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Abstract: YADA (Yet Another Dsge Application) is a Matlab program for Bayesian estimation and

evaluation of Dynamic Stochastic General Equilibrium and vector autoregressive models. This pa-

per provides the mathematical details for the various functions used by the software. First, some

rather famous examples of DSGE models are presented and all these models are included as ex-

amples in the YADA distribution. YADA supports a number of different algorithms for solving

log-linearized DSGE models. The fastest algorithm is the so called Anderson-Moore algorithm

(AiM), but the approaches of Klein and Sims are also covered and have the benefit of being nu-

merically more robust in certain situations. The AiM parser is used to translate the DSGE model

equations into a structural form that the solution algorithms can make use of. The solution of the

DSGE model is expressed as a VAR(1) system that represents the state equations of the state-space

representation. Thereafter, the different prior distributions that are supported, the state-space rep-

resentation and the Kalman filter used to evaluate the log-likelihood are presented. Furthermore,

it discusses how the posterior mode is computed, including how the original model parameters

can be transformed internally to facilitate the posterior mode estimation. Next, the paper provides

some details on the algorithms used for sampling from the posterior distribution: single block and

multiple fixed or random block random walk Metropolis and slice sampling algorithms, as well

as sequential Monte Carlo. In order to conduct inference based on the draws from the posterior

sampler, tools for evaluating convergence are considered next. We are here concerned both with

simple graphical tools, as well as formal tools for single and parallel chains. Different methods for

estimating the marginal likelihood are considered thereafter. Such estimates may be used to eval-

uate posterior probabilities for different DSGE models. Various tools for evaluating an estimated

DSGE model are provided, including impulse response functions, forecast error variance decom-

positions, historical forecast error and observed variable decompositions. Forecasting issues, such

as the unconditional and conditional predictive distributions, are examined in the following sec-

tion. The paper thereafter considers frequency domain analysis, such as a decomposition of the

population spectrum into shares explained by the underlying structural shocks. Estimation of a

VAR model with a prior on the steady state parameters is also discussed. The main concerns are:

prior hyperparameters, posterior mode estimation, posterior sampling via the Gibbs sampler, and

marginal likelihood calculation (when the full prior is proper), before the topic of forecasting with

Bayesian VARs is considered. Next, the paper turns to the important topic of misspecification and

goodness-of-fit analysis, where the DSGE-VAR framework is considered in some detail. Finally, the

paper provides information about the various types of input that YADA requires and how these

inputs should be prepared.
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In physical science the first essential step in the direction of learning any subject
is to find principles of numerical reckoning and practicable methods for measur-
ing some quality connected with it. I often say that when you can measure what
you are speaking about, and express it in numbers, you know something about
it; but when you cannot measure it, when you cannot express it in numbers,
your knowledge is of a meagre and unsatisfactory kind; it may be the beginning
of knowledge, but you have scarcely in your thoughts advanced to the state of
Science, whatever the matter may be.

William Thomson, 1st Baron Kelvin, May 3, 1883 (Thomson, 1891, p. 73).

1. Introduction

The use of Bayesian methods is among some econometricians and statisticians highly contro-
versial. A dogmatic frequentist may argue that using subjective information through a prior
“pollutes” the information content of the data by deliberately introducing small sample biases.
Provided that the data can be regarded as objective information, the choice of model or set
of models to use in an empirical study is however subjective and, hence, the use of subjective
information is difficult to avoid; for entertaining discussions about the pros and cons of the
Bayesian and frequentist approaches to statistical analysis, see Efron (1986), Poirier (1988)
with discussions, and Little (2006).

Several arguments for using a Bayesian approach are listed in the introduction of Fernández-
Villaverde and Rubio-Ramírez (2004). The first and perhaps most important argument listed
there concerns misspecification. Namely, that Bayesian inference relies on the insight that (all)
models are false. The subjective information that comes from the prior may therefore to a
certain extent “correct” for the effects that misspecification of a model has on the information

content in the data.1 For some recent ideas about model validation in a Bayesian setting, see
Geweke (2007).

YADA is a Matlab program for Bayesian estimation of and inference in Dynamic Stochastic
General Equilibrium (DSGE) and Vector Autoregressive (VAR) models. DSGE models are micro-
founded optimization-based models that have become very popular in macroeconomics over the
past 25 years. The most recent generation of DSGE models is not just attractive from a theoret-
ical perspective, but is also showing great promise in areas such as forecasting and quantitative
policy analysis; see, e.g., Adolfson, Laséen, Lindé, and Villani (2007b), Christiano, Eichenbaum,
and Evans (2005), Smets and Wouters (2003, 2005, 2007), and An and Schorfheide (2007).
For a historical overview, the reader may, e.g., consult Galí and Gertler (2007) and Mankiw
(2006).

The software is developed in connection with the New Area-Wide Model (NAWM) project
at the ECB; cf. Christoffel, Coenen, and Warne (2008). Detailed descriptions about how the
software has been coded and how functionality can be added to it are given in the document
Extending YADA which is included in the YADA distribution; cf. Warne (2017).

YADA takes advantage of code made available to the NAWM project by colleagues at both
central bank institutions and the academic world. In particular, it relies to some extent on the
code written by the group of researchers at Sveriges Riksbank that have developed the Riksbank
DSGE model (Ramses). This group includes Malin Adolfson, Stefan Laséen, Jesper Lindé, and
Mattias Villani.

A Matlab version of the Anderson-Moore algorithm for solving linear rational expectations
models (AiM) and writing them in state-space form is used by YADA; see, e.g., Anderson and
Moore (1985), Anderson (1999, 2008, 2010), or Zagaglia (2005). Since only linearized DSGE
models can be parsed with and solved through AiM, models based on higher order approxima-
tions are not supported; see Fernández-Villaverde and Rubio-Ramírez (2005). In addition to
the AiM algorithm, the QZ-decomposition (generalized Schur form) based algorithms of Klein

1 See also Fernández-Villaverde (2010) for further discussions on the advantages and disadvantages of Bayesian

inference.
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(2000) and Sims (2002) are also supported, with the gensys algorithm of Sims being the de-
fault model solver since version 3.40 of YADA. Although the Klein algorithm based model solver
in YADA does not directly use his solab code, I have most definitely taken a peek into it.2

Moreover, YADA includes csminwel and gensys, developed by Christopher Sims, for numerical
optimization and solving linear rational expectations models, respectively, as well as code from
Stixbox by Anders Holtsberg, from the Lightspeed Toolbox by Tom Minka, from Dynare by Michel
Juillard and Stephane Adjemian, and from the Kernel Density Estimation Toolbox by Christian
Beardah.3

In contrast with other software that can estimate DSGE models, YADA has a Graphical User
Inference (GUI) from which all actions and settings are controlled. The current document does
not give much information about the GUI. Instead it primarily focuses on the mathematical
details of the functions needed to calculate, for instance, the log-likelihood function. The in-
stances when this documents refers to the GUI are always linked to functions that need certain
data from the GUI. The help file in the YADA distribution covers the GUI functionality.

This document is structured as follows. In the next section, we present a range of log-
linearized DSGE models from the literature, including small-scale and medium-scale models.
When we have established the general form of these models, Section 3 provides an overview of
the matrix representation of linear rational expectations models and how these can be analysed
with the Anderson-Moore algorithm. In addition, the Klein (2000) and Sims (2002) algorithms
for solving a DSGE model are discussed, focusing on how the AiM form can be rewritten into a
form compatible with the these algorithms.

Once we know how to solve the models, the issue of estimation can be addressed. The
starting point for Bayesian estimation is Bayes theorem, giving the relationship between and
the notation for the prior density, the conditional and the marginal density of the data, as well
as the posterior density. We then present the density functions that can be used in YADA for
the prior distribution of the DSGE model parameters. Parametric definitions of the densities are
provided and some of their properties are stated. This leads us into the actual calculation of the
likelihood function via the Kalman filter in Section 5. In addition, this Section is concerned with
smooth estimation of unobserved variables, such as the structural shocks, the computation of
weights on the observed variables for estimates of unobservables, simulation smoothing, square
root filtering for handling numerical issues, how to deal with missing observations, univariate
filtering for speed concerns, and diffuse initialization.

Since some of the parameters can have bounded support, e.g., that a standard deviation
of a shock only takes positive values, the optimization problem for posterior mode estimation
typically involves inequality restrictions. Having to take such restrictions into account may slow
down the optimization time considerably. A natural way to avoid this issue is to transform
the original parameters for estimation such that the domain of the transformed parameters is
the real line. In this way we shift from a constrained optimization problem to an unconstrained
one. The specific transformations that YADA can apply are discussed in Section 6, and how these
transformations affect the estimation of the posterior mode is thereafter covered in Section 7.

Once the posterior mode and the inverse Hessian at the mode have been calculated, we can
construct draws from the posterior distribution using a Markov Chain Monte Carlo (MCMC)
sampler, such as the random walk Metropolis algorithm. In fact, it may be argued that the

2 Paul Klein’s homepage can be found through the link: http://www.paulklein.se/. A copy of solab for Matlab,

Gauss, and Fortran can be obtained from there.

3 Stixbox can be downloaded via the link http://www.maths.lth.se/matstat/stixbox/; csminwel is available

for download from http://sims.princeton.edu/yftp/optimize/, while the gensys program can be retrieved

from webpage at http://sims.princeton.edu/yftp/gensys/; the Lightspeed Toolbox can be obtained from Tom

Minka’s website at http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/; Dynare

is located at http://www.dynare.org/; and finally the kernel density estimation toolbox can be downdloaded from

http://intarch.ac.uk/journal/issue1/beardah/kdeia8.html. In addition, YADA supports an older version of

AiM (the binary AiM parser is dated April 8, 1999) for matlab systems that do not support the java-based parser

in the more recent versions of AiM. These are available for download from the website of the Federal Reserve at

http://www.federalreserve.gov/econresdata/ama/.
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parameter transformations discussed in Section 6 are more important for posterior sampling
than for posterior mode estimation. Specifically, when a Gaussian proposal density is used for
the random walk Metropolis algorithm, the proposal draws have the real line as support and,
hence, all draws for the transformed parameters are valid candidates. In contrast, when drawing
from a Gaussian proposal density for the original parameters it is highly likely that many draws
need to be discarded directly since the bounds may often be violated. Moreover, we often have
reason to expect the Gaussian proposal density to be a better approximation of the posterior
density for parameters that are unbounded than for parameters whose domain is bounded.
As a consequence, YADA always performs posterior sampling for the transformed parameters,
while the user can select between the original and the transformed parameters for posterior
mode estimation. Posterior sampling with the random walk Metropolis algorithm using either
a normal or a Student-t proposal density as well as the slice sampler is discussed in Section 8.
Furthermore, blocking RWM algorithms based on a normal or a Student-t proposal density
are also covered there. The importance sampler, used by for instance DeJong, Ingram, and
Whiteman (2000), is not directly supported by YADA as an algorithm by itself. Instead, YADA
supports a flexible sequential Monte Carlo algorithm due to Herbst and Schorfheide (2014,
2016), which is closely related importance sampling, but where the user does not select an
importance density.

Given a sample of draws from the posterior distribution it is important to address the question
if the posterior sampler has converged or not. In Section 9 we deal with simple but effective
graphical tools as well as formal statistical tools for assessing convergence in a single Markov
chain and in parallel chains. When we are satisfied that our posterior sampler has converged, we
may turn to other issues regarding Bayesian inference. In Section 10 we examine the problem
of computing the marginal likelihood of the DSGE model. This object can be used for cross
DSGE model comparisons as long as the same data is covered, but also for comparisons with
alternative models, such as Bayesian VARs and DSGE-VARs.

In Section 11 we turn to various tools for analysing the properties of a DSGE model. These
tools include impulse response functions, forecast error variance decompositions, conditional
correlations, correlation decompositions, observed variable decompositions, and ways of ad-
dressing identification concerns. Thereafter, out-of-sample forecasting issues are discussed in
Section 12. Both unconditional and conditional forecasting are considered as well as a means
for checking if the conditional forecasts are subject to the famous Lucas (1976) critique or not.
The following topic concerns frequency domain properties of the DSGE model and of the VAR
model and this is covered in Section 13. For example, the population spectrum of the DSGE
model can be decomposed at each frequency into the shares explained by the underlying eco-
nomic shocks. Furthermore, Fisher’s information matrix can be computed via the frequency
domain using only values for the parameters of the model as input. Provided that we regard
identification as a concern which is directly related to the rank of this matrix, identification
may therefore be studied in some detail at a very early stage of the analysis, i.e., without the
necessity of having access to parameter estimates based on data.

The next topic is Bayesian VARs. In particular, YADA supports VAR models for forecasting
purposes. The types of prior that may be used, computation of posterior mode, posterior sam-
pling with the Gibbs sampler, the computation of the marginal likelihood, and forecasting with
such models are all given some attention in Section 14. One specific feature of the Bayesian
VAR models that YADA support is that the steady state parameters are modelled explicitly.

Next, an important aspect of Bayesian analysis is that it does not rely on the assumption that
the model is correctly specified. The so called DSGE-VAR approach, advocated in a series of
articles by Del Negro and Schorfheide (2004, 2006, 2009) and Del Negro, Schorfheide, Smets,
and Wouters (2007), has been suggested as a tool for measuring the degree of misspecification
of a DSGE model by approximating it by a VAR; see also An and Schorfheide (2007). This
approach may be also be used as a measure of fit of the DSGE model, and can be used to
compute the posterior distribution of the DSGE model parameters when viewed through the
lens of the VAR. The setup of DSGE-VARs and their estimation are discussed in some detail in
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Section 15, while Section 16 turns to the prior and posterior analyses that can be performed
through a DSGE-VAR.

Finally, the issue of setting up the DSGE model, VAR, and DSGE-VAR input for YADA is dis-
cussed in Section 17. This involves writing the model equations in an AiM model file, specifying
a prior for the parameters to estimate, having appropriate parameter functions for parameters
that are either calibrated or which are functions of the estimated parameters, the construction
of the file for the measurement equations that link the model variables to the observed and the
exogenous variables, and finally the file that reads observed data into YADA. Since this paper
concerns the implementation of various mathematical issues in a computer program, most sec-
tions end with a part that discusses some details of the main functions that are made use of by
YADA.
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2. DSGE Models

Before we turn our attention to issues related to the estimation of DSGE models it is only natural
to first have a look at a few examples and how DSGE models can be solved. In this Section I will
therefore provide a bird’s eye view of some well know DSGE models, which happen to share the
unfortunate fate of being directly supported by YADA. That is, the YADA distribution contains
all the necessary files for estimating them. The problem of solving DSGE models is discussed
thereafter in Section 3.

A natural point of entry is the benchmark monetary policy analysis model studied in An and
Schorfheide (2007). This model is only briefly presented as a close to the simplest possible
example of a DSGE model. An open economy version of this model from Lubik and Schorfheide
(2007a) is thereafter considered. We thereafter turn to the model by Andrés, López-Salido,
and Vallés (2006) which includes money and where the data is taken from the Classical Gold
Standard era and which has been estimated by Fagan, Lothian, and McNelis (2013). Next, the
well-known Smets and Wouters (2007) model is examined in more detail. We first consider the
American Economic Review (AER) version of the model, and thereafter the version suggested
by, e.g., Del Negro et al. (2007), where detrending is applied with a stochastic rather than a de-
terministic trend. In addition, we include a small-scale version of the latter model, described by
Del Negro and Schorfheide (2013). Moreover, we consider an extension of the stochastic trend
version of the Smets and Wouters model which allows for financial frictions, as in Del Negro
and Schorfheide (2013), and an extension of the former which allows for unemployment, as in
Galí, Smets, and Wouters (2012) for the US and in Smets, Warne, and Wouters (2013) for the
euro area.

All the models mentioned above include a monetary policy reaction function, correctly sug-
gesting that the main policy focus within the DSGE model literature is on monetary policy. Fiscal
policy is, however, also an issue that has been addressed using log-linearized DSGE model and
we therefore consider an interesting example of a model with fiscal polciy rules. The model
presented by Leeper, Plante, and Traum (2010) is has government spending, transfer as well as
three tax rules and thus covers a wide range of fiscsal policies. This model is also discussed by
Herbst and Schorfheide (2016) in their book about Bayesian estimation of DSGE models. The
problem of solving a DSGE model will thereafter be addressed in Section 3.

2.1. The An and Schorfheide Model

The model economy consists of a final goods producing firm, a continuum of intermediate
goods producing firms,a representative household, and a monetary and a fiscal authority. As
pointed out by An and Schorfheide (2007), this model has become a benchmark specification for
monetary policy analysis; for a detailed derivation see, e.g., King (2000) or Woodford (2003).

Let x̂t = ln(xt/x) denote the natural logarithm of some variable xt relative to its steady state
value x. The log-linearized version of the An and Schorfheide (2007) model we shall consider
has 6 equations describing the behavior of (detrended) output (yt), (detrended) consumption
(ct), (detrended) government spending (gt), (detrended) technology (zt), inflation πt, and a
short term nominal interest rate Rt. The equations are given by

ĉt = Etĉt+1 − 1

τ

(
R̂t − Etπ̂t+1 − Etẑt+1

)
,

π̂t = βEtπ̂t+1 + κ
(
ŷt − ĝt

)
,

ŷt = ĉt + ĝt,

R̂t = ρRR̂t−1 + (1 − ρR)ψ1π̂t + (1 − ρR)ψ2

(
ŷt − ĝt

)
+ σRηR,t,

ĝt = ρGĝt−1 + σGηG,t,

ẑt = ρZẑt−1 + σZηZ,t.

(2.1)

The shocks ηi,t ∼ iidN(0,1) for i = R,G,Z, and are called the monetary policy or interest rate
shock, the government spending shock, and the technology shock.
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The first equation is the log-linearized consumption Euler equation, where τ is the inverse
of the intertemporal elasticity of substitution. The second equation is the log-linearized price
Phillips curve, with β being the discount factors and κ a function of the inverse of the elasticity
of demand (ν), steady-state inflation (π), and the degree of price stickiness (φ) according to

κ =
τ
(
1 − ν

)

νπ2φ
.

The third equation is the log-linearized aggregate resource constraint, while the fourth is the
monetary policy rule with ŷt − ĝt being equal to the output gap. This output gap measure
is a flexible price measure, i.e., based on φ = 0, with potential output thus being equal to
government spending. Accordingly, the output gap is equal to consumption in this version of
the model. The final two equations in (2.1) are AR(1) processes for the exogenous government
spending and technology variables.

The steady state for this model is given by r = γ/β, R = rπ∗, π = π∗, y = g(1 − ν)1/τ , and
c = (1 − ν)1/τ . The parameter π∗ is the steady-state inflation target of the central bank, while
γ is the steady-state growth rate.

The measurement equation linking the data on quarter-to-quarter per capita GDP growth
(∆yt), annualized quarter-to-quarter inflation rates (πt), and annualized nominal interest rates
(Rt) to the model variables are given by:

∆yt = γ (Q) + 100
(
ŷt − ŷt−1 + ẑt

)
,

πt = π(A) + 400π̂t,

Rt = π(A) + r(A) + 4γ (Q) + 400R̂t.

(2.2)

Additional parameter definitions are:

β =
1

1 +
r(A)

400

, γ = 1 +
γ (Q)

100
, π = 1 +

π(A)

400
, (2.3)

where only the β parameter is of real interest since it appears in (2.1). In view of the expression
for κ, it follows that the ν and φ parameters cannot be identified in the log-linearized version
of the model. The parameters to estimate for this model are therefore given by

θ = [τ κ ψ1 ψ2 ρR ρG ρZ r
(A) π(A) γ (Q) σR σG σZ]′. (2.4)

When simulating data with the model, the value of θ was given by:

θ =
[
2.00 0.15 1.50 1.00 0.60 0.95 0.65 0.40 4.00 0.50 0.002 0.008 0.0045

]
.

These values are identical to those reported by An and Schorfheide (2007, Table 2) for their
data generating process.

2.2. A Small Open Economy DSGE Model: The Lubik and Schorfheide Example

As an extension of the closed economy An and Schorfheide model example, YADA also comes
with a small open economy DSGE model which has been investigated by, e.g., Lubik and
Schorfheide (2007a) and Lees, Matheson, and Smith (2011) using actual data. The YADA
example is based on data simulated with the DSGE model.

The model is a simplification of Galí and Monacelli (2005) and, like its closed economy
counterpart, consists of a forward-looking IS-equation and a Phillips curve. Monetary policy
is also given by a Taylor-type interest rate rule, where the exchange rate is introduced via the
definition of consumer prices and under the assumption of PPP. In log-linearized form the model
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can be expressed as

ŷt = Etŷt+1 − ϕ
(
R̂t − Etπ̂t+1

)
− Etẑt+1 − αϕEt∆q̂t+1 + α(1 − α)

1 − τ

τ
Et∆ŷ

∗
t+1,

π̂t = βEtπ̂t+1 + αβEt∆q̂t+1 − α∆q̂t +
κ

ϕ

(
ŷt − x̂t

)
,

R̂t = ρRR̂t−1 + (1 − ρR)
[
ψπ π̂t + ψyŷt + ψ∆e∆êt

]
+ σRηR,t,

∆êt = π̂t − (1 − α)∆q̂t − π̂∗
t ,

(2.5)

where β = 1/(1 + (r(A)/400)), ϕ = τ + α(2 − α)(1 − τ), τ is the intertemporal elasticity of
substitution, and 0 < α < 1 is the import share. The closed economy version of the model is
obtained when α = 0.

Variables denoted with an asterisk superscript are foreign, the nominal exchange rate is given
by ê, terms-of-trade (defined as the relative price of exports in terms of imports) by q̂, while
potential output in the absence of nominal rigidities, x̂t, is determined by the equation:

x̂t = −α(2 − α)
1 − τ

τ
ŷ∗
t ,

To close the model, the remaining 4 variables are assumed to be exogenous and determined by:

∆q̂t = ρQ∆q̂t−1 + σQηQ,t,

ŷ∗
t = ρY∗ŷ∗

t−1 + σY∗ηY∗,t,

π̂∗
t = ρπ∗π̂∗

t−1 + σπ∗ηπ∗,t,

ẑt = ρZẑt−1 + σZηZ,t,

(2.6)

where ηi,t ∼ N(0,1) for i = R,Q, Y∗, π∗, Z. When the model is taken literally, the terms-of-trade
variable is endogenously determined by the equation:

ϕ∆q̂t = ∆ŷ∗
t − ∆ŷt.

However, Lubik and Schorfheide note that such a specification leads to numerical problems
when estimating the posterior mode and to implausible parameters estimates and low likelihood
values when a mode is located.

The measurement equations for this model are:

∆yt = γ (Q) + ∆ŷt + ẑt,

πt = π(A) + π̂t,

Rt = π(A) + r(A) + 4γ (Q) + R̂t,

∆et = ∆êt,

∆qt = ∆q̂t.

(2.7)

The model therefore has a total of 19 unknown parameters, collected into

θ =
[
ψπ ψy ψ∆e ρR α r(A) κ τ ρQ ρZ

ρY∗ ρπ∗ π(A) γ (Q) σQ σZ σR σY∗ σπ∗
]
.

When simulating data using this model, the value for θ was given by:

θ =
[
1.30 0.23 0.14 0.69 0.11 0.51 0.32 0.31 0.31 0.42

0.97 0.46 1.95 0.55 1.25 0.84 0.36 1.29 2.00
]
.

With the exception of the parameters that reflect the steady-state values of the observables,
the values are equal to the benchmark estimates for Canada in Lubik and Schorfheide (2007a,
Table 3).

2.3. A Model with Money Demand and Money Supply: Fagan, Lothian and McNelis

The DSGE model considered by Fagan et al. (2013) is a variant of the model suggested by
Andrés et al. (2006), which in turn has predecessors such as Rotemberg and Woodford (1997),
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McCallum and Nelson (1999), and Ireland (2004), and this version assumes linear separability
between money and consumption in preferences. The incorporation of money makes it possible
to analyse monetary regimes where interest rates are determined through the interplay between
supply and demand, instead of from a policy rule where the Central Bank sets the short-term
nominal interest rate. The study by Fagan et al. (2013) focuses on the Gold Standard era and
assumes that base money supply is exogenous, but as in Andrés et al. (2006) this assumption
may be replaced with having a standard Taylor type of policy rule for determining the interest
rate.

Based on the notation from Fagan, Lothian, and McNelis (2013), the log-linearized Euler
equation for real GDP is given by

ŷt =
φ1

φ1 + φ2
ŷt−1 +

βφ1 + φ2

φ1 + φ2
Etŷt+1 − 1

φ1 + φ2

(
r̂t − Etπ̂t+1

)

− βφ1

φ1 + φ2
Etŷt+2 +

(
1 − βhρa

)(
1 − ρa

)
(
1 − βh

)(
φ1 + φ2

) ât,
(2.8)

where ât is an exogenous aggregate demand shock. Real money demand is determined by

m̂t − p̂t = −φ1

δ
ŷt−1 +

φ2

δ
ŷt −

βφ1

δ
Etŷt+1 − 1

δ
(
r − 1

) r̂t

+
1 − βhρa(
1 − βh

)
δ
ât +

δ − 1

δ
êt,

(2.9)

where êt is an exogenous liquidity preference (money demand) shock.
Real marginal costs are related to output and exogenous shocks in the log-linearized form

m̂ct = −φ1ŷt−1 +
(
χ + φ2

)
ŷt − βφ1Etŷt+1 −

(
1 + χ

)
ẑt

−
βh
(
1 − ρa

)
(
1 − βh

) ât,
(2.10)

where ẑt is an exogenous technology (productivity) shock. Next, the log-linearized Phillips
curve is

π̂t = γfEtπ̂t+1 + γbπ̂t−1 + λm̂ct, (2.11)

and therefore contains both a forward looking and a backward looking part, while λ is the
sensitivity of inflation to marginal costs. The real marginal costs function and the log-linearized
Phillips curve characterize the supply side of the economy.

