not exist if the true value of the variance
decomposition is zero or unity. From this perspective, bootstrapping variance decompositions
may not help us (relative to asymptotics) either when attempting to evaluate confidence bands
for a variance decomposition based on bootstraps of v̂ij,h directly (although the bootstrap in-
tervals, by construction, will always lie between zero and unity) or when attempting to make
inference about the hypothesis vij,h = 0 (or vij,h = 1) using the variance decompositions.

The hypothesis vij,h = 0 (or vij,h = 1) may instead be addressed directly from the impulse
responses. When vij,h = 0, then an algebraically equivalent hypothesis is:

h−1∑
l=0

e′i
(
Rl 
 Rl

)
ej = 0.
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Similarly, the hypothesis vij,h = 1 is algebraically equivalent to:
h−1∑
l=0

e′i
(
Rl 
 Rl

)
ej −

h−1∑
l=0

e′iRlR
′
lei = 0.

When testing such nonlinear restrictions (in terms of θ) it is usually better to apply LM or LR
tests, since unlike the Wald (and t) test they do not suffer from the numerical issue regarding
nonlinear restrictions discussed by, e.g., Gregory and Veall (1985).1 Moreover, since, e.g.,
vij,h = 0 may be implied by vij,h∗ = 0 for all h > h∗ (as in the case of an unrestricted VAR model
with k lags, where h∗ = (p− 1)k), the complexity of the testing (and estimation) problem can,
for certain forecast horizons, be greatly simplified. Nevertheless, impulse responses are typically
nonlinear functions of θ and since both LM and LR tests require that we have estimates of the
impulse responses under the null hypothesis, the problem of testing, e.g., vij,h = 0 remains
nontrivial (at least from a computational aspect).
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1 That is, algebraically equivalent forms of writing a nonlinear restriction, lead to different numerical values for
the Wald (and t) test. For example, suppose that we have estimated a parameter θ, given by θ̂, that θ̂ satisfies
(2), while the estimated asymptotic variance of θ̂ is σ̂θ. A Wald test of the hypothesis θ = 0 is then given by
W1 = Tθ̂2/σ̂θ. An algebraically equivalent hypothesis is f(θ) = θ2 = 0. The Wald test of this restriction is given
by W2 = Tf(θ̂)/(df/dθ|θ=θ̂)

2σ̂θ = Tθ̂2/4σ̂θ. In the limit, W1 and W2 are both χ2(1) distributed under the null
hypothesis. The former statistic is, however, (4 times) greater than the latter for finite T . Although this example is
trivial, it illustrates an important shortcoming of Wald (and t) tests. Namely, the nonlinearity in the numerator and
the denominator of the statistic do not cancel and the numerical value therefore changes. It follows that a test based
on W1 may suggest that we should reject the null hypothesis, while a test based on W2 may not.
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