Andrés et al. (2006) show that many of the parameters in the log-linearized structural form
of the model are functions of the underlying deep structural parameters. Specifically,

λ =
(
1 − θp

)(
1 − βθp

)(
1 − ω

)
ξ,

ξ =
1 − α[

1 + α
(
ε − 1

)][
θp + ω

(
1 − θp[1 − β]

)] ,

χ =
ϕ + α

1 − α
,

where 1 − α is the elasticity of labor with respect to output, and ϕ is the labor supply elasticity.
Each firm resets its price with probability 1−θp each period, while a fraction θp keep their price
unchanged; Calvo (1983) mechanism. The ratio ε/(1 − ε) is equal to the steady-state price
markup. The parameter ω measures the fraction of firms that set prices in a backward-looking
way using a simple rule of thumb, while 1−ω is the fraction of firms that set prices in a forward-
looking manner; see Galí and Gertler (1999). The parameter h represents the importance of
habit persistence in the utility function, while β is the discount factor and r is the steady-state
interest rate. The parameter δ reflects the exponential weight on real money balances in the
temporal utility function and serves a similar purpose as σ has for consumption. Specifically, if
δ = 1 (σ = 1) then the log of real money balances (log of current consumption over lagged,
habit adjusted consumption) appears in the utility function. The σ parameter is interpreted by
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Fagan et al. (2013) as the constant relative risk aversion. Additionally,

φ1 =

(
σ − 1

)
h

1 − βh
,

φ2 =
σ +

(
σ − 1

)
βh2 − βh

1 − βh
,

γf =
βθp

θp + ω
(
1 − θp[1 − β]

) ,

γb =
ω

θp + ω
(
1 − θp[1 − β]

) .

Notice that σ = 1 implies that φ1 = 0, while φ2 = 1. Furthermore, γf is increasing in θp, while
γb is increasing in ω. It may also be noted that if ω = 0 such that all firms set prices based on
profit maximization, then inflation becomes a purely foreward-looking variable.

The monetary regime over the Gold standard is modelled as an exogenous process for nom-
inal base money growth by Fagan, Lothian, and McNelis (2013), as suggested by, e.g., Cagan

(1965).4 Specifically,
∆m̂t = ρm∆m̂t−1 + σmηm,t, (2.12)

where ηm,t is an iid N(0,1) money supply shock. Real money balances obeys the identity

m̂t − p̂t = m̂t−1 − p̂t−1 + ∆m̂t − π̂t. (2.13)

Finally, the aggregate demand, liquidity preference, and technology shocks also follow AR(1)
processes with iid N(0,1) innovations, according to

ât = ρaât−1 + σaηa,t,

êt = ρeêt−1 + σeηe,t,

ẑt = ρzẑt−1 + σzηz,t.

(2.14)

The measurement equations for this model are:

yt = ŷt + εy,t,

rt = r̂t,

πt = π̂t,

∆mt = ∆m̂t,

(2.15)

where εy,t is an iid N(0, σ2
y) measurement error. The observed variables are given by HP-filtered

real GDP, the demeaned short-term interest rate (commercial paper rate), the demeaned first
difference of the log of the GDP deflator, and the demeaned first difference of the log of base
money.

Two of the parameters of the model are calibrated and given by β = 0.988, and r = 1/β. The
remaining 16 parameters are estimated and given the vector:

θ =
[
h σ χ λ θp ω δ ρa ρe ρz ρm σa σe σz σm σy

]
.

The model still has three unidentified deep structural parameters, namely: α, ε, and ϕ. They
are not explicitly needed to solve the log-linearized version of the model, but if we are willing
to fix one of them, say α = 1/3, then the other two can be solved from the equations for ξ and
χ.

4 Alternatively, Andrés, López-Salido, and Vallés (2006) consider a Taylor type of monetary policy rule, but with the

twist that it includes money growth. Specifically,

r̂t = ρr r̂t−1 +
(
1 − ρr

) (
ρπ π̂t + ρyŷt + ρm∆m̂t

)
+ σrηr,t,

where ηr,t is an iid N(0, 1) interest rate shock, and ρm is the weight on nominal money growth.
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2.4. A Medium-Sized Closed Economy DSGE Model: Smets and Wouters

A well known example of a medium-sized DSGE model is Smets and Wouters (2007), where the
authors study shocks and frictions in US business cycles. Like the two examples discussed above,
the Smets and Wouters model is also provided as an example with the YADA distribution. The
equations of the model are presented below, while a detailed discussion of the model is found in
Smets and Wouters (2007); see also Smets and Wouters (2003, 2005). It should be emphasized
that since the model uses a flexible-price based output gap measure in the monetary policy rule,
the discussion will first consider the sticky price and wage system, followed by the flexible price
and wage system. The equations for the 7 exogenous variables are introduced thereafter, while
the steady-state of the system closes the theoretical part of the empirical model. Finally, the
model variables are linked to the observed variables via the measurement equations.

2.4.1. The Sticky Price and Wage Equations

The log-linearized aggregate resource constraint of this closed economy model is given by

ŷt = cy ĉt + iy ît + zyẑt + ε
g
t , (2.16)

where ŷt is (detrended) real GDP. It is absorbed by real private consumption (ĉt), real private

investments (̂it), the capital utilization rate (ẑt), and exogenous spending (ε
g
t ). The parameter

cy is the steady-state consumption-output ratio and iy is the steady-state investment-output
ratio, where

cy = 1 − iy − gy,

and gy is the steady-state exogenous spending-output ratio. The steady-state investment-output
ratio is determined by

iy =
(
γ + δ − 1

)
ky,

where ky is the steady-state capital-output ratio, γ is the steady-state growth rate, and δ is the
depreciation rate of capital. Finally,

zy = rkky,

where rk is the steady-state rental rate of capital. The steady-state parameters are shown in
Section 2.4.4, but it is noteworthy already at this stage that zy = α, the share of capital in
production.

The dynamics of consumption follows from the consumption Euler equation and is equal to

ĉt = c1ĉt−1 + (1 − c1)Etĉt+1 + c2

(
l̂t − Etl̂t+1

)
− c3

(
r̂t − Etπ̂t+1

)
+ εbt , (2.17)

where l̂t is hours worked, r̂t is the policy controlled nominal interest rate, and εbt is proportional
to the exogenous risk premium, i.e., a wedge between the interest rate controlled by the central
bank and the return on assets held by households. It should be noted that in contrast to Smets
and Wouters (2007), but identical to Smets and Wouters (2005), I have moved the risk premium

variable outside the expression for the ex ante real interest rate. This means that εbt = −c3ǫ
b
t ,

where ǫbt is the risk premium variable in Smets and Wouters (2007), while εbt is referred to as
a preference variable that affects the discount rate determining the intertemporal subsitution
decisions of households in Smets and Wouters (2005). I have chosen to consider the expression
in (2.17) since it is also used in the dynare code that can be downloaded from the American

Economic Review web site in connection with the 2007 article.5

The parameters of the consumption Euler equation are:

c1 =
λ/γ

1 + (λ/γ)
, c2 =

(σc − 1) (whl/c)

σc
(
1 + (λ/γ)

) , c3 =
1 − (λ/γ)

σc
(
1 + (λ/γ)

) ,

5 The links to the code and the data as well as the Appendix of Smets and Wouters (2007) can be found next to the

electronic version of the paper.
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where λ measures external habit formation, σc is the inverse of the elasticity of intertemporal

substitution for constant labor, while whl/c is the steady-state hourly real wage bill to consump-
tion ratio. If σc = 1 (log-utility) and λ = 0 (no external habit) then the above equation reduces
to the familiar purely forward looking consumption Euler equation.

The log-linearized investment Euler equation is given by

ît = i1ît−1 + (1 − i1)Et̂it+1 + i2q̂t + εit, (2.18)

where q̂t is the real value of the existing capital stock, while εit is an exogenous investment-
specific technology variable. The parameters of (2.18) are given by

i1 =
1

1 + βγ1−σc , i2 =
1(

1 + βγ1−σc
)
γ2ϕ

,

where β is the discount factor used by households, and ϕ is the steady-state elasticity of the
capital adjustment cost function.

The dynamic equation for the value of the capital stock is

q̂t = q1Etq̂t+1 +
(
1 − q1

)
Etr̂

k
t+1 −

(
r̂t − Etπ̂t+1

)
+ c−1

3 εbt , (2.19)

where r̂kt is the rental rate of capital. The parameter q1 is here given by

q1 = βγ−σc(1 − δ) =
1 − δ

rk + 1 − δ
.

Turning to the supply-side of the economy, the log-linearized aggregate production function
can be expressed as

ŷt = φp

[
αk̂st + (1 − α) l̂t + εat

]
, (2.20)

where k̂st is capital services used in production, and εat an exogenous total factor productivity
variable. As mentioned above, the parameter α reflects the share of capital in production, while
φp is equal to one plus the steady-state share of fixed costs in production.

The capital services variable is used to reflect that newly installed capital only becomes effec-
tive with a one period lag. This means that

k̂st = k̂t−1 + ẑt, (2.21)

where k̂t is the installed capital. The degree of capital utilization is determined from cost
minimization of the households that provide capital services and is therefore a positive function
of the rental rate of capital. Specifically,

ẑt = z1r̂
k
t , (2.22)

where

z1 =
1 − ψ

ψ
,

and ψ is a positive function of the elasticity of the capital adjustment cost function and nor-
malized to be between 0 and 1. The larger ψ is the costlier it is to change the utilization of
capital.

The log-linearized equation that specifies the development of installed capital is

k̂t = k1k̂t−1 + (1 − k1) ît + k2ε
i
t. (2.23)

The two parameters are given by

k1 =
1 − δ

γ
, k2 =

(
γ + δ − 1

) (
1 + βγ1−σc) γϕ.

From the monopolistically competitive goods market, the price markup (µ̂
p
t ) is equal to minus

the real marginal cost (µ̂ct) under cost minimization by firms. That is,

µ̂
p
t = α

(
k̂st − l̂t

)
− ŵt + εat , (2.24)
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where the real wage is given by ŵt. Similarly, the real marginal cost is

µ̂ct = αr̂kt + (1 − α) ŵt − εat , (2.25)

where (2.25) is obtained by substituting for the optimally determined capital-labor ratio in
equation (2.27).

Due to price stickiness, as in Calvo (1983), and partial indexation to lagged inflation of those
prices that cannot be reoptimized, prices adjust only sluggishly to their desired markups. Profit
maximization by price-setting firms yields the log-linearized price Phillips curve

π̂t = π1π̂t−1 + π2Etπ̂t+1 − π3µ̂
p
t + ε

p
t

= π1π̂t−1 + π2Etπ̂t+1 + π3µ̂
c
t + ε

p
t ,

(2.26)

where ε
p
t is an exogenous price markup process. The parameters of the Phillips curve are given

by

π1 =
ıp

1 + βγ1−σc ıp
, π2 =

βγ1−σc

1 + βγ1−σc ıp
, π3 =

(
1 − ξp

) (
1 − βγ1−σcξp

)
(
1 + βγ1−σc ıp

)
ξp
(
(φp − 1)εp + 1

) .

The degree of indexation to past inflation is determined by the parameter ıp, ξp measures the
degree of price stickiness such that 1 − ξp is the probability that a firm can reoptimize its price,
and εp is the curvature of the Kimball (1995) goods market aggregator.

Cost minimization of firms also implies that the rental rate of capital is related to the capital-
labor ratio and the real wage according to.

r̂kt = −
(
k̂st − l̂t

)
+ ŵt. (2.27)

In the monopolistically competitive labor market the wage markup is equal to the difference
between the real wage and the marginal rate of substitution between labor and consumption

µ̂wt = ŵt −
(
σl l̂t +

1

1 − (λ/γ)

[
ĉt −

λ

γ
ĉt−1

])
, (2.28)

where σl is the elasticity of labor supply with respect to the real wage.
Due to wage stickiness and partial wage indexation, real wages respond gradually to the

desired wage markup

ŵt = w1ŵt−1 + (1 −w1)
[
Etŵt+1 + Etπ̂t+1

]
−w2π̂t +w3π̂t−1 −w4µ̂

w
t + εwt , (2.29)

where εwt is an exogenous wage markup process. The parameters of the wage equation are

w1 =
1

1 + βγ1−σc , w2 =
1 + βγ1−σc ıw
1 + βγ1−σc ,

w3 =
ıw

1 + βγ1−σc , w4 =

(
1 − ξw

) (
1 − βγ1−σcξw

)
(
1 + βγ1−σc

)
ξw
((
φw − 1

)
εw + 1

) .

The degree of wage indexation to past inflation is given by the parameter ıw, while ξw is the
degree of wage stickiness. The steady-state labor market markup is equal to φw − 1 and εw is
the curvature of the Kimball labor market aggregator.

The sticky price and wage part of the model is closed by adding the monetary policy reaction
function

r̂t = ρr̂t−1 +
(
1 − ρ

) [
rπ π̂t + ry

(
ŷt − ŷ

f
t

)]
+ r∆y

[
∆ŷt − ∆ŷ

f
t

]
+ εrt , (2.30)

where ŷ
f
t is potential output measured as the level of output that would prevail under flexible

prices and wages in the absence of the two exogenous markup processes, whereas εrt is an
exogenous monetary policy shock process.

2.4.2. The Flexible Price and Wage Equations

The flexible price equations are obtained by assuming that the two exogenous markup processes
are zero, while ξw = ξp = 0, and ıw = ıp = 0. As a consequence, inflation is always equal to
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the steady-state inflation rate while real wages are equal to the marginal rate of substitution
between labor and consumption as well as to the marginal product of labor. All other aspects
of the economy are unaffected. Letting the superscript f denote the flexible price and wage
economy versions of the variables we find that

ŷ
f
t = cy ĉ

f
t + iy î

f
t + zyẑ

f
t + ε

g
t ,

ĉ
f
t = c1ĉ

f

t−1
+ (1 − c1)Etĉ

f

t+1 + c2

(
l̂
f
t − Etl̂

f

t+1

)
− c3r̂

f
t + εbt ,

î
f
t = i1î

f

t−1
+ (1 − i1)Et̂i

f

t+1 + i2q̂
f
t + εit,

q̂
f
t = q1Etq̂

f

t+1 +
(
1 − q1

)
Etr̂

k,f

t+1 − r̂
f
t + c−1

3 εbt ,

ŷ
f
t = φp

[
αk̂

s,f
t + (1 − α) l̂

f
t + εat

]
,

k̂
s,f
t = k̂

f

t−1
+ ẑ

f
t ,

ẑ
f
t = z1r̂

k,f
t ,

k̂
f
t = k1k̂

f

t−1
+ (1 − k1) î

f
t + k2ε

i
t,

εat = αr̂
k,f
t + (1 − α) ŵ

f
t ,

r̂
k,f
t = −

(
k̂
s,f
t − l̂

f
t

)
+ ŵ

f
t ,

ŵ
f
t = σl l̂

f
t +

1

1 − (λ/γ)

[
ĉ
f
t −

λ

γ
ĉ
f

t−1

]
,

(2.31)

where r̂
f
t is the real interest rate of the flexible price and wage system.

2.4.3. The Exogenous Variables

There are seven exogenous processes in the Smets and Wouters (2007) model. These are gen-
erally modelled as AR(1) process with the exception of the exogenous spending process (where

the process depends on both the exogenous spending shock η
g
t and the total factor productivity

shock ηat ) and the exogenous price and wage markup processes, which are treated as ARMA(1,1)
processes. This means that

ε
g
t = ρgε

g

t−1
+ σgη

g
t + ρgaσaη

a
t ,

εbt = ρbε
b
t−1 + σbη

b
t ,

εit = ρiε
i
t−1 + σiη

i
t,

εat = ρaε
a
t−1

+ σaη
a
t ,

ε
p
t = ρpε

p

t−1
+ σpη

p
t − µpσpη

p

t−1
,

εwt = ρwε
w
t−1 + σwη

w
t − µwσwη

w
t−1,

εrt = ρrε
r
t−1 + σrη

r
t .

(2.32)

The shocks η
j
t , j = {a, b, g, i, p, r,w}, are N(0,1), where ηbt is a preference shock (proportional

to a risk premium shock), ηit is an investment-specific technology shock, η
p
t is a price markup

shock, ηrt is a monetary policy or interest rate shock, and ηwt is a wage markup shock.

2.4.4. The Steady-State Equations

It remains to provide expressions for the steady-state values of the capital-output ratio, the
rental rate of capital, and the hourly real wage bill to consumption ratio which relate them
to the parameters of the model. The steady-state exogenous spending to output ratio gy is a
calibrated parameter and set to 0.18 by Smets and Wouters (2007). From the expressions for
the q1 parameter it follows that

rk =
1

βγ−σc
+ δ − 1.
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The capital-output ratio is derived in a stepwise manner in the model appendix to Smets and
Wouters (2007). The steady-state relations there are

w =

[
αα (1 − α)(1−α)

φp
(
rk
)α

]1/(1−α)

,
l

k
=

(1 − α) rk

αw
,

k

y
= φp

[
l

k

]α−1

,

where ky = k/y. From these relationships it is straightforward, albeit tedious, to show that

zy = rkky = α.
The steady-state relation between real wages and hourly real wages is

w = φww
h,

so that the steady-state hourly real wage bill to consumption ratio is given by

whl

c
=

(1 − α) rkky

φwαcy
=

1 − α

φwcy
,

where the last equality follows from the relationship of zy = rkky = α.

2.4.5. The Measurement Equations

The Smets and Wouters (2007) model is consistent with a balanced steady-state growth path
driven by deterministic labor augmenting technological progress. The observed variables are
given by quarterly data of the log of real GDP per capita (yt), the log of real consumption per
capita (ct), the log of real investment per capita (it), the log of hours per capita (lt), the log of
quarterly GDP deflator inflation (πt), the log of real wages (wt), and the federal funds rate (rt).
With all observed variables except hours, inflation, and the federal funds rate being measured
in first differences, the measurement equations are given by




∆yt

∆ct

∆it

∆wt

lt

πt

rt




=




γ̄

γ̄

γ̄

γ̄

l̄

π̄

4r̄




+




ŷt − ŷt−1

ĉt − ĉt−1

ît − ît−1

ŵt − ŵt−1

l̂t

π̂t

4r̂t




. (2.33)

Since all observed variables except the federal funds rate (which is already reported in percent)
are multiplied by 100, it follows that the steady-state values on the right hand side are given by

γ̄ = 100
(
γ − 1

)
, π̄ = 100 (π − 1) , r̄ = 100

(
π

βγ−σc
− 1

)
,

where π is steady-state inflation. The federal funds rate is measured in quarterly terms in Smets
and Wouters (2007) through division by 4, and is therefore multiplied by 4 in (2.33) to restore

it to annual terms.6 At the same time, the model variable r̂t is measured in quarterly terms.
Apart from the steady-state exogenous spending-output ratio only four additional parameters

are calibrated. These are δ = 0.025, φw = 1.5, and εp = εw = 10. The remaining 19 structural
and 17 shock process parameters are estimated. The prior distributions of the parameters are
given in Smets and Wouters (2007, Table 1) and are also provided in the YADA example of their
model.

2.5. Smets and Wouters Model with Stochastic Detrending

Smets and Wouters (2007) assume that the underlying trend for output, private consumption,
etc. is given by γ t and is therefore deterministic. Del Negro and Schorfheide (2013) consider

6 For the YADA example of the Smets and Wouters model, the data on the federal funds rate has been redefined into

annual terms.
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a detrending approach which allows for a stochastic trend which may even have a unit root.
Specifically and as in Smets and Wouters (2007), the total factor productivity (TFP) process
around a liner deterministic trend is given by

εat = ρaε
a
t−1 + σaη

a
t ,

where ηat , as in Section 2.4.3, is an iid standard normal innovation. Define the trend variable
as follows:

Φt = exp
(
γ̃t + (1 − α)−1εat

)
.

Notice that the deterministic part of the trend is now given by exp(γ̃ t) rather than by γ t, i.e. we
have that γ = exp(γ̃). If ρa = 1, then the log of the trend follows a random walk with drift γ̃ ,
while |ρa| < 1 means that the TFP process is stationary so that the natural logarithm of Φt is
staionary around a linear deterministic trend.

Del Negro and Schorfheide (2013) suggest detrending the non-stationary variables with Φt

and as a consequence a number of the equations in Section 2.4 need to take this into account.
To this end, they define the variable

τ̂t = ln
(
Φt/Φt−1

)
− γ̃

=
1

1 − α
∆εat

=
1

1 − α

[(
ρa − 1

)
εat−1 + σaη

a
t

]
.

(2.34)

The τ̂t variable is serially correlated when the TFP process is stationary, and white noise when
the TFP process has a unit root.

The log-linearized aggregate resource constraint of this closed economy model is now given
by

ŷt = cy ĉt + iy ît + zyẑt − I(ρa < 1)
1

1 − α
εat + ε

g
t , (2.35)

where I(ρa < 1) is an indicator function which is unity if ρa < 1 and zero otherwise; cf. equation
(2.16). The steady-state ratios in (2.35) are the same as those in the original Smets and Wouters
model.

The consumption Euler equation is now

ĉt = c1

(
ĉt−1 − τ̂t

)
+ (1 − c1)Et [ĉt+1 + τ̂t+1] + c2

(
l̂t − Etl̂t+1

)
− c3

(
r̂t − Etπ̂t+1

)
+ εbt , (2.36)

where the parameters ci, i = 1,2,3, are given below equation (2.17).
Similarly, the investment Euler equation is

ît = i1
(̂
it−1 − τ̂t

)
+ (1 − i1)Et

[̂
it+1 + τ̂t+1

]
+ i2q̂t + εit, (2.37)

where i1 and i2 are specified below equation (2.18). The value of the capital stock evolves
according to the equation (2.19), with the parameter q1 unchanged.

The aggregate production function is now expressed as

ŷt = φp

[
αk̂st + (1 − α) l̂t

]
+ I(ρa < 1)

(
φp − 1

) 1

1 − α
εat , (2.38)

while capital services is given by

k̂st = k̂t−1 + ẑt − τ̂t, (2.39)

and the degree of capital utilization is given by equation (2.22).
The equation determining the evolution of installed capital is given by

k̂t = k1

(
k̂t−1 − τ̂t

)
+ (1 − k1) ît + k2ε

i
t, (2.40)

while k1 and k2 are defined below equation (2.23).
The price markup is like in Section 2.4 equal to minus the real marginal cost under cost

minimization. For the alternate detrending method we have that the price markup is

µ̂
p
t = α

(
k̂st − l̂t

)
− ŵt, (2.41)
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while the real marginal cost is

µ̂ct = αr̂kt + (1 − α) ŵt. (2.42)

Notice that the TFP shock is missing from both these equations. Setting (2.41) equal to minus
(2.42) and solving for the rental rate on capital we find that equation (2.27) holds.

The price Phillips curve is unaffected by the change in detrending method and is given by
equation (2.26), with the parameters πi, i = 1,2,3, also being unchanged. The real wage
markup is now given by

µ̂wt = ŵt −
(
σl l̂t +

1

1 − (λ/γ)

[
ĉt −

λ

γ

(
ĉt−1 − τ̂t

)])
, (2.43)

i.e., the real wage minus the households’ marginal rate of substitution between consumption
and labor, while real wages are now determined by

ŵt = w1

(
ŵt−1 − τ̂t

)
+ (1 −w1)Et

[
ŵt+1 + τ̂t+1 + π̂t+1

]
−w2π̂t +w3π̂t−1 −w4µ̂

w
t + εwt . (2.44)

The wi (i = 1,2,3,4) parameters are given by the expressions below equation (2.29). Finally,
the monetary policy reaction function is given by (2.30).

The equations of the flexible price and wage economy

ŷ
f
t = cy ĉ

f
t + iy î

f
t + zyẑ

f
t − I(ρa < 1)

(
1 − α

)−1
εat + ε

g
t ,

ĉ
f
t = c1

(
ĉ
f

t−1
− τ̂t

)
+ (1 − c1)Et

[
ĉ
f

t+1 + τ̂t+1

]
+ c2

(
l̂
f
t − Etl̂

f

t+1

)
− c3r̂

f
t + εbt ,

î
f
t = i1

(̂
i
f

t−1
− τ̂t

)
+ (1 − i1)Et

[̂
i
f

t+1 + τ̂t+1

]
+ i2q̂

f
t + εit,

q̂
f
t = q1Etq̂

f

t+1 +
(
1 − q1

)
Etr̂

k,f

t+1 − r̂
f
t + c−1

3 εbt ,

ŷ
f
t = φp

[
αk̂

s,f
t + (1 − α) l̂

f
t

]
+ I(ρa < 1)(φp − 1)

(
1 − α

)−1
εat ,

k̂
s,f
t = k̂

f

t−1
+ ẑ

f
t − τ̂t,

ẑ
f
t = z1r̂

k,f
t ,

k̂
f
t = k1

(
k̂
f

t−1
− τ̂t

)
+ (1 − k1) î

f
t + k2ε

i
t,

0 = αr̂
k,f
t + (1 − α) ŵ

f
t ,

r̂
k,f
t = −

(
k̂
s,f
t − l̂

f
t

)
+ ŵ

f
t ,

ŵ
f
t = σl l̂

f
t +

1

1 − (λ/γ)

[
ĉ
f
t −

λ

γ

(
ĉ
f

t−1
− τ̂t

)]
,

(2.45)

where r̂
f
t is the real interest rate of the flexible price and wage economy.

The steady-state values of the model as shown in Section 2.4.4 remain valid. The measure-
ment equations change slightly due to the different detrending method. Specifically, we now
obtain 



∆yt

∆ct

∆it

∆wt

lt

πt

rt




=




γ̄

γ̄

γ̄

γ̄

l̄

π̄

4r̄




+




ŷt − ŷt−1 + τ̂t

ĉt − ĉt−1 + τ̂t

ît − ît−1 + τ̂t

ŵt − ŵt−1 + τ̂t

l̂t

π̂t

4r̂t




, (2.46)

where γ̄ , π̄, and r̄ are shown below equation (2.33).
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2.5.1. A Small-Scale Version of the Smets and Wouters Model

Del Negro and Schorfheide (2013) presents a smal-scale version of the Smets and Wouters
model in Section 2.5 by removing a number of features, such as capital accumulation (with

α = 0). After setting λ = 0 and eliminating the εbt shock, the consumption Euler equation
simplifies to

ĉt = Et [ĉt+1 + τ̂t+1] +
σc − 1

σc

(
l̂t − Et l̂t+1

)
− 1

σc

(
r̂t − Etπ̂t+1

)
, (2.47)

Notice that hours appears in this formulation when σc 6= 1 and this is based on a unit steady-

state wage.7

It is also assumed that there is no wage stickiness in the small-scale model. Consequently,
the marginal cost is equal to the real wage, and the latter is equal to the marginal rate of
substitution between consumption and leisure. In the absence of fixed costs (φp = 1) the

aggregate production function implies that output equals hours, ŷt = l̂t, with the results that

µ̂ct = ĉt + σlŷt. (2.48)

With zero price markup shocks, the price Phillips curve is otherwise given by equation (2.26),
noting that the denominator of π3 simplifies since φp = 1. That is,

π̂t =
ıp

1 + βγ1−σc ıp
π̂t−1 +

βγ1−σc

1 + βγ1−σc ıp
Etπ̂t+1

+

(
1 − ξp

) (
1 − βγ1−σcξp

)
(
1 + βγ1−σc ıp

)
ξp

µ̂ct .

(2.49)

Compared with equation (24) in Del Negro and Schorfheide (2013) we here use the term βγ1−σc
rather than just β, which would only appear if σc = 1.

The monetary policy rule is slightly altered by Del Negro and Schorfheide (2013), where the
central bank only reacts to inflation and output growth, while the monetary policy shock is iid.
It is also assumed below that the central bank only reacts to inflation and output growth, but
the original assumption that monetary policy shocks follow an AR(1) process is retainted. That
is,

r̂t = ρr̂t−1 +
(
1 − ρ

) [
rπ π̂t + ry

(
∆ŷt + τ̂t

)]
+ εrt . (2.50)

The aggregate resource constraint now simplifies to

ŷt = ĉt + ε
g
t , (2.51)

which involves a slight redefinition of the government spending shock since the TFP shock term
is missing; cf. equation (2.35). All shocks in this model follow AR(1) processes, including εat
which determines τ̂t, and the government spending shock ε

g
t .

Finally, the measurement equations are given by



∆yt

πt

rt


 =



γ̄

π̄

4r̄


+



ŷt − ŷt−1 + τ̂t

π̂t

4r̂t


 . (2.52)

The steady-state parameters are equal to those shown below equation (2.33).

2.6. The Smets and Wouters Model with Financial Frictions

Del Negro and Schorfheide (2013) and Del Negro, Giannoni, and Schorfheide (2015) introduce
financial frictions into their variant of the Smets and Wouters models based on the financial
accelerator approach of Bernanke, Gertler, and Gilchrist (1999); see also Christiano, Motto,
and Rostagno (2003, 2010) and De Graeve (2008). This amounts to replacing the value of the

7 This term is missing in equation (22) of Del Negro and Schorfheide (2013). The unit steady-state wage follows

from φw = 1 and cy = 1 when α = 0.
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capital stock equation in (2.19) with

Etr̂
e
t+1 − r̂t = ζsp,b

(
q̂t + k̂t − n̂t

)
− c−1

3 εbt + εet , (2.53)

and
r̂et − π̂t =

(
1 − q1

)
r̂kt + q1q̂t − q̂t−1, (2.54)

where r̂et is the gross return on capital for entrepreneurs, n̂t is entrepreneurial equity (net
worth), and εet captures mean-preserving changes in the cross-sectional dispersion of ability
across entrepreners, a spread shock. The parametes q1 is here given by

q1 =
1 − δ

rk + 1 − δ
,

where rk is generally not equal to β−1γσc+δ−1 since the spread between gross returns on capital
for entrepreneurs and the nominal interest rate need not zero. The spread shock is assumed to
follows the AR(1) process

εet = ρeε
e
t−1 + σeη

e
t . (2.55)

The parameters ζsp,b is the steady-state elasticity of the spread with respect to leverage. It
may be noted that if ζsp,b = σe = 0, then the financial frictions are completely shut down and
equations (2.53) and (2.54) yield the original value of the capital stock equation (2.19).

The log-linearized net worth of entrepreneurs equation is given by

n̂t + ζn,τ τ̂t = ζn,e
(
r̂et − π̂t

)
− ζn,r

(
r̂t−1 − π̂t

)
+ ζn,q

(
q̂t−1 + k̂t−1

)
+ ζn,nn̂t−1 − ζn,σω

ζsp,σω
εet−1, (2.56)

where ζn,e, ζn,r , ζn,q, ζn,n, and ζn,σω are the steady-state elasticities of net worth with respect
to the return on capital for entrepreneurs, the nominal interest rate, the cost of capital, net
worth, and the volatility of the spread shock. Furthermore, ζn,τ is the steady-state elasticity
with respect to the TFP shock based trend variable τ̂ and ζsp,σω is the steady-state elasticity of
the spread with respect to the spread shock.

It is typically assumed for the flexible price and wage economy that there are no financial
frictions; see, e.g., De Graeve (2008). Accordingly, net worth is zero, the gross real return on

capital of entrepreneurs is equal to the real rate r̂
f
t , while the value of the capital stock evolves

according to

q̂
f
t = q1Etq̂

f

t+1 +
(
1 − q1

)
Etr̂

k,f

t+1 − r̂
f
t + c−1

3 εbt .

Since the steady-state real rental rate on capital in the flexible price and wage economy without
financial frictions is equal to the real interest rate, an option regarding the q1 parameter in this
equation is to set it equal to q1,f = βγ−σc(1 − δ). Formally, this appears to be the correct choice
since the steady-state of the flexible price and wage and frictionless economy differs from the
steady-state of the economic with sticky prices and wages and financial frictions. However, if
the steady-state spread of the former economy, re/r, is close to unity, then q1 and q1,f will be
approximately equal.

2.6.1. Augmented Measurement Equations

The set of measurement equations is augmented in Del Negro and Schorfheide (2013) by

st = 4s̄+ 4Et
[
r̂et+1 − r̂t

]
, (2.57)

where s̄ is equal to the natural logarithm of the steady-state spread measured in quarterly
terms and in percent, s̄ = 100 ln(re/r) , while the spread variable, st, is measured as the
annualized Moody’s seasoned Baa corporate bond yield spread over the 10-year treasury note
yield at constant maturity by Del Negro and Schorfheide (2013) and Del Negro et al. (2015).
The parameter s is linked to the steady-state values of the model variable variables according to

re

r
= (1 + s/100)1/4 ,

r

π
= β−1γσc ,

re

π
= rk + 1 − δ.
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If there are no financial frictions, then re = r, with the consequence that the steady-state
real interest rate is equal to the steady-state real rental rate on capital plus one minus the
depreciation rate of capital, i.e., the Smets and Wouters steady-state value; see Section 2.4.4.

Del Negro and Schorfheide (2013) estimate s, ζsp,b, ρe, and σe while the parameters F̄ and
κe are calibrated. The latter two parameters will appear in the next Section on the steady-state,
but it is useful to know that they represent the steady-state default probability and survival
rate of entrepreneurs, respectively, with F̄ determined such that in annual terms the default
probability is 0.03 (0.0075 in quarterly terms) and κe = 0.99. These values are also used by
Del Negro et al. (2015) as well as in the DSGE model of the Federal Reserve Bank of New York;
see Del Negro, Eusepi, Giannoni, Sbordone, Tambalotti, Cocci, Hasegawa, and Linder (2013).

2.6.2. The Steady-State in the Smets and Wouters Model with Financial Frictions

2.6.2.1. Preliminaries: The Log-Normal Distribution

To determine the relationship between the elasticities in equations (2.53) and (2.56) and the
steady-state of the model with financial frictions it is important to first sort out some details
concerning an ideosyncratic shock which affects entrepreneurs’ capital. The distribution of
the shock in time t is known before it is realized and this distribution is the same for all en-
trepreneurs, while the shock is iid across entrepreneurs and over time. In steady state, the
natural logarithm of the shock, denoted by lnω, is normal with mean mω and variance σ2

ω,
where it is assumed that the expected value of ω is unity. Since its distribution is log-normal
(cf. Section 4.2.6) with µω = exp(mω + (1/2)σ2

ω) = 1, it follows that mω = −(1/2)σ2
ω. The

probability density function (pdf) of ω is consequently

p(ω) =
1√

2πσ2
ω

ω−1 exp

(
− 1

2σ2
ω

(
lnω + (1/2)σ2

ω

)2
)
,

while the cumulative distribution function (cdf) is

F
(
ω
)

= Φ

(
lnω + (1/2)σ2

ω

σω

)
,

where Φ(z) is the cdf of the normal distribution. For values of ω below a threshold, ω̄, the
enrepreneur defaults on its debt.8

The expected value of ω conditional on it being greater than ω̄ is given by

E
[
ω|ω > ω̄

]
=

∫ ∞

ω̄
ωp(ω)dω = Φ

(
(1/2)σ2

ω − ln ω̄

σω

)

= 1 − Φ

(
ln ω̄ − (1/2)σ2

ω

σω

)
,

where the last equality follows from Φ(z) = 1 − Φ(−z), i.e. that the normal distribution is
symmetric. We then find that

G
(
ω̄
)

=

∫ ω̄

0
ωp(ω)dω =

∫ ∞

0
ωp(ω)dω −

∫ ∞

ω̄
ωp(ω)dω

= Φ

(
ln ω̄ − (1/2)σ2

ω

σω

)
.

Furthermore, let

Γ
(
ω̄
)

=

∫ ω̄

0
ωp(ω)dω + ω̄

∫ ∞

ω̄
p(ω)dω

= ω̄

[
1 − Φ

(
ln ω̄ + (1/2)σ2

ω

σω

)]
+ G

(
ω̄
)
.

8 The entrepreneurs are assumed to be gender free in this economy and supposedly multiply by splitting into two

after having too much curry.
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Defining

zω =
ln ω̄ + (1/2)σ2

ω

σω
,

we obtain
G
(
ω̄
)

= Φ (zω − σω) , Γ
(
ω̄
)

= ω̄
[
1 − Φ

(
zω
)]

+ Φ (zω − σω) . (2.58)

Let φ(z) be the standard normal pdf such that ∂Φ(z)/∂z = φ(z); cf. Section 4.2.6. From the
expression for this density it follows that

φ
(
zω − σω

)
= ω̄φ

(
zω
)
, φ′(z

)
=
∂φ
(
z
)

∂z
= −zφ

(
z
)
,

∂zω

∂ω̄
= − 1

ω̄σω
.

Making use of these two results it can be shown that

G′(ω̄
)

= − 1

σω
φ
(
zω
)
, G′′(ω̄

)
= − zω

ω̄σ2
ω

φ
(
zω
)
, (2.59)

where G′(ω̄) = ∂G(ω̄)/∂ω̄ and G′′(ω̄) = ∂2G(ω)/∂ω̄2. In addition,

Γ′(ω̄
)

=
Γ
(
ω̄
)
− G

(
ω̄
)

ω̄
= 1 − Φ

(
zω
)
, Γ′′(ω̄

)
= − 1

ω̄σω
φ
(
zω
)
, (2.60)

where Γ′(ω̄) = ∂Γ(ω̄)/∂ω̄ and Γ′′(ω̄) = ∂2Γ(ω)/∂ω̄2. We will also have use for the following
derivatives

Gσω
(
ω̄
)

= −z
ω

σω
φ
(
zω − σω

)
, Γσω

(
ω̄
)

= −φ
(
zω − σω

)
, (2.61)

where Gσω(ω̄) = ∂G(ω̄)/∂σω and Γσω(ω̄) = ∂Γ(ω̄)/∂σω and we have made use of

∂zω

∂σω
= 1 − zω

σω
.

Finally, it can be shown that

G′
σω

(
ω̄
)

= −
φ
(
zω
)

σ2
ω

[
1 − zω

(
zω − σω

)]
, Γ′

σω

(
ω̄
)

=

(
zω

σω
− 1

)
φ
(
zω
)
, (2.62)

where G′
σω

(ω̄) = ∂2G(ω̄)/∂ω̄∂σω and Γ′
σω

(ω̄) = ∂2Γ(ω̄)/∂ω̄∂σω.

2.6.2.2. Steady-State Elasticities

The steady-state default probability, F̄, is assumed to be calibrated at 0.03 (0.0075) in annual
(quarterly) terms by Del Negro and Schorfheide (2013). This means that

F
(
ω̄
)

= F̄, (2.63)

or

zω =
ln ω̄ + (1/2)σ2

ω

σω
= Φ−1

(
F̄
)
, (2.64)

where Φ−1(·) is the inverted normal. With F̄ being known it follows that zω is known and that
ω̄ may be treated as a function of σω. That is,

ω̄
(
σω
)

= exp
(
zωσω − (1/2)σ2

ω

)
. (2.65)

Del Negro and Schorfheide (2013) suggest that we may solve for the steady-state value of σω
from

ζsp,b = − ζb,ω̄/ζz,ω̄

1 −
(
ζb,ω̄/ζz,ω̄

) n/k

1 −
(
n/k

) , (2.66)

where ζb,ω̄ and ζz,ω̄ are elasticities to be defined below, the parameter ζsp,b is estimated, while
the steady-state ratio

n

k

(
ω̄
)

= 1 −
[
Γ
(
ω̄
)
− µeG

(
ω̄
)]re

r
, (2.67)
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and

µe
(
ω̄
)

=
1 −

(
r/re

)
(
G′(ω̄

)
/Γ′(ω̄

))[
1 − Γ

(
ω̄
)]

+G
(
ω̄
) . (2.68)

It may be noted that (n/k)/[1− (n/k)] is equal to the inverse of steady-state leverage (where
leverage is denoted by ̺ in the Technical Appendix to Del Negro and Schorfheide, 2013), while

µe is related to the steady-state bankruptcy costs.9 Furthermore, the ratio re/r is determined
from the estimate of s; see below equation (2.57).

In the Technical Appendix to Del Negro and Schorfheide (2013) it is shown that

ζb,ω̄ =
ω̄µe

(
n/k

)[
Γ′′(ω̄

)
G′(ω̄

)
− G′′(ω̄

)
Γ′(ω̄

)]

[
Γ′(ω̄

)
− µeG′(ω̄

)]2

[
1 − Γ

(
ω̄
)

+ Γ′(ω̄
) Γ
(
ω̄
)
− µeG

(
ω̄
)

Γ′(ω̄
)
− µeG′(ω̄

)
]
(
re/r

)
, (2.69)

while

ζz,ω̄ =
ω̄
[
Γ′(ω̄

)
− µeG′(ω̄

)]

Γ
(
ω̄
)
− µeG

(
ω̄
) , (2.70)

while n/k and µe are given by (2.67) and (2.68), respectively. Plugging the expression for ζb,ω̄,
ζz,ω̄, µe, and n/k into equation (2.66) and making use of (2.65) it is possible to solve for σω
numerically using nonlinear methods, such as with the fzero function in Matlab.

The elasticities of the net worth equation can now be computed from the parameters of the
model. The spread elasticity with respect to the spread shock is

ζsp,σω =

(
ζb,ω̄/ζz,ω̄

)
ζz,σω − ζb,σω

1 −
(
ζb,ω̄/ζz,ω̄

) , (2.71)

where

ζb,σω =
σω
[
A
(
ω̄
)

+ B
(
ω̄
)]

C
(
ω̄
) , (2.72)

with

A
(
ω̄
)

=

[
1 − µe

(
Gσω(ω̄)/Γσω(ω̄)

)

1 − µe
(
G′(ω̄)/Γ′(ω̄)

) − 1

]
Γσω
(
ω̄
)(
re/r

)
,

B
(
ω̄
)

=
µe
(
n/k

)[
G′(ω̄

)
Γ′
σω

(
ω̄
)
− Γ′(ω̄

)
G′
σω

(
ω̄
)]

[
Γ′(ω̄

)
− µeG′(ω̄

)]2
,

C
(
ω̄
)

=
[
1 − Γ

(
ω̄
)](

re/e
)

+
Γ′(ω̄

)

Γ′(ω̄
)
− µeG′(ω̄

)
[
1 −

(
n/k

)]
,

while

ζz,σω =
σω
[
Γσω
(
ω̄
)
− µeGσω

(
ω̄
)]

Γ
(
ω̄
)
− µeG

(
ω̄
) . (2.73)

Turning to the remaining elasticities of the net worth equation, it is shown in the Technical
Appendix of Del Negro and Schorfheide (2013) that

ζn,e = κe
re

πγ

(
n/k

)−1
(

1 − µeG
(
ω̄
)[

1 −
(
ζG,ω̄/ζz,ω̄

)])
, (2.74)

where

ζG,ω̄ =
ω̄G′(ω̄

)

G
(
ω̄
) .

9 The bank monitors the entrepreneurs and extracts a fraction (1 − µe) of its revenues given that the bank assumes

the draw of ω is below the threshold ω̄. The remaining fraction µe may therefore be regarded as the bankruptcy

costs.
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Next,

ζn,r =
(
κe/β

)(
n/k

)−1
(

1 −
(
n/k

)
+ µeG

(
ω̄
)(
re/r

)[
1 −

(
ζG,ω̄/ζz,ω̄

)])
, (2.75)

ζn,q = κe
re

πγ

(
n/k

)−1

[
1 − µeG

(
ω̄
)
(

1 +
ζG,ω̄

(
n/k

)

ζz,ω̄
[
1 −

(
n/k

)]
)]

−
(
κe/β

)(
n/k

)−1
, (2.76)

ζn,n =
(
κe/β

)
+ κe

re

πγ
µeG

(
ω̄
) ζG,ω̄

ζz,ω̄
[
1 −

(
n/k

)] . (2.77)

(2.78)

Furthermore,

ζn,τ = κe
v

n
, (2.79)

where v is steady-state entrepreneurs’ equity. From the Technical Appendix of Del Negro and
Schorfheide (2013) we find that

v =
n−we

κe
, (2.80)

we

k
=

(
1 − κe

β

)
n

k
− κe

β

[
re

r

(
1 − µeG(ω̄)

)
− 1

]
, (2.81)

where we is the steady-state net worth transfer received by new entrepreneurs. Combining
equations (2.79)–(2.81) it can be shown that

ζn,τ =
(
κe/β

)
+
(
κe/β

)(
n/k

)−1
[
re

r

(
1 − µeG(ω̄)

)
− 1

]
. (2.82)

Finally,

ζn,σω = κeµeG
(
ω̄
) re
πγ

(
n/k

)−1[
ζG,σω −

(
ζG,ω̄/ζz,ω̄

)
ζz,σω

]
, (2.83)

where

ζG,σω =
σωGσω

(
ω̄
)

G
(
ω̄
) .

In case we instead add the BGG-type of financial frictions10 to the variant of the Smets and
Wouters model in Section 2.4, the variable τ̂t simply drops out of the net worth equation (2.56).
The equation for the spread between expected gross return on capital for entrepreneurs and the
short-term nominal interest rate (2.53) and the equation for the real gross return on capital for
entrepreneurs (2.54) remain unchanged.

2.7. The Smets and Wouters Model with Unemployment

The Galí, Smets, and Wouters (2012, GSW) model is an extension of the standard Smets and
Wouters model which explixitly provides a mechanism for explaining unemployment. This is
accomplished by modelling the labor supply decisions on the extensive margin (whether to work
or not) rather than on the intensive margin (how many hours to work). As a consequence, the
unemployment rate is added as an observable variable, while labor supply shocks are allowed
for. This allows the authors to overcome the lack of identification of wage markup and labor
supply shocks raised by Chari, Kehoe, and McGrattan (2009) in their critique of new Keynesian
models. From a technical perspective the GSW model is also based on the assumption of log-
utility, i.e. the parameter σc is assumed to be unity.

Smets, Warne, and Wouters (2013) present a variant of the GSW model aimed for the euro
area and this version is presented below. The log-linearized aggregate resource constraint is
given by equation (2.16). The consumption Euler equation may be expressed as

λ̂t = Etλ̂t+1 +
(
r̂t − Etπ̂t+1 − ǫbt

)
, (2.84)

10 BGG refers to Bernanke, Gertler, and Gilchrist (1999).
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where λ̂t is the log-linearized marginal utility of consumption, given by

λ̂t = − 1

1 − (λ/γ)

[
ĉt −

λ

γ
ĉt−1

]
, (2.85)

while ǫbt is a risk premium shock. Making use of (2.84) and (2.85), the consumption Euler
equation can be written in the more familiar form

ĉt = c1ĉt−1 +
(
1 − c1

)
Etĉt+1 − c3

(
r̂t − Etπ̂t+1 − ǫbt

)
, (2.86)

where c1 and c3 are given by the expressions below equation (2.17), while c2 = 0 since σc = 1.

Notice that the risk premium shock in equation (2.86) satisfies ǫbt = c−1
3 εbt in equation (2.17).11

The investment Euler equation is given by equation (2.18), where i2 = 1/(1 + β) and i2 =
1/((1 + β)γ2ϕ) since σc = 1. The value of the capital stock equation can be expressed in terms
of the risk premium shock rather than the intertemporal substitution preference shock and is
therefore written as

q̂t = q1Etq̂t+1 +
(
1 − q1

)
Etr̂

k
t+1 −

(
r̂t − Etπ̂t+1 − ǫbt

)
. (2.87)

The aggregate production function is given by equation (2.20), while the capital service
variable is determined by (2.21), capital utilization by (2.22), and installed capital by (2.23),
where k2 = (γ + δ − 1)(1 + β)γϕ.

Similarly, the average price markup and the real marginal cost variables are given by equation
(2.24) and (2.25), respectively, while the rental rate of capital is determined by equation (2.27).

The log-linearized price Phillips curve is expressed as

π̂t = π1π̂t−1 + π2Etπ̂t+1 − π3

(
µ̂
p
t − µ̂

n,p
t

)
, (2.88)

where the expressions for πi below equation (2.26) hold, taking into account that σc = 1, and

where the natural price markup shock µ̂
n,p
t = 100ε

p
t .

In the GSW model, the wage Phillips curve in equation (2.29) is replaced with the following
expression for nominal wage inflation

ŵt − ŵt−1 + π̂t = β
(
Etŵt+1 − ŵt + Etπ̂t+1

)
− βıwπ̂t + ıwπ̂t−1

−
(
1 − ξw

)(
1 − βξw

)

ξw
(
1 + εwσl

)
[
µ̂wt − µ̂

n,w
t

]
,

(2.89)

where µ̂wt is the average wage markup and µ̂
n,w
t is the natural wage markup. Notice that this

equation can be rewritten as

ŵt = w1ŵt−1 + (1 −w1)
[
Etŵt+1 + Etπ̂t+1

]
−w2π̂t +w3π̂t−1 −w4

(
µ̂wt − µ̂

n,w
t

)
, (2.90)

where wi are given by the expressions below equation (2.29) for i = 1,2,3 with σc = 1, while

w4 =

(
1 − ξw

)(
1 − βξw

)
(
1 + β

)
ξw
(
1 + εwσl

) .

In addition, GSW and Smets et al. (2013) let the curvature of the Kimball labor market aggre-
gator be given by

εw =
φw

φw − 1
.

The average wage markup is defined as the difference between the real wage and the mar-
ginal rate of substitution, which is a function of the smoothed trend in consumption, κ̂t, total
employment, êt, and the labor supply shock. This expression is equal to the elasticity of labor
supply times the unemployment rate, i.e.

µ̂wt = ŵt −
(
κ̂t + εst + σlêt

)

= σlût,
(2.91)

11 Notice that the sign of ǫbt in (2.86) differs from the sign of the risk premium shock in the consumption equation

(2) of Smets and Wouters (2007).
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where unemployment is defined as labor supply minus total employment:

ût = l̂st − êt. (2.92)

The natural wage markup shock is treated symmetrically with the natural price markup shocks
and is expressed as 100εwt and is, in addition, equal to the elasticity of labor supply times the
natural rate of unemployment. Accordingly,

µ̂
n,w
t = 100εwt = σlû

n
t (2.93)

The natural rate of unemployment, ûnt , is defined as the unemployment rate that would prevail
in the absence of nominal wage rigidities, and is here proportional to the natural wage markup.

The smoothed trend in consumption is given by

κ̂t =
(
1 − υ

)
κ̂t−1 +

υ

1 − (λ/γ)

[
ĉt −

λ

γ
ĉt−1

]
, (2.94)

where the parameter υ measures the weight on the marginal utility of consumption under the
assumption that σc = 1; cf. equation (2.85). Notice that if υ = 1, εst = 0, and ût = 0, the
average wage markup in (2.91) is equal to the wage markup in equation (2.28) of the Smets
and Wouters model.

Since productivity is written in terms of hours worked, Smets, Warne, and Wouters (2013)
follow Smets and Wouters (2003) and introduce an auxiliary equation with Calvo-type rigidity

to link observed total employment to unobserved hours worked (l̂t):

êt − êt−1 = β
(
Etêt+1 − êt

)
+ e1

(
l̂t − êt

)
. (2.95)

The parameter e1 is determined by

e1 =

(
1 − ξe

)(
1 − βξe

)

ξe
,

where 1− ξe is the fraction of firms that are able to adjust employment to its desired total labor
input; see also Adolfson, Laséen, Lindé, and Villani (2005); Adolfson et al. (2007b).

The sticky price and wage part of the GSW model is “closed” by adding the monetary policy
reaction function in equation (2.30).

The flexible price and wage equations are obtained by assuming that the natural price and
wage markup processes are zero and by setting ξw = ξp = 0 and ım = ıp = 0, as in Section 2.4.2.
Inflation is equal to the steady-state inflation rate and real wages are, as mentioned before, set
such that they are equal to the marginal rate of substitution between labor and consumption
as well as to the marginal product of labor, with the effect that unemployment is zero. The
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equations describing the evolution of the flexible price and wage economy are now given by

ŷ
f
t = cy ĉ

f
t + iy î

f
t + zyẑ

f
t + ε

g
t ,

ĉ
f
t = c1ĉ

f

t−1
+ (1 − c1)Etĉ

f

t+1 − c3

(
r̂
f
t − ǫbt

)
,

î
f
t = i1î

f

t−1
+ (1 − i1)Et̂i

f

t+1 + i2q̂
f
t + εit,

q̂
f
t = q1Etq̂

f

t+1 +
(
1 − q1

)
Etr̂

k,f

t+1 −
(
r̂
f
t − ǫbt

)
,

ŷ
f
t = φp

[
αk̂

s,f
t + (1 − α) l̂

f
t + εat

]
,

k̂
s,f
t = k̂

f

t−1
+ ẑ

f
t ,

ẑ
f
t = z1r̂

k,f
t ,

k̂
f
t = k1k̂

f

t−1
+ (1 − k1) î

f
t + k2ε

i
t,

εat = αr̂
k,f
t + (1 − α) ŵ

f
t ,

r̂
k,f
t = −

(
k̂
s,f
t − l̂

f
t

)
+ ŵ

f
t ,

ŵ
f
t = σlê

f
t + κ̂

f
t + εst ,

κ̂
f
t =

(
1 − υ

)
κ̂
f

t−1
+

υ

1 − (λ/γ)

[
ĉ
f
t −

λ

γ
ĉ
f

t−1

]
,

ê
f
t = ê

f

t−1
+ β
(
Etê

f

t+1 − ê
f
t

)
+ e1

(
l̂
f
t − ê

f
t

)
.

(2.96)

There are eight exogenous processes in the GSW model. These are generally modelled as
AR(1) process with the exception of the exogenous spending process (where the process de-

pends on both the exogenous spending shock η
g
t and the total factor productivity shock ηat ) and

the exogenous price and wage markup processes, which are treated as ARMA(1,1) processes.
This means that

ε
g
t = ρgε

g

t−1
+ σgη

g
t + ρgaσaη

a
t ,

ǫbt = ρbǫ
b
t−1 + σbη

b
t ,

εit = ρiε
i
t−1 + σiη

i
t,

εat = ρaε
a
t−1 + σaη

a
t ,

ε
p
t = ρpε

p

t−1
+ σpη

p
t − µpσpη

p

t−1
,

εwt = ρwε
w
t−1 + σwη

w
t − µwσwη

w
t−1,

εst = ρsε
s
t−1 + σsη

s
t ,

εrt = ρrε
r
t−1 + σrη

r
t .

(2.97)

The shocks η
j
t , j = {a, b, g, i, p, r, s,w}, are iid N(0,1), where ηbt is the risk premium shock, ηit

is an investment-specific technology shock, η
p
t is a price markup shock, ηrt is a monetary policy

or interest rate shock, ηst is a labor supply, and ηwt is a wage markup shock.
The steady-state values of the capital-output ratio, etc., are determined as in Section 2.4.4

for the Smets and Wouters model. It should again be kept in mind that σc = 1, such that, e.g.,
the steady-state rental rate of capital is given by

rk =
γ

β
+ δ − 1.

Since the parameter c2 = 0 it follows that it is not necessary to determine the steady-state
hourly wage bill relative to consumption.

The model is consistent with a balanced steady-state growth path, driven by deterministic
labor augmenting trend growth. The observed variables for the euro area are given by quarterly
data on the log of real GDP (yt), the log of real private consumption (ct), the log of real total
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investment (it), the log of the GDP deflator (py,t), the log of real wages (wt), the log of total
employment (et), the unemployment rate (ut), and the short-term nominal interest rate (rt),
represented by the 3-month EURIBOR rate. With all variables except for the unemployment rate
and the short-term nominal interest rate being measured in first differences, the measurement
equations are given by 



∆yt

∆ct

∆it

∆wt

∆et

πt

ut

rt




=




γ̄ + ē

γ̄ + ē

γ̄ + ē

γ̄

ē

π̄

ū

4r̄




+




ŷt − ŷt−1

ĉt − ĉt−1

ît − ît−1

ŵt − ŵt−1

êt − êt−1

π̂t

ût

4r̂t




. (2.98)

The steady-state parameters are determined as

γ̄ = 100
(
γ − 1

)
, π̄ = 100

(
π − 1

)
, r̄ = 100

(
πγ

β
− 1

)
, ū = 100

(
φw − 1

σl

)
,

where (φw−1) is the steady-state labor market markup, π is the steady-state inflation rate, while
ē reflects steady-state labor force growth and is added the real variables that are not measured
in per capita terms. Apart from the parameter σc, three additional structural parameters are
calibrated. These are gy = 0.18, δ = 0.025, and ǫp = 10. Furthermore, the AR(1) parameter
for the labor supply shock εst is given by ρs = 0.999.

2.8. The Leeper, Plante and Traum Model for Fiscal Policy Analysis

A common feature of all the models presented above is that macroeconomic (stabilization) pol-
icy is confined to interest rate setting with a Taylor-type monetary policy rule, while fiscal pol-
icy is, when included, entirely exogenous. The model suggested by Leeper, Plante, and Traum
(2010) focuses instead on fiscal policy and includes endogenous policy rules for government
spending, lump-sum transfers, and (distortionary) taxation on labor, capital, and consumption
expenditures. This LPT model is discussed in some detail below.

2.8.1. The Log-Linearized Dynamic Equations

The consumption Euler equation of the log-linearized version of the LPT model is given by

ûbt −
γ(1 + h)

1 − h
ĉt +

γh

1 − h
ĉt−1 − τc

1 + τc
τ̂ct = r̂t −

τc

1 + τc
Etτ̂

c
t+1 + Etû

b
t+1 −

γ

1 − h
Etĉt+1, (2.99)

where ûbt is a general preference shock, ĉt is real consumption, τ̂ct is the consumption tax rate,
and r̂t is the interest rate on one-period debt outstanding at time t. Furthermore, γ is the
risk aversion parameter for a utility maximizing household, h is the habit formation parameter,
while τc is the steady-state consumption tax rate.

The labor supply Euler equation is

ûlt +
(
1 + κ

)
l̂t +

τc

1 + τc
τ̂ct = ŷt −

τ l

1 − τ l
τ̂ lt −

γ

1 − h
ĉt +

γh

1 − h
ĉt−1, (2.100)

where ûlt is a labor-supply-specific preference shock, l̂t is hours worked, τ̂ lt is the labor income

tax rate, while ŷt is output. The parameter κ is the inverse Frisch elasticity, whereas τ l is the
steady-state labor income tax rate.
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The value of the capital stock, q̂t, is related to consumer behavior according to the following
Euler equation

q̂t = Etû
b
t+1 − γ

1 − h
Etĉt+1 +

γ(1 + h)

1 − h
ĉt −

τc

1 + τc

(
Etτ̂

c
t+1 − τ̂ct

)
− ûbt −

γh

1 − h
ĉt−1

+ β
(
1 − τk

)
Rk
(
Etŷt+1 − k̂t

)
− βτkRkEtτ̂

k
t+1 − βδ1Etv̂t+1 + β

(
1 − δ0

)
Etq̂t+1.

(2.101)

Installed capital is given by k̂t, τ̂
k
t is the capital income tax rate, and v̂t is capacity utilization.

In (2.101) we have already taken into account that the steady-state rental rate on capital, Rk, is
equal to the capital share, α, times the steady-state output-capital ratio, Y/K, i.e.

Rk =
αY

K
.

The discount factor is given by β, τk is steady-state capital income tax, while δ0 and δ1 are

parameters of the quadratic capital utilization cost function.12 Furthermore, output is linked to
capital, its value, and capital utilization through

ŷt −
τk

1 − τk
τ̂kt − k̂t−1 = q̂t +

(
1 +

δ2

δ1

)
v̂t, (2.102)

where δ2 is yet another capital utilization cost parameter.
The investent Euler equation of the LPT model is

1

φ
q̂t −

(
1 + β

)̂
it + ît−1 + βEt̂it+1 − ûit + βEtû

i
t+1 = 0. (2.103)

Real investment is here denoted by ît, û
i
t is an investment-specific technology shock, and φ is

an investment adjustment cost parameter.
The aggregate resource constraint in log-linearzed form is given by

Yŷt = Cĉt + Iît + Gĝt. (2.104)

The steady-state of the model determines the parameters C, I, and G; see Section 2.8.2 for more
details.

The capital accumulation equation is

k̂t =
(
1 − δ0

)
k̂t−1 + δ1v̂t + δ0ît. (2.105)

The log-linearized government budget constraint is

Bb̂t + τkαY
(
τ̂kt + ŷt

)
+ τ l

(
1 − α

)
Y
(
τ̂ lt + ŷt

)
+ τcC

(
τ̂ct + ĉt

)
=
B

β

(
r̂t−1 + b̂t−1

)

+ Gĝt + Zẑt.
(2.106)

The government debt is denoted by b̂t, lump-sum government transfers by ẑt, while B is the
steady-state government debt and Z the steady-state government tranfers.

The aggregate production function of the economy is

ŷt = ûat + α
(
v̂t + k̂t−1

)
+
(
1 − α

)
l̂t, (2.107)

where ûat is a total factor productivity (TFP) process.
The model also includes five fiscal policy rules. Government spending is assumed to be

determined by

ĝt = −ϕgŷt − γg b̂t−1 + û
g
t , (2.108)

where û
g
t is a government spending shock. The ϕg parameter reflects the response to output

and γg the response to government debt.

12 Following Schmitt-Grohé and Uribe (2012), LPT assume that owners of physical capital can control the intensity

of capital utilization and adopt a quadratic form of this function, with a constant δ0, a parameter δ1 on the deviation

of capital utilization from unity, and δ2 on the square of this deviation.
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The lump-sum government transfers are assumed given by the rule

ẑt = −ϕzŷt − γzb̂t−1 + ûzt , (2.109)

where ûzt is a government transfer shock. The parameters ϕz and γz reflect the responses to
output and debt in the transfer rule.

The capital income tax rate is determined by the rule

τ̂kt = ϕkŷt + γkb̂t−1 + φklû
tl
t + φkcû

tc
t + ûtkt , (2.110)

where ûtlt is the labor income tax shock, ûtct is the consumption tax shock, and ûtkt the capi-
tal income tax shock. The parameter φkl (φkc) measures comovements of the capital income
tax shock and the labor income (consumption) tax shocks, while ϕk and γk are the response
parameters to output and government debt.

The labor income tax rate is similarly determined by the rule

τ̂ lt = ϕlŷt + γlb̂t−1 + φklû
tk
t + φlcû

c
t + ûlt. (2.111)

The parameters ϕl and γl give the responses of the labor income tax rate to output and debt,
respectively, while φlc is a comovement parameter for labor income tax shocks and consumption
tax shocks.

The consumption tax rate rule is given by

τ̂ct = φkcû
tk
t + φlcû

tl
t + ûtct . (2.112)

Notice that the comovement parameters are the same as those given in the previous tax rate
rules, and that this rule does not have any response parameters with respect to output and
government debt.

The model has nine exogenous shock process and they are all assumed to follow AR(1) pro-
cesses. That is,

ûat = ρaû
a
t−1 + σaη

a
t ,

ûbt = ρbû
b
t−1

+ σbη
b
t ,

ûit = ρiû
i
t−1

+ σiη
i
t,

ûlt = ρlû
l
t−1

+ σlη
l
t,

û
g
t = ρgû

g

t−1
+ σgη

g
t ,

ûzt = ρzû
z
t−1

+ σzη
z
t ,

ûtkt = ρtkû
tk
t−1 + σtkη

tk
t ,

ûtlt = ρtlû
tl
t−1

+ σtlη
tl
t ,

ûtct = ρtcû
tc
t−1 + σtcη

tc
t .

(2.113)

For j = a, b, i, l, g, z, tk, tl, tc, the η
j
t shocks are assumed to be standard normally distributed

and to be independent for j and t.

2.8.2. The Steady-State Equations

As shown in the Leeper et al. (2010, Appendix A), the steady-state value of the capital stock and
capital utilization are both unity, while the interest rate r = 1/β. The steady-state rental rate
on capital satisfies

Rk =
r + δ0 − 1

1 − τk
,

while
δ1 = Rk

(
1 − τk

)
.

Steady-state investment is linked to the steady-state capital stock through

I = δ0K.
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The steady-state values of Y , K, C, and L can be solved from the following four equations

Y
(
1 − sg

)
= C + δ0K,

Y = KαL1−α,

Rk =
αY

K
,

(
1 + τc

)
L1+κ =

(
C − hC

)−γ(
1 − τ l

)(
1 − α

)
Y,

where sg = G/Y ∈ (0,1). Given a value for sg and with Rk being determined by, e.g., β, δ0,

and τk, these four equations can be solved analytically yielding

L =




(
1 − τ l

)(
1 − α

)( α

Rk

)(1−γ)α/(1−α)

(
1 + τc

) [(
1 − h

)(
1 − sg −

δ0α

Rk

)]γ




1/(κ+γ)

It can furthermore be shown that

K =

(
α

Rk

)1/(1−α)

L,

Y =

(
α

Rk

)α/(1−α)

L,

C =

(
1 − sg −

δ0α

Rk

)
Y.

Steady-state lump-sum transfer are thereafter given by

Z = τkαY + τ l
(
1 − α

)
Y + τcC −

(
sg +

1 − β

β
sb

)
Y,

where sb = B/Y ∈ (0,1).
LPT calibrate a number of the parameters of the model. Specifically, β = 0.99, δ0 = 0.025,

α = 0.3, sg = 0.0922, sb = 0.3396, τk = 0.184, τ l = 0.223, and τc = 0.028. Using US data over
the sample 1960Q1–2008Q1, they estimate the remaining parameters of the model. From the
equations of the model based on optimizing behavior, the parameters to estimate are given by
γ , κ, h, φ, and δ2. Furthermore, the 11 parameters of the five fiscal rules, and the 18 parameters
of the nine exogenous shock processes are also estimated.

2.8.3. Measurement Equations

The measured data are given by natural logarithms of real consumption per capita (lnC),
real investment per capital (ln I), hours worked per capital (lnH), government debt per cap-
ital (lnB), government spending per capita (lnG), government lump-sum transfers per capita

(lnZ), capital income tax revenues per capita (ln Tk), labor income tax revenues per capita

(lnT l), and consumption tax revenues per capita (lnT c), where a constant and a linear trend
has been removed from each of these variables. The observed variables are thereafter linked to
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the model variables as follows: 


lnCt

ln It

lnHt

lnBt

lnGt

lnZt

lnTkt

lnT lt

lnT ct




=




ĉt

ît

l̂t

b̂t

ĝt

ẑt

τ̂kt + ŷt

τ̂ lt + ŷt

τ̂ct + ĉt




. (2.114)

Notice the way the observed variables on capital income tax revenues, labor income tax rev-

enues, and consumption tax revenues are linked to the model variables.13 These three tax
revenue variables also appear on the left hand side of the log-linearized government budget
constraint in equation (2.106). Additional information about the defintions of the observed
variables is available in Leeper et al. (2010, Appendix B) and in Herbst and Schorfheide (2016,
Appendix B).

13 This is not documented in the paper, but is shown in the matlab code that can be downloaded from, e.g., Eric

Leeper’s homepage.

– 39 –



3. Solving a DSGE Model

Sargent (1989) was among the first to recognise that a log-linearized DSGE model with rational
expectations can be cast in state-space form, where the observed variables are linked to the
model variables through the measurement equation. At the same time, the state equation
provides the reduced form of the DSGE model, mapping current variables to their lags and the
iid shocks. The reduced form is obtained by solving for the expectation terms in the structural
form of the model using a suitable method; see, e.g., Blanchard and Kahn (1980), Anderson
and Moore (1985), Anderson (2008, 2010), Christiano (2002), King and Watson (1998), Klein
(2000), Sims (2002), and Meyer-Gohde (2010). If a unique convergent solution is available,
the Kalman filter can be applied to compute the value of the log-likelihood function.

Below I shall present the basics underlying three of the above approaches to solving a log-
linearized DSGE model with rational expectations. The first is the fastest method supported by
YADA, namely, the Anderson-Moore (AiM) approach which relies on a shuffle and eigenvalue
method described in various papers over the years. The other two methods make use of the
generalized Schur decomposition (QZ decomposition) based on alternative representations of
the structural form of the DSGE model.

3.1. The DSGE Model Specification and Solution

To make use of the Kalman filter for evaluating the log-likelihood function we need to have a
mapping from the structural parameters of the DSGE model to the “reduced form” parameters
in the state-space representation. This objective can be achieved by attempting to solve the
DSGE model for a given set of parameter values. Given that there exists a unique convergent
solution, we can express the solution as a reduced form VAR(1) representation of the form given
by the state equation in (5.2).

In this section I will present the general setup for solving linearized rational expectations
models with the Anderson-Moore algorithm. This algorithm is implemented in YADA via AiM.
Similar to Zagaglia (2005) the DSGE model is expressed as:

τL∑

i=1

H−izt−i +H0zt +
τU∑

i=1

HiEt[zt+i] = Dηt, (3.1)

where τL > 0 is the number of lags and τU > 0 the number of leads. The zt (p × 1) vector are
here the endogenous variables, while ηt (q × 1) are pure innovations, with zero mean and unit
variance conditional on the time t − 1 information. The Hi matrices are of dimension p × p
while D is p × q. When p > q the covariance matrix of ǫt = Dηt, DD

′, has reduced rank since

the number of shocks is less than the number of endogenous variables.14

Adolfson, Laséen, Lindé, and Svensson (2008a) shows in some detail how the AiM algorithm

can be used to solve the model in equation (3.1) when τU = τL = 1.15 As pointed out in that
paper, all linear systems can be reduced to this case by replacing a variable with a long lead or a
long lag with a new variable. Consider therefore the system of stochastic difference equations:

H−1zt−1 +H0zt +H1Et[zt+1] = Dηt. (3.2)

The AiM algorithm takes the Hi matrices as input and returns B1, called the convergent
autoregressive matrix, and S0, S1, such that the solution to (3.2) can be expressed as an autore-
gressive process

zt = B1zt−1 + B0ηt, (3.3)

14 The specification of iid shocks and the matrix D is only used here for expositional purposes. AiM does not make

any distinction between endogenous variables and shocks. In fact, zt would include ηt and, thus, H0 would include

D.

15 Their paper on optimal monetary policy in an operational medium-sized DSGE model is published in Adolfson,

Laséen, Lindé, and Svensson (2011).
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where

B0 = S−1
0 D, (3.4)

S0 = H0 +H1B1, (3.5)

S1 = S0B1 = −H−1. (3.6)

The Sj matrices (j = 0,1) represent the structural form autoregression, which can be expressed
as

S0zt = S1zt−1 + Dηt. (3.7)

The matrix B1 satisfies the identity

H−1 +H0B1 +H1B
2
1 = 0. (3.8)

This can be seen by leading the system in (3.2) one period and taking the expectation with

respect to time t information. Evaluating the expectation through (3.3) yields the identity.16

From equations (3.5) and (3.8) it can be seen that B1 and Sj only depend on the Hi matrices,
but not on D. This is consistent with the certainty equivalence of the system.

More generally, the conditions for the existence of a unique convergent solution (Anderson
and Moore, 1983, 1985, and Anderson, 2008, 2010) can be summarized as follows:

• Rank condition:

rank

(
τU∑

i=−τL
Hi

)
= dim(z).

• Boundedness condition: For all {zi}−1
i=−τL there exists {zt}∞

t=0 that solves (3.1) such that

lim
T→∞

Et+j
[
zt+j+T

]
= 0, ∀j ≥ 0.

The rank condition is equivalent to require that the model has a unique non-stochastic steady
state, while the boundedness condition requires that the endogenous variables eventually con-
verge to their steady state values; see also Blanchard and Kahn (1980) for discussions on exis-

tence and uniqueness.17

Given that a unique convergent solution exists, AiM provides an autoregressive solution path

zt =
τL∑

i=1

Bizt−i + B0ηt. (3.9)

The VAR(1) companion form of (3.9) is given by



zt

zt−1
...

zt−τL+1




=




B1 B2 · · · BτL

I 0 · · · 0
...

. . .
...

0 · · · I 0







zt−1

zt−2
...

zt−τL




+




B0ηt

0
...

0



. (3.10)

With ξt = [zt · · · zt−τL+1]′ the F matrix of the state-space form is immediately retrieved from
(3.10), while the state shocks, vt, are given by the second term on the right hand side; see
Section 5. The Q matrix is equal to the zero matrix, except for the upper left corner which is
given by B0B

′
0. If τL = 1, then Q = B0B

′
0, while F = B1.

Anderson and Moore (1985) presents a 14-steps algorithm for solving the system of equa-
tions in (3.1). The AiM matlab code is setup in a different way, where the first 8 steps are
performed without relying on a singular value decomposition. Before the coded version of the
AiM algorithm is presented, let

H =
[
H−τL · · · H−1 H0 H1 · · · HτU

]
,

16 Alternatively, (3.8) can be deduced by combining equations (3.5) and (3.6).

17 For generalizations and discussions of the boundedness condition, see Sims (2002) and Meyer-Gohde (2010); see

also Burmeister (1980) for further discussions on convergence and uniqueness.
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be a p × p(τL + τU + 1) matrix, while Q is a zero matrix with dimension pτU × p(τL + τU). The
auxiliary initial conditions in Q are first setup from a series of shift-rights. These are based on
locating rows of zero of the last (right-most) p columns of H (initially therefore of HτU). Once
there are no such rows of zeros, the algorithm is complemented with an eigenvalue computation
for determining Q.

Assuming that the matrix HτU has n1 > 0 rows of zeros with indices i1, the shift-right pro-
cedure begins with setting the first n1 rows of Q equal to rows with indices i1 and the first
p(τU + τL) columns of H. The rows in H with indices i1 are prepended with p columns of zeros
while the last p columns are deleted, i.e., the first p(τU + τL) elements in the n1 rows with
indices i1 are shifted to the right by p columns. The procedure next tries to locate rows of zeros
in the last p columns of this reshuffled H matrix. Let n2 be the number of such rows of zeros
with indices i2. If n2 > 0 and n1 + n2 ≤ pτU, rows n1 + 1 until n1 + n2 of Q are set equal
to the rows with indices i2 and the first p(τU + τL) columns of H. Furthermore, the rows in H
with indices i2 are prepended with p columns of zeros while the last p columns are deleted.
The procedure thereafter checks for rows of zeros in the last p columns of H and repeats the
procedure if necessary until no more rows of zero can be located in the last p columns of H.
Notice that the procedure also breaks off if n1 + n2 + . . . + nk > pτU, where k is the number of
searches for rows of zeros. In that case, AiM reports that there have been too many shift-rights
and that it cannot locate a unique convergent solution to the system of equations (too many
auxiliary conditions).

Once the shift-right loop has finished, the AiM procedure computes the p×p(τU + τL) matrix
Γ from the reshuffled H matrix according to

Γ = −H−1
τU

[
H−τL · · · H−1 H0 · · · HτU−1

]
,

where HτU is now the p × p matrix in the last p columns of the reshuffled H, while the p(τU +
τL) × p(τU + τL) companion matrix A is obtained as

A =

[
0 Ip(τU+τL−1)

Γ

]
.

These computations correspond to steps 9 and 10 in Anderson and Moore (1985).
The AiM code next checks if there are any columns with only zeros in A. Let m1 be the

number of such columns and j1 be a vector with indices for these columns. If m1 > 0, rows and
columns j1 are removed from A while keeping track of the columns in the original A matrix
that are nonzero and therefore “essential”. The code again checks for columns with only zeros,
removes the corresponding columns and rows while keeping track of the indices for the original
columns of A that have not been deleted. This procedure is repeated until there are no more
zero columns in the A matrix. While this dimension shrinking step for A is not necessary, it
helps speed up the eigenvalue calculation in the following step since inessential lags have been
removed from the matrix.

Based on this lower dimensional A matrix, AiM computes a matrix W which contains the
remaining stability conditions for verifying the saddlepoint property. Specifically, let A′V = VD,
where D is a diagonal matrix with the eigenvalues of A′, sorted from the largest to the smallest,
and V a unitary matrix with the corresponding eigenvectors. The matrix W is now given by the
sum of the real and the imaginary part of V , i.e., W = ℜ(V ) + ℑ(V ). The large roots of the
DSGE model can directly be checked by calculating the number of diagonal elements of D that
in absolute terms are greater than a suitable lower bound, such as 1 + g with g, the numerical
tolerance for the DSGE model solver in YADA, being a small positive scalar.

To test if the DSGE model has a unique convergent solution, AiM adds the total number of
shift-rights (n1 + . . . + nk∗), where k∗ is the last time a row of zeros was located in the last p
columns of H) and the total number of large roots in A. If this number is less (greater) than pτU
then there are too few (many) large roots. With too few large roots there are many convergent
solutions, while too many large roots means that the boundedness condition is violated.
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The matrix W is next included in the Q matrix as follows: (i) for the Q matrix select rows
n1 + . . . + nk∗ + 1 until pτU and the columns determined by the indices with columns of the
original A that are used when computing W; (ii) for the W matrix select columns 1 until the
number of rows selected in Q; and (iii) set the selected rows and columns of Q in (i) equal to
the transpose of the matrix obtained from W using the columns under (ii).

The resulting Q matrix may now be partitioned as

Q =
[
QL QR

]
,

where QL is pτU × pτL and QR is pτU × pτU. If QR is singular, then the boundedness condition
is violated and there does not exist a unique convergent solution. On the other hand, when QR
is nonsingular a unique convergent solution exists. In that case, the reduced form matrices Bi,

i = 1, . . . , τL are obtained from the first p rows of −Q−1
R QL, where the reduced form matrices

are ordered from left to right as BτL, BτL−1, . . . , B1.
AiM provides a number of mcode values which reflect the findings from running the above

procedure. The value 1 means that there exists a unique and convergent solution. The value 3
means that that there are too many large roots and that the boundedness condition is violated,
while 4 means that there are too few large roots and that there are multiple convergent solu-
tions. When AiM gives the value 45 there are not only too few large roots, butQR is also singular
so that the boundedness condition is violated, while 35 implies that there are too many large
roots with QR is being singular. The case when the total number of shift-rights plus the number
of large roots is equal to pτU but when QR is singular gives the mcode value 5. The values 61 and
62 mean that there are too many exact and numeric shift-rights, respectively, where the exact
and numeric shift-rights are two version for searching for rows of zeros in the last p columns of
H. YADA also supports two additional mcode values. Namely, 7 when the A matrix has infinite
or NaN entries (the eigenvalues cannot be calculated), and 8 when the H matrix has complex
entries. These two cases reflect numerical problems which may be overcome by rewriting the
original DSGE model equations.

YADA requires that τL = 1. This is not a restriction since new variables can be created when
lags greater than 1 are required. In fact, this ensures that the dimension r is not needlessly
large. To my knowledge, there is not a single DSGE model where all zt variables appear with
two or more lags. Hence, by letting τL ≥ 2 in a DSGE model, the dimension of ξt is greater
than needed. This will slow down the computations and for medium-sized DSGE models, such
as RAMSES (Adolfson et al., 2007b) and the NAWM (Christoffel et al., 2008), the inefficiency
losses are likely to be very costly.

3.2. The Klein Approach

Klein (2000) shows how the generalized Schur form (QZ decomposition) can be utilized to solve
a system of linear rational expectations models; see Golub and van Loan (1983) for details on
the QZ decomposition. One issue with the Klein approach that we need to keep in mind is
that it divides the variables into predetermined (or backward-looking) and non-predetermined.
It is then assumed that the predetermined variables are ordered first and non-predetermined
variables thereafter.

Like Blanchard and Kahn (1980), the structural form expression of a linear rational expecta-
tions model that Klein considers may be written as

AEt[Xt+1] = BXt + Cηt. (3.11)

Following, e.g., Meyer-Gohde (2010), we choose to stack the variables in the system (3.2)
such that t− 1 appear above t. That way we know that the first p variables are predetermined.
This turns out to simplify the handling of output from the QZ decomposition. In particular, we
rewrite the AiM system matrices such that

[
0 −H1

I 0

][
zt

Et[zt+1]

]
=

[
H−1 H0

0 I

][
zt−1

zt

]
+

[
−D
0

]
ηt. (3.12)
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The matrix B1 in (3.3) can now be computed from a QZ decomposition of the matrices (A,B)
conditional on a given ordering of the generalized eigenvalues of the matrix pencil (Az − B),
where z is a complex variable. The QZ decomposition of (A,B) is given by QAZ = S and
QBZ = T , where S and T are upper triangular and possibly complex, Q and Z are unitary, i.e.,

Q∗Q = Z∗Z = I and Q∗ is the complex conjugate of Q.18 The generalized eigenvalues can be
computed from the diagonal elements of S and T , with λi(A,B) = tii/sii for sii 6= 0. We assume
that Q, Z, S and T take the ordering of λi from the smallest to the largest into account.

Let s be the number of stable generalized eigenvalues, i.e., λs(A,B) < 1 + g, where g is a
small positive scalar, while λs+1(A,B) ≥ 1 + g. Let Z11 be the s × s matrix in the upper left
corner of Z corresponding to the s stable eigenvalues. If Z11 does not have full rank, then there
is no stable solution to the DSGE model. If rank(Z11) = s ≥ p there is a nonempty set of
stable solutions, where s = p implies that the solution is unique and convergent, while s > p
means that the system is subject to indeterminacy, i.e., there are multiple solutions (too few
large roots).

Provided that a unique convergent solution exists, it is given by

B1 = ℜ
(
Z11S

−1
11 T11Z

−1
11

)
, (3.13)

where ℜ denotes a real number, and S11 and T11 are the p× p matrices in the upper left corner
of S and T , respectively. The B1 matrix may also be determined directly from Z. Specifically,
with Z21 being the p × p matrix in the last p rows and first p columns of Z, it follows that B1

is also equal to ℜ(Z21Z
−1
11 ). Moreover, let Z12 and Z22 be the p × p matrices collected from the

first and last p rows, respectively, and the last p columns of Z, while T22 is given by the matrix
in the last p rows and columns of T and Q2 is the p× 2p matrix located in the last p rows of Q.
It can now be shown that

B0 = ℜ
(
(
Z22 − Z21Z

−1
11 Z12

)
T−1

22 Q2

[
D

0

])
; (3.14)

see, e.g., Meyer-Gohde (2010).

3.3. The Sims Approach

The solution algorithm suggested by Sims (2002) is similar to Klein’s in that it uses the QZ de-
composition of certain system matrices. However, it does not rely on ordering variables accord-
ing to those that are predetermined and non-predetermined, respectively. Instead, it introduces
auxiliary variables to capture expectational errors which are endogenously determined.

The system matrices defined by Sims can be expressed as

Γ0Yt = Γ1Yt−1 + Ψηt + Πεt, (3.15)

where ǫt is an expectational error satisfying Et[εt+1] = 0 for all t. To rewrite the structural form
in (3.2) into the Sims form (3.15), we introduce the expectational variable et = Et[zt+1]. This
means that

zt = et−1 + εt, (3.16)

where εt = zt − Et−1[zt]. It now follows that (3.2) can be expressed as
[
H0 H1

I 0

][
zt

et

]
=

[
−H−1 0

0 I

][
zt−1

et−1

]
+

[
D

0

]
ηt +

[
0

I

]
εt. (3.17)

It may be noted that the dimension of Yt in (3.17) is typically greater than it need be. The rea-
son is that some of the variables in zt will in most situations not be included in the H1Et[zt+1]
term, i.e., the H1 matrix is typically singular. In fact, it would be sufficient to define the vector et
such that only those elements of Et[zt+1] that enter the model would be used. YADA here takes
the easy way out and includes all such variables in the definition of et. This avoids the hazzle of
letting the code try to figure out which variables are (always) included and which are (always)

18 The complex conjugate or conjugate transpose of a complex matrix A = B + iC is equal to A∗ = B′ − iC′. Hence,

the complex conjugate of a real matrix is simply the transpose of the matrix.
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excluded, a potentially error prone operation. One cost of this decision is that the solution time
for the Sims approach is longer than necessary. At the same time, this is not expected to be
very important since relative to computing the value of the log-likelihood the time for solving
the model is nevertheless short.

Given the form (3.15), the solution method by Sims is also based on the QZ decomposition
with the generalized eigenvalues sorted the same way as in Klein; see Sims (2002, equations
44–45) for details on the computation of B1 and B0. This also means that the existence of a
unique convergent solution can be checked with the same tools.

3.4. Solving a DSGE Model Subject to a Zero Lower Bound Constraint

The DSGE models in Section 2 all include the short-term nominal interest rate with a Taylor-
type monetary policy rule. Although a policy rate can, in principle, be negative when banks
are required to hold a certain fraction of their deposits in reserves at the central bank, it is
nevertheless the case that nominal interest rates are subject to some type of (zero) lower bound
constraint.

The log-linearized DSGE models do not take such a nonlinearity into account when the short-
term nominal interest rate is measured in percent. To deal with this, one option is to let the
nominal interest rate be measured as the natural logarithm of the rate, as in Fuhrer and Madi-
gan (1997) who include the first difference of the log of the nominal interest rate as an ob-
servable, but this option will not be discussed below as no further changes to the setup would
be necessary. Instead, we will consider the approach suggested by Reifschneider and Williams
(2000) of adding anticipated shocks to the monetary policy rule, with the important modifi-
cations suggested by Hebden, Lindé, and Svensson (2011, HLS); see Erceg and Lindé (2013)
for an application of the HLS procedure. The HLS approach takes into account that the an-
ticipated shocks have to be positive when the lower bound is strictly binding. Furthermore,
indeterminacy issues are also taken into account by HLS.

3.4.1. The Zero Lower Bound

Let r̂t be the nominal interest rate which is determined by the monetary policy rule19 and which
is therefore not restricted by any lower bound. Let rt be the observable (actual) nominal interest
rate which is now subject to the following nonlinearity

rt = max{r̄ + r̂t, rZLB,t}, (3.18)

where r̄ is the steady-state nominal interest rate, and rZLB,t is the lower bound on the actual

nominal interest rate.20 We allow for the possibility that the lower bound need not be zero, that
it can vary over time, but we will also require that the current and T consecutive future values
of this lower bound are known at time t, i.e., that rZLB,t+τ is known for τ = 0,1, . . . , T . This
means that we treat the lower bound as a deterministic variable over the period when it may be
binding.

The nonlinearity in (3.18) can be rewritten as

r̃t + r̄ − rZLB,t = max{r̂t + r̄ − rZLB,t,0}, (3.19)

where r̃t = rt− r̄ is the restricted interest rate in the model which satisfies the zero lower bound
(ZLB). Notice that the restricted interest rate is equal to the unrestricted rate whenever the
zero lower bound is not binding, while it is greater than the unrestricted rate when the ZLB is
binding.

19 Hebden et al. (2011) also consider optimal monetary policy, a topic which will not be discussed below.

20 Notice that the actual interest rate, the notional interest rate (r̂t), the steady-state interest rate and the lower

bound are all measured in the same time units here, e.g., quarterly rates. If the actual interest rate is measured in

annual terms, then the right hand side of (3.18) is multiplied by 4; see, e.g., the measurement equations (2.33) of

the Smets and Wouters model.
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3.4.2. Anticipated Shocks

Following Laséen and Svensson (2011) the ZLB is emplemented with anticipated shocks. This
means that the projected restricted and unrestricted policy rate in each period t satisfy

r̃t+τ,t = r̂t+τ,t + αt+τ,t, τ ≥ 0, (3.20)

where (t + τ, t) denotes the projection at t of period t + τ . Equation (3.20) and r̃t+τ,t ≥ r̂t+τ,t
implies that all current and future anticipated shocks αt+τ,t ≥ 0 and that αt,t = αt > 0 when
the ZLB is strictly binding in period t, i.e., when r̃t > r̂t. Laséen and Svensson (2011) call the
stochastic variable αt the deviation and assume that it satisfies

αt = ϕt,t +
T∑

s=1

ϕt,t−s, (3.21)

for some T ≥ 0. It is here assumed that the ZLB may be binding in the current or the next finite
T periods, but not beyond t + T . The vector

Φt =
[
ϕt,t ϕt+1,t · · · ϕt+T,t

]′
,

is (T + 1)-dimensional with zero mean i.i.d. anticipated shocks being realized in period t. From
equation (3.21) it follows that

αt = αt,t−1 + ϕt,t,

and, more generally, that
At = MAt−1 + Φt, (3.22)

where

At =
[
αt,t αt+1,t · · · αt+T,t

]′
, M =

[
0T×1 IT

0 01×T

]
.

Notice that the vector At is (T + 1)-dimensional while M is (T + 1) × (T + 1).

3.4.3. Solving the DSGE Model with the Klein Solver

Before we combine the DSGE model in (3.2) with the restricted policy rate and the anticipated
shocks, we need to link the monetary policy rate to zt and the monetary policy rule to the model
equations. From this knowledge we can separate the monetary policy variables from the other
model variables, as well as the monetary policy rule from the other equations of the model.

To these ends, let ep,r be an p-dimensional vector with unity in the position r of zt and zeros
elsewhere. Position r is identical to the position of r̃t in zt, i.e.

r̃t = e′p,rzt.

The remaining elements in zt can be extracted by premultiplying it with K′
p,r , where the p ×

(p− 1) matrix Kp,r contains all columns of Ip except from column r. Similarly, suppose that the
m:th equation of the model system (3.1) is the monetary policy rule. This equation is therefore
extracted by premultiplying this system by e′p,m, while the remaining equations are similarly

selected by premultiplying the system with K′
p,m.

Under the assumption of one lead and lag, the unrestricted monetary policy rule is now given
by

e′p,mH−1Kp,rK
′
p,rzt−1 + e′p,mH−1ep,r r̂t−1 + e′p,mH0Kp,rK

′
p,rzt + e′p,mH0ep,r r̂t

+ e′p,mH1Kp,rK
′
p,rEtzt+1 + e′p,mH1ep,rEtr̂t+1 = e′p,mDηt.

(3.23)

Notice that the restricted policy rate does not enter into this equation. Rather, it is linked to
the unrestricted policy rule and the antipicated shocks from equation (3.20), which can be
rewritten such that

e′p,rzt+τ,t = r̂t+τ,t + eT+1,τ+1At, τ = 0,1, . . . , T, (3.24)

where eT+1,τ+1 is a (T + 1)-dimensional vector with unity in its (τ + 1):st element and zeros
elsewhere.
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The remaining model equations can now be expressed as

K′
p,mH−1zt−1 +K′

p,mH0zt +K′
p,mH1Etzt+1 = K′

p,mDηt. (3.25)

Notice that the restricted monetary policy rate enters these equations, while the unrestricted
policy rate does not.

Letting H
(m)
i = K′

p,mHi, h
(m)
i = e′p,mHiKp,rK

′
p,r , h

(r)
i = e′p,mHiep,r for i = −1,0,1, and

D(m) = K′
p,mD and d(m) = e′p,mD, we can express the DSGE model subject to possibly nonzero

anticipated shocks in stacked form as



Iq 0 0 0 0 0

0 Ip 0 0 0 0

0 0 1 0 0 0

0 0 0 IT+1 0 0

0 0 0 0 H
(m)
1 0

0 0 0 0 h
(m)
1 h

(r)
1

0 0 0 0 0 0







ηt+1

zt

r̂t

At+1

Etzt+1

Etr̂t+1




=




0 0 0 0 0 0

0 0 0 0 Ip 0

0 0 0 0 0 1

0 0 0 M 0 0

D(m) −H(m)
−1

0 0 −H(m)
0 0

d(m) −h(m)
−1

−h(r)
−1

0 −h(m)
0 −h(r)

0

0 0 0 −e′T+1,1 e′p,r −1







ηt

zt−1

r̂t−1

At

zt

r̂t




+




Iq 0

0 0

0 0

0 IT+1

0 0

0 0

0 0




[
ηt+1

Φt+1

]
.

(3.26)

With Vt = [η′t z
′
t−1

r̂t−1 A
′
t]
′ and Yt = [z′t r̂t]

′ being (T + q + p + 2) and (p + 1)-dimensional

vectors, respectively, equation (3.26) can be written more compactly as
[
IT+q+p+2 0

0 A22

][
Vt+1

EtYt+1

]
=

[
B11 B12

B21 B22

][
Vt

Yt

]
+

[
C1

0

][
ηt+1

Φt+1

]
, (3.27)

where A22 and B22 are (p+ 1)× (p+ 1) matrices, B11 is (T +p+ q+ 2)× (T +p+ q+ 2), while
B12 and B′

21 are (T + q + k + 2) × (p + 1).
Notice that the vector Vt contains the predetermined variables of the system, while Yt are the

forward-looking variables. With A and B representing the matrices in (3.27) with partitions Aij

and Bij , respectively, let the QZ decomposition of (A,B) be given by QAZ = S and QBZ = T ,
where S and T are upper triangular and possibly complex, while Q and Z are unitary matrices.
Assuming a unique convergent solution exists (cf. Section 3.2) we find that:

Vt = GVt−1 + C1

[
ηt

Φt

]
, (3.28)

where
G = ℜ

(
Z11S

−1
11 T11Z

−1
11

)
,

with ℜ denoting the real part of a complex matrix, and where Z11, S11, and T11 are obtained
from the upper left (T + q + p + 2) × (T + q + p + 2) corners of Z, S, and T , respectively. The
forward-looking variables are related to the predetermined variables according to

Yt = PVt, (3.29)

where
P = ℜ

(
Z21Z

−1
11

)
,
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and Z21 is the bottom left (p + 1) × (T + q + k + 2) corner of Z.21

Finally, the matrix G has the shape

G =




0 0 0 0

Gzη Gzz Gzr GzA

Grη Grz Grr GrA

0 0 0 M



.

The matrices Gzη, Gzz, Gzr , and GzA are p× q, p× p, p × 1, and p × (T + 1) respectively, while
Grη, Grz, and GrA are 1 × q, 1 × p, 1 × (T + 1) vectors, respectively, and Grr is a scalar.

Before we proceed, the above is based on solving the model with the Klein solver. Naturally,
we may instead use the AiM solver, the Sims solver, or some other valid approach. However,
the Klein (2000) is particularly convenient here where in particular the split into predetermined
variables (including the anticipated shocks) and forward-looking variables (including the the
restricted and unrestriced monetary policy rate) turns out to be useful.

3.4.4. Policy Rate Projections and the Complementary Slackness Condition

The projection of the restricted policy rate is

r̃t+τ,t = e′p+1,rPG
τ




ηt

zt−1

r̂t−1

At



, τ = 0,1, . . . , T, (3.30)

while the projection of the unrestricted policy rate is

r̂t+τ,t = e′p+1,p+1PG
τ




ηt

zt−1

r̂t−1

At



, τ = 0,1, . . . , T. (3.31)

The HLS approach is to determine the deviation vector At such that the policy rate projection
(3.30) satisfies the ZLB restriction

r̃t+τ,t + r̄ − rZLB,t+τ ≥ 0, τ = 0,1, . . . , T, (3.32)

and the policy rule in (3.19).
When the ZLB restriction is disregarded or not binding, the policy rate projection in period t

is given by (3.30) with At = 0. If the ZLB is disregarded or not binding for any τ = 0,1, . . . , T ,
the projections of the restricted and unrestricted policy rates are the same. The policy rate
projection in (3.30) with At = 0 violates the ZLB for one or more periods when

r̃t+τ,t + r̄ − rZLB,t+τ < 0, for some τ ∈ {0,1, . . . , T}. (3.33)

To satisfy the ZLB, we therefore need to find a value of the deviation At such that the policy
rate projection satisfies (3.32) and

r̃t+τ,t + r̄ − rZLB,t+τ = max{r̂t+τ,t + r̄ − rZLB,t+τ ,0}. (3.34)

21 In fact, it can be established that the solution matrices (G, P) of (3.27) satisfy

G = B11 + B12P,

A22PG = B21 + B22P.

while the fact that C1 remains the matrix that is multiplied by the innovations in (3.28) follows when making use of

the former relationship in the sub-system for Vt+1 in (3.27).
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This requires that the deviation satisfies

αt+τ,t ≥ 0, τ = 0,1, . . . , T, (3.35)

and that the policy rate projection and the deviation satisfies the complementary slackness
condition (

r̃t+τ,t + r̄ − rZLB,t+τ
)
αt+τ,t = 0, τ = 0,1, . . . , T. (3.36)

This condition implies that the projected deviation is zero when the left hand side of (3.32) is
positive.

We now proceed under the presumption that there exists a unique projection of the deviation
At that satisfies (3.30) and (3.34)–(3.36). HLS refer to this projection of the deviation and
the policy rate projection as the equilibrium projection, where the projection of At either has all
elements equal to zero with the effect that the ZLB is not binding, or has some elements positive
and some equal to zero. Let the set Tt be defined from

Tt =
{

0 ≤ τ ≤ T : αt+τ,t > 0
}
. (3.37)

The equilibrium projection satisfies

r̃t+τ,t = e′p,rPG
τ




ηt

zt−1

r̂t−1

At




= rZLB,t+τ − r̄, ∀τ ∈ Tt. (3.38)

Letting nt denote the number of elements of Tt, the system in (3.38) has nt equations and nt
elements of At that are positive. The solution for At and the set Tt depends on the structural
shocks ηt, and HLS emphasize that the set of periods τ in (3.33) for which the policy rate
projection in (3.30) with At = 0 violates the ZLB is not necessarily the same as the set of
periods Tt for which the ZLB is strictly binding in equilibrium. The reason for this is that the
projections of the predetermined and forward-looking variables Vt+τ,t and Yt+τ,t that determine
the unrestricted policy rate differ depending on whether At is zero or not, i.e., the whole policy-
rate path is affected when the ZLB is imposed.

3.4.5. The Forward-Back Shooting Algorithm

Given Xt = [η′t z
′
t−1

r̂t−1]′, the problem of imposing the ZLB is now to find the set Tt for which

the ZLB is strictly binding in equilibrium and a contribution of Hebden, Lindé, and Svensson
(2011) is the shooting algorithm they suggest for finding this set. The algorithm is initialized
by letting At = 0 and the set Tt being empty. It proceeds as follows:

Step 1: Given At, compute the projected restricted policy rate r̃t+τ,t for τ = 0,1, . . . , T from
equation (3.30).

(i) Record the first period τ1 ≥ 0 for which r̃t+τ1,t + r̄ − rZLB,t+τ1
< 0 and which is not

already an element of Tt. Add this τ1 to Tt.
(ii) If nt ≥ 1, use (3.38) to solve for the nonzero elements of At for all τ ∈ Tt, where

αt+τ1,t > 0.
Step 2: Check and eliminate negative αt+τ,t.

(i) Record the first period τ0 ∈ Tt for which αt+τ0,t < 0. Delete τ0 from Tt and set
αt+τ0,t = 0.

(ii) If nt ≥ 1, use (3.38) to solve for the nonzero elements of At, where αt+τ0,t = 0.
(iii) Redo Step 2 until αt+τ,t ≥ 0 for all τ ∈ 0,1, . . . , T .

Step 3: Redo Steps 1 and 2. Stop when
(i) αt+τ,t ≥ 0 and r̃t+τ1,t + r̄ − rZLB,t+τ1

≥ 0 for τ = 0,1, . . . , T and the complementary
slackness condition (3.36) holds; or

(ii) Eliminating αt+τ1,t in Step 2 implies that r̃t+τ,t + r̄ − rZLB,t+τ < 0 for some τ =
0,1, . . . , T , i.e. a solution cannot be found.

– 49 –



Note that the requirement that τ1 is not already an element of Tt in Step 1, part (i), is a slight
modification of HLS version of the algorithm. It mainly serves to handle possible numerical
issues. The algorithm should normally shoot forward one period at a time to find the positive
elements in At that are needed to impose the ZLB. At times, the algorithm needs to expand
the number of positive elements in At backward in time, since adding more and more positive
elements in At moving forward will depress inflation and output and can thereby cause the
unrestricted policy rate path to violate the ZLB for earlies time periods.

It is pointed out by HLS that a solution to equations (3.34)–(3.36) do not always exist.
Under standard Taylor-type monetary policy rules, which are locally stable, it is possible that
sufficiently adverse shocks along with an unfavorable initial state of the economy (Xt) may
require At to have negative elements to impose the ZLB for the restricted policy rate. This
violates the nonnegativity condition (3.35) for the anticipated shocks.

HLS also emphasize that the solution to (3.34)–(3.36) need not be unique. The forward-
back shooting algorithm gives the minimum number of positive elements in At in the solution.
However, it may be possible to find solutions where the ZLB binds for an extended period and
where all elements of At are nonnegative.

3.4.6. Stochastic Simulations

When conducting stochastic simulations, the forward-back shooting algorithm needs to be run
for each period t in the simulation sample, while the solution of the DSGE model with antici-
pated shocks in (3.28) does not change over time. Let s denote the current simulation where
s = 1, . . . , S̄, where the latter integer is the total number of simulations. Also, let T̄ be the
maximum simulation horizon. Simulated valued of the variables in the stochastic simulations
below are all given the superscript (s) to indicate the simulation number.

The following algorithm can be utilized to conduct stochastic simulations with a linear DSGE
model subject to the nonlinear ZLB restriction:

Step 0: Set the current simulation to s = 1.

Step 1: Initialize with A
(s)
t = MAt−1 = 0. This means that it is either assumed that the ZLB is

not binding in period t − 1, or that r̂t−1 satisfies the ZLB exactly.

Step 2: Draw structural shocks η
(s)
t from an appropriate distribution, and determine X

(s)
t from

(3.28).

Step 3: Compute the equilibrium deviation A
(s)
t using the forward-back shooting algorithm, and

thereafter increase the time index t by one.

Step 4: Update A
(s)
t = MA

(s)
t−1

, let T(s)
t be determined from equation (3.37), and redo Steps 2–4

until t > T̄ .
Step 5: Reset the time index t to its initial value, increase s by one, and redo Steps 1–4 until

s > S̄.

When prior or posterior draws of the model parameters are investigated (see Sections 4 and
8, respectively), the DSGE model would need to be solved for each of these parameter draws.
The above algorithm can easily be adapted to handle such cases.

In Step 2 it is conceivable that one may wish to apply some modification to the typically
assumedN(0, Iq) for the structural shocks. Since the stochastic simulations algorithm generates
a predictive distribution of zt, zt+1, . . . , zT̄ , the mean of this distribution may be obtained by
setting ηt = 0 for all t. If some other value than the pure model-based mean is regarded as a
relevant location parameter, such as centering the predictive distribution on a certain path for
some or all of the variables, then the mean of the shock distribution needs to be corrected and
potentially made time dependent.

An important issue concerns what to do in the event that there is no solution for A
(s)
t in Step

3. One option would be to redo Step 2, but the implication of this is that the distribution of

the shocks is affected. That is, discarding certain η
(s)
t draws means that we are truncating the

shock distribution. Provided that the number of times this happens is small compared with the
total number of simulations, the effect on the distribution of the structural shocks is likely to be
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negligible. Still, when using this option it is advisable that the number of such “bad draws” is
kept track of, including the time periods when they occur, and that the sample mean vector and
the sample covariance matrix of these discarded draws is also recorded for each time period.
The alternative to this would be to either use another method for solving the DSGE model
subject to the ZLB, or to revise the model.

3.4.7. A Structural Form Representation of the Zero Lower Bound Solution

Like the structural form autoregressive representation of the solution in equation (3.7) of the
DSGE model, the solution in (3.29) for the zero lower bound case with the Klein solver can also
be expressed in such a form. Notice first that the P matrix can be decomposed as

P =
[
Pη PY PA

]
,

where Pη has dimension (p+ 1)× q, PY is (p+ 1)× (p+ 1), while PA is (p+ 1)× (T + 1). From
equation (3.29) it follows that

Yt = PYYt−1 + Pηηt + PAAt, (3.39)

an autoregressive form of the solution for the forward-looking variables.
From the lower block of the system in (3.27) we have that

A22EtYt+1 = B21Vt + B22Yt. (3.40)

In order to substitute for the expectation term, we make use of (3.29), noting that

EtYt+1 = PEtVt+1

=
[
Pη PY PA

]



0

Yt

MAt




= PYYt + PAMAt.

Substituting for the expectation term on the left hand side of (3.40), taking the definition of Vt
into account, and rearranging terms we obtain

(
A22PY − B22

)
Yt = B21,YYt−1 + B21,ηηt +

(
B21,A −A22PAM

)
At

=
(
B21 −

[
0 0 A22PAM

])
Vt.

(3.41)

The matrix B21,Y has dimension (p+1)×(p+1), B21,η is (p+1)×q, while PA is (p+1)×(T+1).
From this equation we may deduce that the P matrix satisfies

P =
(
A22PY − B22

)−1
(
B21 −

[
0 0 A22PAM

])
.

Moreover, the first line of equation (3.41) can be written as

S0Yt = S1Yt−1 + Sηηt + SAAt.

In other words, we may treat (3.41) as a structural form autoregressive representation of the
zero lower bound solution in (3.39).

3.5. YADA Code

YADA uses only Matlab functions for running the AiM procedures, whereas most Matlab im-
plementations include script files. The main reason for this change is that the construction of
various outputs can more easily be traced to a particular Matlab file when functions are used,
while script files tend to hide a lot of variables, most of which are only needed locally. Moreover,
inputs are also easier to keep track of, since they can be given local names in a function.

The main AiM functions in YADA for solving the DSGE model and setting up the output as
required by the Kalman filter are: AiMInitialize, AiMSolver, and AiMtoStateSpace. A number
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of other functions are also included for utilizing AiM, but these are not discussed here.22 It
should be noted that the computationally slowest function, AiMInitialize, needs only be run
once for a given model specification. The other two main functions need to be run for each set
of parameter values to be analysed by the code.

YADA also supports the Klein (2000) and Sims (2002) approaches to solving a DSGE model.
The AiM parser, run through the AiMInitialize function, is still required for these approaches
since we need to write the DSGE model on the structural form in (3.2). The Klein approach
is handled with the function KleinSolver, while Sims’ gensys solver is run via the function
SimsSolver. Finaly, in the event that the model solver takes the zero lower bound into account,
then YADA uses the function ZLBKleinSolver, while the forward-back shooting algorithm for
computing the anticipated shocks is run in the function ForwardBackShootingAlgorithm.

3.5.1. AiMInitialize

The function AiMInitialize runs the AiM parser on ModelFile, a text file that sets up the DSGE
model in a syntax that the AiM parser can interpret. YADA refers to this file as the AiM model
file. If parsing is successful (the syntax of the ModelFile is valid and the model is otherwise
properly specified), the AiM parser writes two Matlab files to disk. The first is the function
compute_aim_data.m and the second the script file compute_aim_matrices.m. The latter file
is then internally parsed by AiMInitialize, rewriting it as a function that accepts a structure
ModelParameters as input, where the fields of the structure are simply the parameter names as
they have been baptized in the AiM model file, and provides the necessary output. For example,
if the model file has a parameter called omega, then the structure ModelParameters has a field
with the same name, i.e., ModelParameters.omega.

The functions compute_aim_data.m and compute_aim_matrices.m are stored on disk in a
sub-directory to the directory where the AiM model file is located. By default, the name of this
directory depends only on the name of the model specification (which can be different from the
AiM model file, since the latter can be shared by many model specifications). AiMInitialize

therefore also takes the input arguments NameOfModel and (optionally) OutputDirectory.
AiMInitialize also runs the function compute_aim_data.m and stores the relevant output

from this function in a mat-file located in the same directory as the compute_aim_data.m file.
Finally, AiMInitialize provides as output the status of the AiM parsing, and the output given
by the compute_aim_data.m function. The status variable is 0 when everything went OK; it
is 1 if the parsing did not provide the required output; 2 if the number of data variables did
not match the number of stochastic equations; 3 if illegal parameter names were used;23 and
4 if the number of lags (τL) is greater than 1. All output variables from AiMInitialize are
required, while the required input variables are given by ModelFile, being a string vector con-
taining the full path plus name and extension of the model file, and NameOfModel, a string
vector containing the name of the model specification. The final input variable is optional
and is locally called OutputDirectory, the directory where the AiM output is stored. The
NameOfModel variable determines the name of the mat-file that is created when running the
function compute_aim_data.m.

3.5.2. AiMSolver

The function AiMSolver attempts to solve the DSGE model. To this end it requires as inputs the
ModelParameters structure (containing values for all model parameters), the number of AiM
equations (NumEq, often being at least p + q + 1), the number of lags (NumLag being τL), the

22 Most, if not all, of these Matlab functions originate from the AiM implementation at the Federal Reserve System;

see, e.g., Zagaglia (2005).

23 YADA has only reserved 4 names as illegal. First of all, in order to allow for parameters called g and h (matrix

names in the function compute_aim_matrices.m) YADA temporarily renames them YADAg and YADAh, respectively,

when it rewrites the file from a Matlab script file to a Matlab function. For this reason, parameters cannot be

named YADAg and YADAh. Furthermore, the name UserVariables is reserved for passing user determined data to

the parameter functions that YADA supports, while the name YADA is reserved for internally disseminating the state

equation matrices to the measurement equation function; see Section 17.4.
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number of leads (NumLead being τU), and the numerical tolerance for AiM and the other DSGE
model solvers (AIMTolerance).

As output the function provides a scalar mcode with information about the solvability prop-
erties of the DSGE model for the parameter values found in the ModelParameters structure.
When a unique convergent solution exists the mcode variable returns 1, while other values re-
flect various problems with the selected parameters (see the AiMSolver file for details).

Given that a unique convergent solution exists, the solution matrices as well as the maxi-
mum absolute error (MaxAbsError) when computing the solution are calculated. The solution
matrices are given by all the Bi’s, provided in BMatrix ([BτL · · ·B1]), and all the Sj ’s, returned
as the matrix SMatrix ([SτL · · ·S1 S0]). These matrices have dimensions NumEq × τLNumEq and
NumEq × (τL + 1)NumEq, respectively. Since YADA only accepts DSGE models that have been
specified such that τL = 1, the dimensions of these matrices are not unnecessarily made larger
than they need be.

Finally, the function yields the output variable ModelEigenvalues, a structure that contains
information about the eigenvalues of the reduced form, i.e., the solution of the model.

3.5.3. AiMtoStateSpace

The function AiMtoStateSpace creates the F matrix for the state equation (5.2) based on
the input matrix BMatrix and B0 from SMatrix. Since the output from AiMSolver treats
all equations in a similar fashion, the vectors zt and ηt are both often included as separate
equations. Hence, NumEq ≥ p + q. The additional input variables StateVariablePositions,
StateEquationPositions, and StateShockPositions are therefore needed to locate which
rows and columns of BMatrix and SMatrix that contain the coefficients on the z and η variables.
These input vectors are created with the YADA GUI.

3.5.4. KleinSolver

The function KleinSolver requires 7 input variables to perform its task, i.e., to solve the
DSGE model with the Klein (2000) approach. The variables are: ModelParameters, NumLead,
StateVariablePositions, StateEquationPositions, StateShockPositions, AIMTolerance,
and OrderQZ. The first two and the fifth input variable is identical to the same variables in
AiMSolver, while the third and the fourth variable are used by AiMtoStateSpace. The last
input variable is a boolean that is unity if the function ordqz is a built-in Matlab function, and
zero otherwise. All Matlab version greater than or equal to version 7 have this function.

The function provides 3 required and 2 optional output variables. The required outputs
are F, B0, and mcode. The first two are matrices on lagged state variables and current state
shocks in the state-pace representation, i.e., the solution to the DSGE model and are therefore
the same as the output variables from AiMtoStateSpace. The mcode variable is shared with
AiMSolver, but supports slightly different values. The optional variables are MaxAbsError and
ModelEigenvalues which are also provided by AiMSolver. The latter structure is now based on
the generalized eigenvalues of the structural form of the model, and has fewer fields than the
variable provided by AiMSolver.

3.5.5. SimsSolver

The function SimsSolver supports the same input and output variables as KleinSolver. It
rewrites the structural form of the DSGE model into the Sims (2002) form in equation (3.17)
and sends the matrices to gensys, the Sims solver. The function used by YADA for this is called
YADAgensys and is a slight rewrite of Sims’ original function. In particular, it makes it possible
to run the Matlab function ordqz rather than gensys’ own qzdiv. The built-in Matlab function
is considerably faster than qzdiv, but is not included in older versions of Matlab.

3.5.6. ZLBKleinSolver

The function ZLBKleinSolver requires 10 input variables to solve a DSGE model with antici-
pated shocks in the monetary policy rule. The first 5 and last 2 variables are identical to the
input variables for KleinSolver. The 6th through 8th input variables are given by the integers
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T_ZLB, RtildePosition, and REqPosition. The T_ZLB variable gives the length of the sample
over which the zero lower bound may be binding, while RtildePosition gives the position of
the policy rate in zt, and REqPosition is the position of the monetary policy rule among the
model equations.

The function gives 4 output variables: the matrices G, C1, and P from equations (3.28) and
(3.29), and the integer mcode. Note that the number of rows of P is generally equal to τU(p+1),
where τU is equal to NumLead. The mcode output variable is 1 if a unique convergent solution
is located, -1 if there is no stable solution, -2 if there are too many large eigenvalues, and -3 if
there are too few such eigenvalues.

3.5.7. ForwardBackShootingAlgorithm

The function requires 6 input variables: Xt, At, ePG, Rzlb, Rbar, and AIMTolerance. The vector
Xt gives the initial values of the current shocks, lagged state variables, and the unrestricted
policy rate of the vector Vt, while At is the vector of initial values if the anticipated shocks,
i.e., the bottom part of Vt. The matrix ePG has dimension (T + 1) × (T + q + p + 2) and when
multiplying this matrix with Vt, which has dimension (T + q + p + 2), it generates the (T + 1)
projections of the restricted polic rate in equation (3.30). The vector Rzlb has dimension (T+1)
and it gives the path of the zero lower bound, while the vector Rbar has the same dimension and
gives the path of the steady-state of the policy rate. Finally, the input variable AIMTolerance

gives the numerical tolerance of the lower bound solution.
The function provides 3 output variables: At, status, and AlgorithmInformation. The

first is the vector of anticipated shocks, while the second output is a boolean that takes the
value 1 if a solution is found, and 0 otherwise. The last output is a 5-dimensional vector with
information collected when running the algorithm. The first element is unity if the solution is
bad (invertibility problem when trying to solve for the anticipated shocks) and 0 otherwise; the
second element is unity of there is no solution based on Step 3, part (ii) of the algorithm, and
0 otherwise; the thrid element is unity if the complementary slackness condition is not satisfies
and 0 otherwise; the fourth element gives the number of times the algorithm has been run for
a given time period t; and the last gives you the maximum number of times the algorithm could
have been executed for the same time period.
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4. Prior and Posterior Distributions

It has been pointed out by, e.g., Fernández-Villaverde and Rubio-Ramírez (2004) that a DSGE
model is always false since such an economy is an artificial construction. This simple under-
standing generates two important challenges for econometric analysis. First, how to select val-
ues for the so called deep parameters of the model, i.e., parameters that describe preferences,
technology, policy rules, etc. Second, how to compare two or more possibly non-nested and
misspecified models. A Bayesian approach to dealing with these difficult tasks is in principle
easy. Parameters are given values through their posterior distribution, which is linked to prior
information and the observed data through Bayes theorem. Model comparisons are performed
through the use of the posterior odds ratio, i.e., the ratio of marginal density of the data for the
models times the prior odds ratio.

4.1. Bayes Theorem

Let yt denote the observed variables, a vector of dimension n. Furthermore, the sample is given
by t = 1, . . . , T and we collect the data into the n × T matrix Y . For simplicity we here neglect
any exogenous or predetermined variables as they do not matter for the exposition.

The density function for a random matrix Y conditional on θ is given by p(Y |θ), where θ
is a vector of parameters. The joint prior distribution of θ is denoted by p(θ). From Bayes
theorem we then know that the posterior distribution of θ, denoted by p(θ|Y), is related to
these functions through

p
(
θ|Y
)

=
p
(
Y |θ
)
p
(
θ
)

p
(
Y
) , (4.1)

where p(Y) is the marginal density of the data, defined from

p
(
Y
)

=

∫

θ∈Θ
p
(
Y |θ
)
p
(
θ
)
dθ, (4.2)

with Θ being the support of θ. Since p(Y) is a constant when Y has been realized we know
that the posterior density of θ is proportional to the product p(Y |θ)p(θ). Hence, if we can
characterize the distribution of this product we would know the posterior distribution of θ. For
complex models like those belonging to the DSGE family this characterization is usually not
possible. Methods based on Markov Chain Monte Carlo (MCMC) theory can instead be applied
to generate draws from the posterior.

Still, without having to resort to such often time consuming calculations it should be noted
that the mode of the posterior density can be found by maximizing the product p(Y |θ)p(θ).
Since this product is usually highly complex, analytical approaches to maximization are ruled

out from the start. Instead the posterior mode, denoted by θ̃, can be estimated using numerical
methods. In Section 4.2 we provide details on the individual prior distributions for the ele-
ments of θ that YADA supports. Through the independence assumption, the joint prior p(θ) is

simply the product of these individual (and marginal) prior densities.24 The computation of the
likelihood function for any given value of θ is thereafter discussed in Section 5.

4.2. Prior Distributions

In the Bayesian DSGE framework it is usually assumed that the parameters to be estimated,
denoted here by θ, are a priori independent. For parameters that have support R, the prior
distribution is typically Gaussian. Parameters that instead have support R+ tend to have either
gamma or inverted gamma prior distributions, while parameters with support (c, d), where
d > c and both are finite, are usually assumed to have beta prior distributions; see, e.g., An
and Schorfheide (2007). In some cases, e.g., Adolfson et al. (2007b), the distribution may be
left truncated normal for a certain parameter. The density functions of these distributions as

24 If one wishes to make use of parameters that are a priori dependent, one may formulate parameter functions and

treat elements of θ as auxiliary parameters for the ones of interest. YADA supports such parameter functions and,

hence, an assumption of a priori independent parameters is not restrictive.
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well as of the uniform, the Student-t (and Cauchy), the logistic, the Gumbel, and the Pareto
distributions are given below. Some of these have, to my knowledge, not been used in the
empirical DSGE modelling literature, but it seems reasonable to, e.g., consider using a Student-
t or a logistic as an alternative to the normal prior.

YADA can also support a number of additional distributions through parameter transforma-
tion functions. These include but are not limited to the Weibull and the Snedecor (better known
as the F or Fisher) distributions.25 The densities of such additional distribution are derived
through a useful result which directly relates the density of a monotonic transformation of a
continuous random variable to the density of that variable. Next, the gamma and beta func-
tions are presented since they often appear in the integration constants of certain important
distributions. Thereafter, we examine the prior distributions which are directly supported by
YADA, focusing on the specific parameterizations used and relate these parameters to moments
of the distributions. Furthermore, we discuss some distributions which can be derived from
the directly supported ones, and which are therefore indirectly supported. In addition, we also
reflect on some interesting special cases of the directly supported priors. The section continues
with a dicussion about random number generators. Before the YADA based code is discussed,
the section also considers so called system priors which allow the user to include a prior on some
system or model feature which is otherwhise solely determined from the solution of the model.
One such example is the population standard deviation of an observed variable conditional on
the parameters.

4.2.1. Monotonic Functions of Continuous Random Variables

Suppose that a continuous random variable x has density function pX(x). The general principle
for determining the density of a random variable z = f(x), where f(·) is monotonic (order
preserving), is the following:

pZ(z) =

∣∣∣∣
1

f ′
(
f−1(z)

)
∣∣∣∣pX
(
f−1(z)

)
(4.3)

The derivative of f is given by dz/dx = f ′(·), while f−1(·) is the inverse function, i.e.,
x = f−1(z); see, e.g., Bernardo and Smith (2000, p. 111). This powerful result makes it
straightforward to determine the density of any monotonic transformation of a random vari-
able.

An intuition for the result in equation (4.3) can be obtained by recalling that the integral of
the density of x over its domain is equal to unity. To calculate this integral we multiply the
density of x by dx and then perform the integration. When integrating over the domain of z
we instead multiply the density of x by dz. To ensure that the integral is still equal to unity, we
must therefore multiply this expression by |dx/dz| = |1/(dz/dx)|, where the absolute value
guarantees that the sign of the integral does not change.

Since YADA supports functions of parameters, the relationship in equation (4.3) means that
YADA indirectly supports all prior distributions where the corresponding random variable can
be expressed as a monotonic function of one of the basic priors directly supported by YADA.
Furthermore, the relationship between the joint density and the conditional and the marginal
densities (i.e., the foundation for Bayes Theorem) makes it possible to further enhance the set of
density functions which YADA can indirectly support to include also mixtures and multivariate
priors.

25 YADA can indirectly support multivariate extensions of the distributions. For example, one may wish to have a

Dirichlet (multivariate beta), a multivariate normal prior, or an inverted Wishart prior for a vector of parameters.

For these cases, parameter transformation functions can be used to allow for a multivariate prior. In the case of a

multivariate normal prior, we would define the prior as univariate normal priors for auxiliary parameters, e.g., for

one “conditional” and for one “marginal” parameter, while the transformation would be applied to the conditional

parameter. Similarly, the Dirichlet distribution is supported through univariate beta priors for auxiliary parameters;

see, e.g., Connor and Mosimann (1969). In other words, YADA can support multivariate priors through its use of a

parameter transformation function; see Section 17.3.
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4.2.2. The Gamma and Beta Functions

The gamma function is defined by the following integral identity:

Γ(a) =

∫ ∞

0
xa−1 exp(−x)dx, a > 0. (4.4)

In many cases integer or half integer values of a are used. Here it is useful to know that Γ(1) = 1,
while Γ(1/2) =

√
π. Integration by parts of (4.4) gives for a > 1 that Γ(a) = (a − 1)Γ(a − 1).

The beta function β(a, b) for a, b > 0 is defined as:

β(a, b) =

∫ 1

0
xa−1(1 − x)b−1dx. (4.5)

It is related to the gamma function through the following relationship:

β(a, b) =
Γ(a)Γ(b)

Γ(a + b)
. (4.6)

Matlab contains two useful functions for dealing with the gamma function. One is gamma

which works well for relatively small values of a. The other is gammaln which calculates the
natural logarithm of the gamma function and works well also with large values of a. Similarly,
for the beta function Matlab provides the functions beta and betaln.

4.2.3. Gamma, χ2, Exponential, Erlang and Weibull Distributions

A random variable z > 0 has a gamma distribution with shape parameter a > 0 and scale
parameter b > 0, denoted by z ∼ G(a, b) if and only if its pdf is given by

pG(z|a, b) =
1

Γ(a)ba
za−1 exp

(−z
b

)
. (4.7)

It is worthwhile to keep in mind that if z ∼ G(a, b) and y = z/b, then y ∼ G(a,1). Fur-
thermore, E[z] = ab, while E[(z − ab)2] = ab2; see, e.g., Bauwens, Lubrano, and Richard
(1999) or Zellner (1971). If a > 1, then the pdf has a unique mode at µ̃Γ = b(a − 1). The
difference between the mean and the mode is b, implying that the mean is greater than the
mode. Furtermore, skewness is equal to 2/

√
a, while excess kurtosis is 6/a.

Letting µΓ and σ2
Γ denote the mean and the variance, respectively, we can directly see that

a =
µ2

Γ

σ2
Γ

, b =
σ2

Γ

µΓ
. (4.8)

In practise, most economists (and econometricians) are probably more comfortable formulating
a prior in terms of the mean and the standard deviation, than in terms of a and b.

The mode can, when it exists, also be expressed in terms of the mean and the variance
parameters. Equation (4.8) and the expression for the mode give us

µ̃Γ = µΓ −
σ2

Γ

µΓ
.

The mode therefore exists when µ2
Γ > σ2

Γ , i.e., when the mean is greater than the standard
deviation.

A few examples of the gamma distribution have been plotted in the upper left panel of Fig-
ure 1 (with the lower bound being equal to zero). The mean has been set to 0.2 in three cases
while the standard deviation takes the values (0.05,0.1,0.2). For the two cases when the mean
is greater than the standard deviation the mode exists, while µΓ = σΓ results in a = 1 so that the
mode does not exist. For the cases when the mode exists, the height of the density is negatively
related the standard deviation. Furthermore, for a given mean, the mode lies closer to the mean

as the standard deviation decreases since the ratio σ2
Γ/µΓ becomes smaller. Moreover, since a

lower standard deviation for fixed mean implies that a increases we also know that skewness
decreases. Hence, the gamma distribution with mean 0.2 and standard deviation 0.1 (blue solid

– 57 –



Figure 1. Examples of gamma, inverted gamma, beta, normal and left truncated
normal distributions.
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line in Figure 1) is more skewed than the gamma with mean 0.2 and standard deviation 0.05
(red dashed line).

The last example covers the case when the mean increases while the standard deviation is
fixed, i.e., the blue solid line relative to the magenta colored dotted line. The distance between

the mode and the mean now also decreases since the ratio σ2
Γ/µΓ becomes smaller. In terms of

the shape and scale parameters a and b, we know from (4.8) that a increases with µΓ while b
decreases. Moreover, since a increases it follows from the skewness expression that it decreases.

One special case of the gamma distribution is the χ2(q). Specifically, if z ∼ χ2(q) then this
is equivalent to stating that z ∼ G(q/2,2), with mean q and variance 2q. The mode of this
distribution exists and is unique when q ≥ 3 and is equal to q − 2.

Another special case of the gamma distribution is the exponential distribution. This is ob-
tained by letting a = 1 in (4.7). With z ∼ E(b) ≡ G(1, b), we find that the mean is equal to

µE = b and the variance is σ2
E = b2.

Similarly, the Erlang distribution is the special case of the gamma when a is an integer. For
this case we have that Γ(a) = (a − 1)!, where ! is the factorial function. The parameterization
of the Erlang density is usually written in terms of λ = 1/b, a rate parameter.

YADA can also support the Weibull distribution through the gamma prior and the so called file

with parameters to update; see Section 17.3. Specifically, if x ∼ G(1,1) ≡ E(1) and x = (z/a)b

with a, b > 0, then z has a Weibull distribution with scale parameter a and shape parameter
b, i.e. z ∼ W(a, b). In YADA one would specify a prior for the random variable x and compute
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z = ax1/b in the file with parameters to update. The density function is now

pW(z|a, b) =
b

ab
zb−1 exp

(
−
[
z

a

]b)
, z > 0, (4.9)

since dx/dz is positive and given by the term (b/ab)zb−1.26

The mean of the Weibull distribution is µW = aΓ(1 + (1/b)), the variance is σ2
W = a2[Γ(1 +

(2/b)) − (Γ(1 + (1/b)))2], whereas the mode exists and is given by µ̃W = a((b − 1)/b)(1/b)

when b > 1.

4.2.4. Inverted Gamma and Inverted Wishart Distributions

A random variable z > 0 has an inverted gamma distribution with shape parameter a > 0 and
scale parameter b > 0, denoted by z ∼ IG(a, b), if and only if its pdf is given by

pIG(z|a, b) =
2

Γ(a)ba
z−(2a+1) exp

(−1

bz2

)
. (4.10)

This pdf has a unique mode at µ̃IG = (2/(b(2a + 1)))1/2; cf. Zellner (1971).27 Moreover, the
statement z ∼ IG(a, b) is equivalent to z = 1/

√
x where x ∼ G(a, b).

The inverted gamma distribution is an often used prior for a standard deviation parameter.
Letting σ = z, a = q/2, and b = 2/qs2, we get

pIG(σ|s, q) =
2

Γ(q/2)

(
qs2

2

)q/2

σ−(q+1) exp

(−qs2

2σ2

)
, (4.11)

where s, q > 0. The parameter q is an integer (degrees of freedom) while s is a location
parameter. This pdf has a unique mode at µ̃IG = s(q/(q + 1))1/2. Hence, the mode is below s
for finite q and converges to s when q → ∞.

The moments of this distribution exists when q is sufficiently large. For example, if q ≥ 2,
then the mean is

µIG =
Γ((q − 1)/2)

Γ(q/2))

(
q

2

)1/2

s,

while if q ≥ 3 then the variance is given by

σ2
IG =

q

q − 2
s2 − µ2

IG.

Hence, both the mean and the variance are decreasing functions of q; see Zellner (1971) for
details.

Moreover, if q ≥ 4 then the third moment also exists. The exact expression can be found
in Zellner (1971, eq. (A.48)), but since that expression is very messy an alternative skewness
measure may be of interest. One such simpler alternative is the Pearson measure of skewness,
defined as the mean minus the mode and divided by the standard deviation. For the inverted
gamma we here find that

SP,IG =
µIG − µ̃IG

σIG
=

Γ
(
(q − 1)/2

)

Γ(q/2)

(
q

2

)1/2

−
(

q

q + 1

)1/2

[
q

q − 2
−
(

Γ
(
(q − 1)/2

)

Γ(q/2)

)2
q

2

]1/2
, q ≥ 3.

26 With pX(x) = exp(−x) and z = ax1/b we find from equation (4.3) that f−1(z) = (z/a)b. Moreover, f ′(x) =
(a/b)x(1−b)/b so that f ′(f−1(z)) = (ab/b)z1−b. By multiplying terms we obtain the density function in (4.9). Notice

that dx/dz = 1/f ′(f−1(z)), the Jacobian of the transformation z into x.

27 Bauwens, Lubrano, and Richard (1999) refer to the inverted gamma distribution as the inverted gamma-1 dis-

tribution. The inverted gamma-2 distribution is then defined for a variable x = z2, where z follows an inverted

gamma-1 distribution.
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This expression is positive for finite q and the inverted gamma distribution is therefore right-
skewed. As q gets large, the skewness measure SP,IG → 0. Both the numerator and the denomi-

nator are decreasing in q and for q > 5 the ratio is decreasing.28

A few examples of the inverted gamma distribution have been plotted in the upper right
panel of Figure 1. The location parameter is for simplicity kept fixed at 0.1, while the number
of degrees of freedom are given by q = (1,2,5,10). It can be seen that the height of the density

increases as q becomes larger.29 Moreover, the variance is smaller while skewness appears to
be lower for q = 10 than for q = 5. The latter is consistent with the results for the Pearson
measure of skewness, SP,IG.

Another parameterization of the inverted gamma distribution is used in the software devel-
oped by Adolfson et al. (2007b). Letting a = d/2 and b = 2/c, the pdf in (4.10) can be written
as:

pIG(z|c, d) =
2

Γ(d/2)

( c
2

)d/2

z−(d+1) exp

( −c
2z2

)
.

The mode of this parameterization is found by setting µ̃IG = (c/(d + 1))1/2. With c = qs2 and
d = q this parameterization is equal to that in equation (4.11) with z = σ.

A multivariate extension of the inverted gamma distribution is given by the inverted Wishart
distribution. Specifically, when a p × p positive definite matrix Ω is inverted Wishart, denoted
by Ω ∼ IWp(A, v), its density is given by

p(Ω) =
|A|v/2

2vp/2πp(p−1)/4Γp(v)
|Ω|−(v+p+1)/2

exp

(
−1

2
tr
[
Ω−1A

])
, (4.12)

where Γb(a) =
∏b

i=1 Γ([a−i+1]/2) for positive integers a and b, with a ≥ b, and Γ(·) being the
gamma function in (4.4). The parameters of this distribution are given by the positive definite
location matrix A and the degrees of freedom parameter v ≥ p. The mode of the inverted
Wishart is given by (1/(p + v + 1))A, while the mean exists if v ≥ p + 2 and is then given by
E[Ω] = (1/(v − p − 1))A; see, e.g., Zellner (1971, Appendix B.4) and Bauwens et al. (1999,
Appendix A) for details.

Suppose for simplicity that p = 2 and let us partition Ω and A conformably

Ω =

[
Ω11 Ω12

Ω12 Ω22

]
, A =

[
A11 A12

A12 A22

]
.

It now follows from, e.g., Bauwens et al. (1999, Theorem A.17) that:

(1) Ω11 is independent of Ω12/Ω11 and of Ω22·1 = Ω22 − Ω2
12/Ω11;

(2) Ω11 ∼ IW1(A11, v − 1);
(3) Ω12/Ω11|Ω22·1 ∼ N(A12/A11,Ω22·1/A11), where N(µ, σ2) denotes the univariate nor-

mal distribution with mean µ and variance σ2 (see, e.g., Section 4.2.6 for details); and

(4) Ω22·1 ∼ IW1(A22·1, v), where A22·1 = A22 −A2
12/A11.

From these results it is straightforward to deduce that the multivariate random matrix Ω may
be represented by three independent univariate random variables. Specifically, let

σ1 ∼ IG(s1, v − 1), σ2 ∼ IG(s2, v), and ρ ∼ N(0,1). (4.13)

With Ω11 = σ2
1 and A11 = (v − 1)s2

1, it can be shown that Ω11 ∼ IW1(A11, v − 1) by evaluating
the inverted gamma density at Ω11, A11, and multiplying this density with the inverse of the

derivative of Ω11 with respect to σ1, i.e., by (1/2)Ω−1/2
11 ; recall equation (4.3) in Section 4.2.1.

Furthermore, letting Ω22·1 = σ2
2 and A22·1 = vs2

2 we likewise find that Ω22·1 ∼ IW1(A22·1, v).

Trivially, we also know that Ω12/Ω11 = A12/A11 +
√

Ω22·1/A11ρ implies that Ω12/Ω11|Ω22·1 ∼
N(A12/A11,Ω22·1/A11).

28 Skewness is defined as the third standardized central moment, i.e., the third central moment divided by the

standard deviation to the power of 3. There is no guarantee that the sign of this measure always corresponds to the

sign of the Pearson measure.

29 This can also be seen if we let σ = µ̃IG in equation (4.11).
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Together, these results therefore ensure that Ω ∼ IW2(A, v), where

Ω11 = σ2
1 ,

Ω12 = Ω11


A12

A11
+

√
σ2

2

A11
ρ


 ,

Ω22 = σ2
2 +

Ω2
12

Ω11
.

It may also be noted that one can derive an inverted Wishart distribution for the general p ×
p case based on p univariate inverted gamma random variables and p(p − 1)/2 univariate
standard normal random variables, and where all univariate variables are independent. The
precise transformations needed to obtain Ω from these univariate variables can be determined
by using Theorem A.17 from Bauwens et al. (1999) in a sequential manner.

4.2.5. Beta, Snedecor (F), and Dirichlet Distributions

A random variable c < x < d has a beta distribution with parameters a > 0, b > 0, c ∈ R and
d > c, denoted by x ∼ B(a, b, c, d) if and only if its pdf is given by

pB(x|a, b, c, d) =
1

(d − c)β(a, b)

(
x − c

d − c

)a−1(
d − x

d − c

)b−1

. (4.14)

The standardized beta distribution can directly be determined from (4.14) by defining the
random variable z = (x− c)/(d− c). Hence, 0 < z < 1 has a beta distribution with parameters
a > 0 and b > 0, denoted by z ∼ B(a, b) if and only if its pdf is given by

pSB(z|a, b) =
1

β(a, b)
za−1(1 − z)b−1. (4.15)

For a, b > 1, the mode of (4.15) is given by µ̃SB = (a− 1)/(a+ b− 2). Zellner (1971) provides
general expressions for the moments of the beta pdf in (4.15). For example, the mean of the

standardized beta is µSB = a/(a + b), while the variance is σ2
SB = ab/((a + b)2(a + b + 1)).

The a and b parameters of the beta distribution can be expressed as functions of the mean
and the variance. Some algebra later we find that

a =
µSB

σ2
SB

[
µSB
(
1 − µSB

)
− σ2

SB

]
,

b =

(
1 − µSB

)

µSB
a.

(4.16)

From these expressions we see that a and b are defined from µSB and σ2
SB when µSB

(
1−µSB

)
>

σ2
SB > 0 with 0 < µSB < 1.

Letting µB and σ2
B be the mean and the variance of x ∼ B(a, b, c, d), it is straightforward to

show that:

µB = c +
(
d − c

)
µSB,

σ2
B =

(
d − c

)2
σ2
SB.

(4.17)

This means that we can express a and b as functions of µB, σB, c, and d:

a =
(µB − c)

(d − c)σ2
B

[(
µB − c

)(
d − µB

)
− σ2

B

]
,

b =

(
d − µB

)
(
µB − c

)a.
(4.18)

The conditions that a > 0 and b > 0 means that c < µB < d, while (µB − c)(d − µB) > σ2
B.

The mode still exists when a, b > 1 and is in that case given by µ̃B = c + (d − c)µ̃SB =
c + (d − c)(a − 1)/(a + b − 2).
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Moreover, skewness is given by:

SB =
2ab(b − a)

(a + b)3(a + b + 1)(a + b + 2)

[
ab

(a + b)2(a + b + 1)

]3/2
.

Hence, if a = b, then the beta distribution is symmetric, while b > a (a > b) implies that it is
right-skewed (left-skewed). Since b > a implies that µB < (d + c)/2, it follows that the mean
lies below the mid-point of the range [c, d].

The beta distribution is related to the gamma distribution in a particular way. Suppose
x ∼ G(a,1) while y ∼ G(b,1). As shown by, e.g., Bauwens, Lubrano, and Richard (1999,
Theorem A.3), the random variable z = x/(x + y) ∼ B(a, b).

The beta distribution is plotted in the lower left panel of Figure 1 for a few examples. In all
cases the lower bound c = 0 and the upper bound b = 1. For the baseline case the mean is

0.5 while the standard deviation is 1/
√

12 ≈ 0.28868 and this is displayed as the horizontal
blue solid line in the figure. This means that the beta distribution is identical to the uniform
distribution. When the standard deviation drops, the distribution becomes bell shaped (red
dashed line) and since the mean is exactly at the center between the lower and the upper
bound, the distribution becomes symmetric; cf. equal (4.17) where a = b. As noted above,
when the mean of the beta distribution is smaller (greater) than the mid-point in the support,
the the distribution is right-skewed (left-skewed) since b > a (a>b).

The beta distribution is also related to the Snedecor or F (Fisher) distribution. For example,
suppose that x ∼ B(a/2, b/2) with a, b being positive integers. Then z = bx/(a(1 − x)) can
be shown to have an F(a, b) distribution; cf. Bernardo and Smith (2000, Chapter 3). That is,

pF(z|a, b) =
a(a/2)b(b/2)

β(a/2, b/2)
z(a/2)−1

(
b + az

)(a+b)/2
, z > 0.

The mean of this distribution exists if b > 2 and is then µF = b/(b − 2). The mode exists and
is unique with µ̃F = (a − 2)b/(a(b + 2)) when a > 2. Finally, if b > 4 then the variance exists

and is given by σ2
F = 2b2(a + b − 2)/(a(b − 4)(b − 2)2).

Although YADA does not directly support the F distribution, the combination of the beta prior
and the file with parameters to update (see Section 17.3) makes it possible to indirectly support
this as a prior.

The multivariate extension of the beta distribution is the so called Dirichlet distribution. The
marginal distribution for one element of a Dirichlet distributed random vector is the beta dis-
tribution; cf. Gelman, Carlin, Stern, and Rubin (2004, Appendix A). YADA does not directly
support prior distributions that include dependence between parameters. However, by using
the file with parameters to update (see Section 17.3) the user can circumvent this “restriction”.

Specifically, suppose xi ∼ B(ai, bi) are mutually independent for i = 1, . . . , k − 1 with k ≥ 3.

Defining zi = xi
∏i−1

j=1(1− xj) for i = 2, . . . , k− 1, z1 = x1, and assuming that bi−1 = ai + bi for

i = 2, . . . , k− 1, it is shown in Connor and Mosimann (1969) that the density for (z1, . . . , zk−1)
is given by

pD(z1, . . . , zk−1|α1, . . . , αk) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

k∏

i=1

z
αi−1
i ,

where zk = 1−∑k−1
i=1 zi, αi = ai for i = 1, . . . , k− 1 and αk = bk−1. This is the density function

of the Dirichlet distributed vector z = (z1, . . . , zk−1) ∼ D(α1, . . . , αk).
The first two moments of the standardized Dirichlet distribution exist and are, for example,

given in Gelman et al. (2004, Appendix A). Specifically, let α0 =
∑k

j=1 αj . The mean of zi is

µD,i = αi/α0, while the mode is equal to µ̃D,i = (αi − 1)/(α0 − k) when it exists. The variance
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and the covariance are

σ2
D,i =

αi
(
α0 − αi

)

α2
0

(
α0 + 1

) ,

σD,ij =
−αiαj

α2
0

(
α0 + 1

) .

From the expressions for the mean and the variance of the Dirichlet, the relation to the mean
and the variance of the (univariate) beta distribution can be seen.

To use the Dirichlet prior in YADA, the user should setup a prior for the auxiliary parameters
xi and compute zi in the file with parameters to update. Cases when the Dirichlet may be of
interest include models that have parameter pairs than are restricted to, e.g., be positive and to

sum to something less than unity.30

4.2.6. Normal and Log-Normal Distributions

For completeness, the Gaussian density function is also provided. Specifically, a random variable
z is said to have a normal distribution with location parameter µ ∈ R and scale parameter σ > 0,
denoted by z ∼ N(µ, σ2), if and only if its pdf is given by

pN(z|µ, σ) =
1√

2πσ2
exp

(
−(z− µ)2

2σ2

)
. (4.19)

The mode of this density is z = µ, while the mean is also equal to µ and the variance is σ2.
YADA does not directly support the log-normal as a prior distribution. Nevertheless, log-

normal priors can be used by combining the normal distribution with the file with parameters to
update; cf. Section 17.3. That is, the normal prior is specified for the random variable x, while
z = exp(x) is given in the file with parameters to update.

The density function of the log-normal distribution is

pLN(z|µ, σ) =
1√

2πσ2
z−1 exp

(
− 1

2σ2

(
lnz − µ

)2
)
, z > 0.

The mean of the log-normal distribution is µLN = exp(µ + (σ2/2)), the variance is σ2
LN =

exp(2µ + σ2)(exp(σ2) − 1), while the mode is µ̃LN = exp(µ − σ2); see Gelman et al. (2004).
It is also possible to compute the µ and σ parameters from µLN and σLN . In this case we have

that:

σ2 = ln

(
σ2
LN

µ2
LN

+ 1

)
, µ = ln

(
µLN

)
− σ2

2
.

4.2.7. Left Truncated Normal Distribution

The left truncated normal distribution can be defined from (4.19) by introducing a lower bound
c. This means that a random variable z ≥ c is left truncated normal with location parameter
µ ∈ R, scale parameter σ > 0, and finite c, denoted by z ∼ LTN(µ, σ2, c), if and only if its pdf is

pLTN(z|µ, σ, c) =
1√

2πσ2
exp

(
−(z− µ)2

2σ2

)(
1 − Φ((c − µ)/σ)

)−1
, (4.20)

30 One such example is when the model contains an AR(2) process and where the AR parameters should both be

positive and add up to something less than unity. This is sufficient but not necessary for stability. By transforming zi
even further one could also consider the general conditions for stability of an AR(2) process. For instance, let

y1 = 2z2 + 4(1 − z2)z1 − 2,

y2 = 2z2 − 1.

It can now be shown that y1 +y2 < 1, y2 −y1 < 1, and −1 < y2 < 1 for (z1, z2) ∼ D(α1, α2, α3). The last condition

follows from z2 = (y2 + 1)/2 ∈ (0,1). The first two conditions are satisfied if we notice that y2 − 1 < y1 < 1 − y2.

We may therefore let z1 = (y1 − y2 + 1)/(2 − 2y2) ∈ (0,1). Based on the means and covariance of zi we can

directly determine the means of yi. Notice that the stability conditions are also satisfied if we let zi ∼ U(0,1), with

z1 and z2 independent.
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where

Φ(a) =





(1 + κ(a/
√

2))/2 if a > 0

(1 − κ(−a/
√

2))/2 otherwise,

κ(b) =
2√
π

∫ b

0
exp
(
−x2

)
dx.

(4.21)

Hence, the left truncated normal density is given by the normal density divided by 1 minus the
cumulative normal distribution up to the point of left truncation, i.e., (c − µ)/σ. The function
κ(b) is often called the error function. In Matlab, its name is erf.

As long as µ ≥ c, the mode is given by µ̃LTN = µ, while µ < c means that the mode is
µ̃LTN = c.

Three examples of the left truncated normal distribution along with the normal distribution
are plotted in the lower right panel of Figure 1. As c increases the height of the density relative
to it highest point based on the normal for the same support increases.

4.2.8. Uniform Distribution

A random variable z is said to have a uniform distribution with parameters a and b with b > a,
denoted by z ∼ U(a, b) if and only if its pdf is given by

pU(z|a, b) =
1

b − a
. (4.22)

The mean and the variance of this distribution are:

µU =
a + b

2
,

σ2
U =

(b − a)2

12
.

The beta distribution is equivalent to a uniform distribution with lower bound c and upper

bound d when µB = (c+d)/2 and σ2
B = (d−c)2/12; see, also, Bauwens, Lubrano, and Richard

(1999) for additional properties of the uniform distribution.

4.2.9. Student-t and Cauchy Distribution

A random variable z is said to have a Student-t distribution with location parameter µ ∈ R,
scale parameter σ > 0, and degrees of freedom parameter d (a positive integer), denoted by
z ∼ t(µ, σ, d), if and only if its pdf is given by

pS(z|µ, σ, d) =
Γ((d + 1)/2)

Γ(d/2)σ
√
dπ

(
1 +

1

d

(
z− µ

σ

)2
)−(d+1)/2

. (4.23)

The Student-t distribution is symmetric around the mode µ, while the mean exists if d > 1,
and the variance exists if d > 2. The first two central moments are then given by

µS = µ,

σ2
S =

d

d − 2
σ2.

The distribution has heavier tails (higher kurtosis) for finite d than the normal distribution.31

When d → ∞, the density in (4.23) converges to the density of the normal distribution.
At the other extreme, i.e., d = 1, the distribution is also known as the Cauchy, denoted by
z ∼ C(µ, σ). The density function now simplifies to

pC(z|µ, σ) =
σ

π
(
σ2 + (z − µ)2

) . (4.24)

31 Specifically, if d > 4, then excess kurtosis is 6/(d − 4)
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Figure 2. Examples of normal, Student-t, Cauchy, logistic, Gumbel and Pareto
distributions.
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The mean and the variance for the Cauchy distribution do not exist; see, also, Bauwens, Lu-
brano, and Richard (1999) for additional properties of the Student-t distribution.

The normal, the Cauchy, and some other Student-t distributions are shown in the upper left
panel of Figure 2. As q increases, the height of the t-density approaches the height of the normal
density from below. For the standard distributions with location parameter zero and unit scale
parameter, the tails of the Student-t become thicker than the normal once the distance is at
leats 2 standard deviations away from the mean of the normal distribution.

A random vector z of dimension n is said to have a multivariate Student-t distribution with
location vector µ, positive definite scale matrix Σ, and degrees of freedom parameter d, denoted
by z ∼ Tn(µ,Σ, d), if its pdf is given by

pS
(
z|µ,Σ, d

)
=

Γ((d + n)/2)

Γ(d/2)πn/2|Σ|1/2
d−d/2

(
d +

(
z − µ

)′
Σ−1
(
z− µ

))−(d+n)/2

=
Γ((d + n)/2)

Γ(d/2)|Σ|1/2
(dπ)n/2

(
1 +

1

d

(
z − µ

)′
Σ−1
(
z− µ

))−(d+n)/2

.

(4.25)

The mode of this distribution is given by µ and when d > 1, the mean exists and is equal to
µ. Provided that d > 2, the covariance also exists and is given by

E
[
(z − µ)(z − µ)′

]
=

d

d − 2
Σ.
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4.2.10. Logistic Distributions

A random variable z is said to have a logistic distribution with location parameter µ ∈ R and
scale parameter σ > 0, denoted by z ∼ L(µ, σ), if and only if its density function is

pL(z|µ, σ) =
exp
(
−
(
z − µ

)
/σ
)

σ
[
1 + exp

(
−
(
z− µ

)
/σ
)]2

. (4.26)

Because the pdf can be expressed in terms of the square of the hyperbolic secant function32 it is
sometimes referred to as the sech-squared distribution.

The logistic distribution receives its name from its cdf, which is an instance of the family of
logistic functions. Specifically, the cdf is given by

FL(z|µ, σ) =
1

1 + exp
(
−
(
z − µ

)
/σ
) .

The logistic distribution is symmetric and resembles the normal distribution in shape, but has
heavier tails (higher kurtosis). The mean and variance of the distribution are:

µL = µ,

σ2
L =

π2

3
σ2,

(4.27)

while excess kurtosis is 6/5.
One extension of the logistic distribution that may be of interest is the so called Type I gener-

alized (or reversed) logistic distribution; cf. Balakrishnan and Leung (1988). A random variable
z is said to have a Type I generalized logistic distribution with location parameter µ ∈ R, scale
parameter σ > 0, and shape parameter c > 0 if and only if its density function is

pGL(z|µ, σ, c) =
c exp

(
−
(
z − µ

)
/σ
)

σ
[
1 + exp

(
−
(
z − µ

)
/σ
)]1+c

. (4.28)

In this case the cdf is given by

FGL(z|µ, σ, c) =
1[

1 + exp
(
−
(
z− µ

)
/σ
)]c . (4.29)

The distribution is left-skewed for c < 1, right-skewed for c > 1, and for c = 1 it is symmetric

and is identical to the logistic. The mode of the distribution is given by µ̃GL = µ+ σ ln(c).33

The mean and the variance of the Type I generalized logistic distribution exist and are given
by

µGL = µ +
(
γ + ψ(c)

)
σ,

σ2
GL =

[
π2

6
+ ψ′(c)

]
σ2.

(4.30)

32 The hyperbolic secant function is given by sech(x) = 2/(exp(x) + exp(−x)) for x ∈ R.

33 In fact, skewness for the Type I generalized logistic is:

SGL =
ψ′′(c) + 2ζ(3)

π2

6
+ ψ′(c)

,

where ψ′′(c) is the second derivative of the ψ function, i.e., the third derivative of the log of the gamma function.

The Riemann zeta function is given by ζ(s) =
∑∞

k=1 1/ks, where ζ(3) ≈ 1.20205690 is also known as Apéry’s

constant after Roger Apéry who proved that it is an irrational number. For c = 1 the numerator is zero, and for c < 1

(c>1) it is negative (positive).
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The term γ is Euler’s constant, while ψ(c) is the digamma function and ψ′(c) its first derivative,

the so called trigamma function.34 In Matlab, ψ(c) and its derivatives can be computed through
the function psi. But since this function was not present until version 6.5 of Matlab, the func-
tions DiGamma and TriGamma are included in YADA, using the algorithms in Bernardo (1976)

and Schneider (1978), respectively.35

The logistic distribution is compared with the normal distribution in the upper right panel of
Figure 2. Focusing on a mean of zero, we find that the height of the symmetric logistic (c = 1) is
greater than the height of the normal close to the mean. Between around one and 2.5 standard
deviations away from the mean of the normal the height of the normal is somewhat greater than
that of the logistic, whereas further out in the tails the height of the logistic is greater than the
height of the normal. As c < 1 the distribution becomes left-skewed (green dash-dotted line),
and for c > 1 it is right-skewed (magenta dotted line). The skewness effect in Figure 2 seems to
be larger in absolute terms when c < 1 than when c > 1. This is also confirmed when applying
the skewness formula. For c = 0.5 we find that skewness is approximately −2.19, whereas for
c = 1.5 (c = 100) it is roughly 0.61 (1.45). As c becomes very large, skewness appears to
converge to around 1.46. Hence, a higher degree of left-skewness than right-skewness can be
achieved through the Type I generalized logistic distribution.

4.2.11. Gumbel Distribution

A random variable z is said to have a Gumbel distribution with location parameter µ ∈ R and
scale parameter σ > 0, denoted by z ∼ Gu(µ, σ), if and only if its density function is

pGu(z|µ, σ) =
1

σ
exp
(
−z− µ

σ

)
exp

(
− exp

(
−z− µ

σ

))
. (4.31)

The Gumbel distribution is the most common of the three types of Fisher-Tippett extreme
value distribution. It is therefore sometimes called the Type I extreme value distribution. The cdf
of the Gumbel is given by

FGu(z|µ, σ) = exp

(
− exp

(
−z− µ

σ

))
. (4.32)

The Gumbel distribution is right-skewed for z and therefore left-skewed for x = −z. The
mean and the variance exist and are given by:

µGu = µ + γσ,

σ2
Gu =

π2

6
σ2.

(4.33)

Skewness is roughly equal to 1.1395, while excess kurtosis is exactly 12/5.36 The mode is given
by the location parameter µ̃Gu = µ, while the median is µ− σ ln(ln(2)); see Johnson, Kotz, and
Balakrishnan (1995).

A few examples of the Gumbel distribution have been plotted in the lower left panel of
Figure 2. It is noteworthy that a shift in the mean for fixed standard deviation implies an equal
size shift in the location parameter µ. This is illustrated by comparing the solid blue line for
Gu(0,1) to the dash-dotted green line for Gu(1,1). This is a direct consequence of equation
(4.33), where dµ/dµGu = 1. Moreover, and as also implied by that equation and the fact that

34 Euler’s constant, also known as the Euler-Mascheroni constant, is defined as γ = limn→∞[Hn − lnn], where

Hn =
∑n

k=1 1/k is a harmonic number. For Euler’s constant we know that γ = −ψ(1) ≈ 0.57721566. This number

was calculated to 16 integers by Euler in 1781, Mascheroni calculated it to 32 by 1790, although only the first 19

were later shown to be correct; see Havil (2003, p. 89-90). It has now been calculated to at least 2 billion digits.

Still, it is not known if this constant is irrational. The digamma function is, as the name suggests, the logarithmic

derivative of the gamma function. It may also be noted that ψ′(1) = π2/6.

35 The algorithm also makes use of modifications suggested by Tom Minka in the functions digamma.m and

trigamma.m from the Lightspeed Toolbox. See http://research.microsoft.com/en-us/um/people/minka/ for

details.

36 To be precise, skewness is given by SGu = 12
√

6ζ(3)/π3, where ζ(3) is equal to Apéry’s constant; cf. footnote 33.
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µ is the mode, a higher (lower) standard deviation for fixed mean results in a lower (higher)

mode, i.e., dµ̃Gu/dσGu = −γ
√

6/π ≈ −0.45.

4.2.12. Pareto Distribution

A random variable z ≥ b is said to have a Pareto distribution with shape parameter a > 0 and
location parameter b > 0, denoted by z ∼ P(a, b), if and only if its pdf is equal to

pP(z|a, b) = abaz−(a+1). (4.34)

This distribution was originally used by Vilfredo Pareto to describe the allocation of wealth
among individuals. The idea was to represent the “80-20 rule”, which states that 20 percent of
the population control 80 percent of the wealth. The power law probability distribution has the
simple cdf

FP (z|a, b) = 1 −
(
b

z

)a

. (4.35)

The mode of the distribution is b and the density declines exponentially toward zero as z
becomes larger. The mean exists if a > 1, while the variance exists if a > 2. The central
moments are then given by

µP =
ab

a − 1
,

σ2
P =

ab2

(a − 1)2(a − 2)
.

Moreover, if a > 3 then skewness exists and is given by:

SP =
2(a + 1)

√
a − 2

(a − 3)
√
a

.

Since SP > 0 it follows that the distribution is right-skewed. Moreover, SP is a decreasing
function of a and SP → 2 as a→ ∞.

The Pareto distribution is plotted for a 3 parameter case in the lower right panel of Figure 2.
The third parameter is called the origin parameter, c, and is applied such that z = c + x, where
x ∼ P(a, b). In other words, the density function for z is given by

pP (z|a, b, c) = aba(z− c)−(a+1).

Comparing the baseline case where z ∼ P(3,2/3,0) (blue solid line) to the case when c = −b
(red dashed line) it is clear that the origin parameter merely affects the lower bound of the
distribution. On the other hand, a drop of the shape parameter a from 3 to 2 (green dash-
dotted line) lowers the height of the distribution around the mode and increases the mass of

the distribution in the right tail.37 Finally, an increase in b has no effect on skewness and, hence,
it increases the height of the distribution over its support.

4.2.13. Discussion

YADA needs input from the user regarding the type of prior to use for each parameter it should
estimate. In the case of the beta, normal, logistic, and Gumbel distributions the parameters
needed as input are assumed to be the mean and the standard deviation. If you wish to have
a general beta prior you need to provide the upper and lower bounds as well or YADA will set
these to 1 and 0, respectively. If you wish to have a Type I generalized logistic distribution you
need to provide the shape parameter c in (4.28).

37 Excess kurtosis is also a function of a only. Specifically, provided that a > 4 it is given by:

KP =
6
(
a3 + a2 − 6a− 2

)

a
(
a2 − 7a+ 12

) .

It can be shown that excess kurtosis is a decreasing function of a and that KP → 6 from above as a→ ∞.
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For the gamma and the left truncated normal distribution, the parameters to assign values for
are given by µ, σ, and a lower bound c. For the gamma distribution this the first two parameters
are the mean and the standard deviation, while for the left truncated normal they are defined
in equation (4.20) and are the location and scale parameters, respectively.

Similarly, for the inverted gamma distribution the parameters to select values for are s, q,
and a lower bound c. The s parameter is, as mentioned above, a location parameter and q is
a degrees of freedom parameter that takes on integer values. The location parameter s can,
e.g., be selected such that the prior has a desired mode. Relative to equation (4.11) we are
now dealing with the location parameter (s − c) and the random variable (σ − c) since the
density is expressed for a random variable that is positive. The mode for this parameterization
is µ̃IG = s(q/(q + 1))1/2 + c(1 − (q/(q + 1))1/2).

As can be expected, the uniform distribution requires the lower and upper bound, i.e., a and
b in (4.22).

For the the Student-t, the required parameters are µ, σ, and d, while the Cauchy only takes
the first two parameters. Finally, the Pareto distribution takes the shape and location parameters
(a, b). In addition, YADA also accepts an origin parameter c which shifts z by a constant, i.e.,
y = z + c, where z ∼ P(a, b). This means that y ≥ b + c, i.e., b + c is both the mode and the
lower bound of y.

For all distributions but the beta, gamma, logistic, and Gumbel there is no need for internally
transforming the distribution parameters. For these 4 distributions, however, transformations
into the a and b parameters (µ and σ for the logistic and Gumbel) are needed, using the mean
and the standard deviation as input (as well as the shape parameter c for the logistic). YADA has
4 functions that deal with these transformations, MomentToParamGammaPDF (for the gamma),
MomentToParamStdbetaPDF (for the standardized beta), MomentToParamLogisticPDF (for the
logistic), and MomentToParamGumbelPDF (for the Gumbel distribution). These functions take
vectors as input as provide vectors as output. The formulas used are found in equations (4.8)
and (4.16) above for the gamma and the beta distributions, the inverse of (4.27) for the logistic

distribution, i.e., µ = µL and σ = (
√

3/π)σL when c = 1, the inverse of (4.30) when c 6= 1, and
the inverse of (4.33) for the Gumbel distribution. Since YADA supports a lower bound that can
be different from zero for the gamma prior, the mean minus the lower bound is used as input
for the transformation function MomentToParamGammaPDF. Similarly, the mean and the standard
deviation of the standardized beta distribution are computed from the mean and the standard
deviation as well as the upper and lower bounds of the general beta distribution. Recall that
these relations are µSB = (µB − c)/(d − c) and σSB = σB/(d − c).

4.3. Random Number Generators

For each prior distribution that YADA has direct support for, it can also provide random draws.
These draws are, for instance, used to compute impulse responses based on the prior distribu-
tion. In this subsection, the specific random number generators that YADA makes use of will be
discussed.

The basic random number generators are given by the rand and randn Matlab function.
The first provides draws from a standardized uniform distribution and the second from a
standardized normal distribution. Supposing that p ∼ U(0,1) it follows by the relationship
p = (z − a)/(b − a), where b > a are the upper and lower bound for z that

z = a + (b − a)p.

Hence, random draws for z are obtained by drawing p from U(0,1) via the function rand and
computing z from the above relationship.

Similarly, with x ∼ N(0,1) and x = (z−µ)/σ it follows that random draws for z ∼ N(0, σ2)
can be obtained by drawing x from N(0,1) via the function randn and using the relationship
z = µ+ σx.

To obtained draws of z from LTN(µ, σ, c) YADA uses a very simple approach. First of all, x
is drawn from N(µ, σ2). All draws such that x ≥ c are given to z, while the draws x < c are
discarded.
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If z ∼ G(a, b), then YADA checks if the Statistics Toolbox is available on the computer. If its
existence is confirmed, then the function gamrnd is used. On the other hand, if this toolbox
is missing, then YADA uses the function YADARndGammaUnitScale function to obtained x ∼
G(a,1), while z = bx ∼ G(a, b) follows from this relationship. The function that draws from
a gamma distribution with unit scale (b = 1) is based on the function rgamma from the Stixbox

Toolbox by Anders Holtsberg.38. Since gamma distributed random variables can have a lower
bound (c) different from zero, this parameter is added to the gamma draws.

Similarly, to obtain draws from a beta distribution, YADA first checks if the Statistics Toolbox
is available. If the test provides a positive response the function betarnd is used to generate
z ∼ B(a, b). With a negative response to this test, YADA uses the random number generator
for the gamma distribution for y1 ∼ G(a,1) and y2 ∼ G(b,1), and determines z from z =
y1/(y1 +y2). For both cases, YADA makes use of the relationship x = c+ (d− c)z, with d > c.
It now follows that x ∼ B(a, b, c, d).

Furthermore, to draw z ∼ IG(s, q) YADA again makes use of the gamma distribution. First of
all, the pair (a, b) = (q/2,2/qs2) is computed such that z ∼ IG(a, b) ≡ IG(s, q). Using the fact
that z being IG(a, b) is equivalent to x = z−2 ∼ G(a, b). Hence, x is drawn from the gamma
distribution, while z = 1/

√
x.

For the Cauchy and, more generally, the Student-t we make use of the result that the stan-
dardized Student-t density is given by the ratio between the standardized normal density and

the density of
√
z/q where z ∼ χ2

q; see, e.g., Bauwens et al. (1999, p. 318). That is, we let

y1 ∼ N(0,1) and y2 ∼ G(d/2,2) and let x = y1

√
d/y2. This means that x ∼ t(0,1, d).

Finally, the get the random draws z ∼ t(µ, σ, d) we employ the relationship z = µ + σx. Again,
random draws from the Cauchy distribution C(µ, σ) are given by setting d = 1 for the draws

from the Student-t distribution; see, e.g, Gelman et al. (2004, Appendix A, p. 581).39

To obtain draws from the multivariare Student-t distribution, YADA makes use of the second
algorithm in Bauwens et al. (1999, Section B.4.2, p. 320), with s = ν = d and Σ = M−1. That is,
it takes the lower triangular Choleski decomposition of Σ and calls it C, i.e. CC′ = Σ. We now let

y1 ∼ N(0, In) and y2 ∼ G(d/2,2) and let x = y1

√
d/y2. This means that x ∼ Tn(0, In, d). The

variable z ∼ Tn(µ,Σ, d) is now obtained from the transformation z = µ + Cx. For low degrees
of freedom, one usually needs a lot of draws to simulate the multivariate Student-t distribution
well with this algorithm.

To obtain random draws from the Type I generalized logistic distribution, YADA makes use
of the cdf in equation (4.29). That is, we replace FGL(z|µ, σ, c) with p ∼ U(0,1) and compute z
by inverting the cdf. This provides us with

z = µ− σ ln

(
1

p1/c
− 1

)
.

The same approach is used for the Gumbel and the Pareto distributions. By inverting (4.32)
we obtain

z = µ − σ ln
(
ln(p)

)
,

where p ∼ U(0,1). It now follows that z ∼ Gu(µ, σ).
Similarly, by inverting equation (4.35), and taking the origin parameter into account, it is

straightforward to show that

z = c + b
1

(1 − p)1/a
.

38 The Stixbox Toolbox can be download from http://www.maths.lth.se/matstat/stixbox/.

39 The Statistics Toolbox comes with the function trnd which returns draws from the standardized Student-t distri-

bution t(0,1, d). This function is not used by YADA and the main reason is that it does not seem to improve upon the

routines provided by YADA itself. In fact, for small d many draws from the Student-t appear to be extremely large or

small. To avoid such extreme draws, YADA excludes all draws that are outside the range [µ− 6σ, µ+ 6σ]. While the

choice of 6 times the scale factor is arbitrary, this seems to work well in practise. In particular, when estimating the

density via a kernel density estimator using, e.g, and Epanechnikov or normal kernel, the resulting density seems to

match a grid-based estimator of the Student-t density very well when based on occular inspection.

– 70 –

http://www.maths.lth.se/matstat/stixbox/


With p ∼ U(0,1) we find that z ∼ P(a, b, c).

4.4. System Priors

The priors considered so far are straightforward to use in settings where the parameters are
independent. Such a property is standard in DSGE modelling and is used because of its conve-
nience. At the same time, independent prior for the structural parameters is often at odds with
what we a prior expect. For example, the parameters σc and λ in the log-linearized consumption
equation (2.17) of the Smets and Wouters model are likely to be a priori correlated since they
both measure aspects of the consumer’s preferences. At the same time, it is not obvious how to
model such dependence between parameters as economic theory gives little or no guidance.

Although correlations between structural parameters can be introduced in many ways, one
natural approach is to consider a particular model or system feature which a researcher would
like to condition the empirical analyses on. Several papers have introduced ways that such
information can be accounted for in DSGE models, giving it different names. Del Negro and
Schorfheide (2008) suggest an approach for introducing beliefs about steady-state relation-
ships and second moments of the endogenous variables. Christiano, Trabandt, and Walentin
(2011) consider what they refer to as endogenous priors and focus on the population standard
deviations of the observed variables, while Andrle and Benes (2013) more broadly discuss what
they call system priors and which include priors about, e.g., the sacrifice ratio, conditional and
unconditional population moments of the model, policy scenarios, impulse respones function,
and frequency response functions and spectral characteristics.

YADA uses this latter terminology and refers to a system prior as the researcher’s prior be-
liefs about some system characteristic which can be modelled with a suitable density function
conditional on the DSGE model parameters. For example, a researcher may wish to condition
the DSGE model on the prior that the standard deviation of real GDP growth has mean 0.5.
This can, for example, be achieved by assuming that the population standard deviation has an
inverted gamma distribution with mean 0.5 and a variance that suitably captures the prior un-
certainty about this mean. For example, letting s = 0.46 and q = 10 for the inverted gamma
parameterization in equation (4.11) gives a mean µIG ≈ 0.4985 and σIG ≈ 0.1264, which may
serve the intended purpose well.

Let ω denote the system properties we would like to control with the system prior, where
ω = h(θ) for a known function θ. As in Andrle and Benes (2013) we assume that ω is endowed
with a complete probabilistic model with hyperparameters Φω. The likelihood function for ω
is given by p(Φω|θ, h), while p(θ) is the original prior density for the DSGE model parameters.
This function is typically a propduct of marginal prior distributions of the individual DSGE
model parameters. The full system prior of ω and θ is now

p
(
θ|Φω, h

)
∝ p

(
Φω|θ, h

)
p
(
θ
)
, (4.36)

and where p(θ) is the marginal distribution of θ. In the inverted gamma example above, Φω =
(µIG, σIG) or, equivantently, Φω = (s, q), while h is the function that gives the standard deviation
of real GDO growth based on the DSGE model parameters.

When estimating the θ parameters, we are interested in the prior density of θ conditional on
Φω. Using Bayes theorem, as in Section 4.1, we find that

p
(
θ|Φω, h

)
=
p
(
Φω|θ, h

)
p
(
θ
)

p
(
Φω|h

) . (4.37)

This means that the marginal prior likelihood of the hyperparameters Φω needs to be deter-
mined.

Taking a step back first, notice that direct sampling of the DSGE model parameters θ from
the density in equation (4.37) is not possible since its analytical form is generally unknown.
This sampling problem is analogous to the problem of sampling from the posterior distribution,
discussed below in Section 8. In fact, we may use the Markov Chain Monte Carlo (MCMC)
methods from posterior simulation for system prior sampling, where p(Φω|θ, h) replaces the
likelihood function for the posterior simulator. Furthermore, the system prior mode can be

– 71 –



estimated using the joint log prior kernel of the right hand side in (4.36) using, for example,
numerical optimization. The likelihood p(Φω|θ, h) is typically rapidly calculated once h(θ) has
been determined. For example, if h is a vector of population standard deviations of the observ-
able variables conditional on θ, then the main computational part of the system prior is to solve
the DSGE model.

Once prior draws have been obtained via a suitable MCMC sampler, the marginal prior like-
lihood p(Φω|h) can be estimated with, e.g., the algorithms discussed below in Section 10. This
computation is actually only relevant when the researcher is interested in the marginal likeli-
hood of the observed data, since the constant p(Φω|h) needs to be accounted for this estimate.
In contrast, posterior mode estimation or posterior simulation are not affected by this constant.

4.5. YADA Code

The density functions presented above are all written in natural logarithm form in YADA. The
main reason for this is to keep the scale manageable. For example, the exponential function
in Matlab, like any other computer software available today, cannot deal with large or small
real numbers. If one attempts to calculate e700 one obtains exp(700) = 1.0142e+304, while
exp(720) = Inf. Furthermore, and as discussed in Section 4.2.2, the gamma and beta func-
tions return infinite values for large (and finite) input values, while the natural logarithm of
these functions return finite values for the same large input values.

4.5.1. logGammaPDF

The function logGammaPDF calculates lnpG(z|a, b) in (4.7). Required inputs are z, a, b, while
the output is lnG. Notice that all inputs can be vectors, but that the function does not check
that the dimensions match. This is instead handled internally in the files calling or setting up
the input vectors for logGammaPDF.

4.5.2. logInverseGammaPDF

The function logInverseGammaPDF calculates lnpIG(σ|s, q) in (4.11). Required inputs are sigma,
s, q, while the output is lnIG. Notice that all inputs can be vectors, but that the function does
not check that the dimensions match. This is instead handled internally in the files calling or
setting up the input vectors for logInverseGammaPDF.

4.5.3. logBetaPDF

The function logBetaPDF calculates lnpB(z|a, b, c, d) in (4.14). Required inputs are z, a, b, c,
and d, while the output is lnB. Notice that all inputs can be vectors, but that the function does
not check that the dimensions match. This is instead handled internally in the files calling or
setting up the input vectors for logBetaPDF.

4.5.4. logNormalPDF

The function logNormalPDF calculates lnpN(z|µ, σ) in (4.19). Required inputs are z, mu, sigma,
while the output is lnN. Notice that all inputs can be vectors, but that the function does not check
that the dimensions match. This is instead handled internally in the files calling or setting up
the input vectors for logNormalPDF.

4.5.5. logLTNormalPDF

The function logLTNormalPDF calculates lnpLTN(z|µ, σ, c) in (4.20). Required inputs are z, mu,
sigma, c, while the output is lnLTN. This function calls the PhiFunction described below. Notice
that the function does not check if z ≥ c holds. This is instead handled by the functions that
call logLTNormalPDF.

4.5.6. logUniformPDF

The function logUniformPDF calculates lnPU(z|a, b) in (4.22), i.e., the log height of the uniform
density, i.e., − ln(b − a). The required inputs are a and b, where the former is the lower bound
and the latter the upper bound of the uniformly distributed random vector z.
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4.5.7. logStudentTAltPDF

The function logStudentTAltPDF calculates lnpS(z|µ, σ, d) in (4.23), i.e., the log height of the
Student-t density. The required input variables are z, mu, sigma, and df, while the output is lnS.
Notice that all inputs can be vectors, but that the function does not check that the dimensions
match. This is instead handled internally in the files calling or setting up the input vectors for
logStudentTAltPDF.

4.5.8. logCauchyPDF

The function logCauchyPDF calculates lnpC(z|µ, σ) in (4.24), i.e., the log height of the Cauchy
density. The required input variables are z, mu, and sigma, while the output is lnC. Notice that
all inputs can be vectors, but that the function does not check that the dimensions match. This
is instead handled internally in the files calling or setting up the input vectors for logCauchyPDF.

4.5.9. logLogisticPDF

The function logLogisticPDF calculates lnpGL(z|µ, σ, c) in (4.28), i.e., the log height of the
(Type I generalized) logistic density. The required input variables are z, mu, sigma and c, while
the output is lnL. Notice that all inputs can be vectors, but that the function does not check that
the dimensions match. This is instead handled internally in the files calling or setting up the
input vectors for logLogisticPDF.

4.5.10. logGumbelPDF

The function logGumbelPDF calculates lnpGu(z|µ, σ) in (4.31), i.e., the log height of the Gumbel
density. The required input variables are z, mu, and sigma, while the output is lnGu. Notice that
all inpute variables can be vectors, but that the function does not check that the dimensions
match. This is instead handled internally in the files calling or setting up the input vectors for
logGumbelPDF.

4.5.11. logParetoPDF

The function logParetoPDF calculates lnpP (z|a, b) in (4.34), i.e., the log height of the Pareto
density. The required input variables are z, a, and b, while the output is lnP. Notice that all
inputs can be vectors, but that the function does not check that the dimensions match. This is
instead handled internally in the files calling or setting up the input vectors for logParetoPDF.

4.5.12. PhiFunction

The function PhiFunction evaluates the expression for Φ(a) in (4.21). The required input is
the vector a, while the output is PhiValue, a vector with real numbers between 0 and 1.

4.5.13. GammaRndFcn

The function GammaRndFcn computes random draws from a gamma distribution. The function
takes two required input variables, a and b. These contain the shape and the scale parameters
from the gamma distribution with lower bound 0 and both are treated as vectors; see equation
(4.7). Notice that the function does not check that the dimensions of a and b match. An
optional input variable for total number of draws, NumDraws, is also accepted. The default value
for this integer is 1. The algorithms used by the function are discussed above in Section 4.3.

The function provides one output variable, z, a matrix with row dimension equal to the length
of a and column dimension equal to NumDraws.

4.5.14. InvGammaRndFcn

The function InvGammaRndFcn computes random draws from an inverted gamma distribution.
The function takes two required input variables, s and q. These contain the location and degrees
of freedom parameters from the inverted gamma distribution with lower bound 0 and both
are treated as vectors; see equation (4.11). Notice that the function does not check that the
dimensions of s and q match. An optional input variable for total number of draws, NumDraws,
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is also accepted. The default value for this integer is 1. The algorithms used by the function are
discussed above in Section 4.3.

The function provides one output variable, sigma, a matrix with row dimension equal to the
length of s and column dimension equal to NumDraws.

4.5.15. BetaRndFcn

The function BetaRndFcn computes random draws from a beta distribution. The function takes
4 required input variables, a, b, c and d. These contain the shape parameters as well as the
lower and upper bound from the beta and are all treated as vector; see equation (4.14). The
function does not check if the dimensions of these variables match; this is instead handled by
the function that calls it. An optional input variable for total number of draws, NumDraws, is
also accepted. The default value for this integer is 1. The algorithms used by the function are
discussed above in Section 4.3.

The function provides one output variable, x, a matrix with row dimension equal to the length
of a and column dimension equal to NumDraws.

4.5.16. NormalRndFcn

The function NormalRndFcn computes random draws from a normal distribution. The func-
tion takes two required input variables, mu and sigma. These contain the mean (location) and
standard deviation (scale) parameters; see equation (4.19). The function does not check if the
dimensions of these variables match; this is instead handled by the function that calls it. An
optional input variable for total number of draws, NumDraws, is also accepted. The default value
for this integer is 1. The algorithm used by the function is discussed above in Section 4.3.

The function provides one output variable, z, a matrix with row dimension equal to the length
of mu and column dimension equal to NumDraws.

4.5.17. LTNormalRndFcn

The function LTNormalRndFcn computes random draws from a left truncated normal distribu-
tion. The function takes 3 required input variables, mu, sigma and c. These contain the location,
scale and lower bound (left truncation) parameters; see equation (4.20). The function does
not check if the dimensions of these variables match; this is instead handled by the function
that calls it. An optional input variable for total number of draws, NumDraws, is also accepted.
The default value for this integer is 1. The algorithm used by the function is discussed above in
Section 4.3.

The function provides one output variable, z, a matrix with row dimension equal to the length
of mu and column dimension equal to NumDraws.

4.5.18. UniformRndFcn

The function UniformRndFcn computes random draws from a uniform distribution. The func-
tion takes two required input variables, a and b. These contain the lower and upper bound
parameters; see equation (4.22). The function does not check if the dimensions of these vari-
ables match; this is instead handled by the function that calls it. An optional input variable for
total number of draws, NumDraws, is also accepted. The default value for this integer is 1. The
algorithm used by the function is discussed above in Section 4.3.

The function provides one output variable, z, a matrix with row dimension equal to the length
of a and column dimension equal to NumDraws.

4.5.19. StudentTAltRndFcn

The function StudentTAltRndFcn computes random draws from a Student-t distribution. The
function takes 3 required input variables, mu, sigma and d. These contain the location, scale
and degrees of freedom parameters; see equation (4.23). The function does not check if the
dimensions of these variables match; this is instead handled by the function that calls it. An
optional input variable for total number of draws, NumDraws, is also accepted. The default value
for this integer is 1. The algorithm used by the function is discussed above in Section 4.3.
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The function provides one output variable, z, a matrix with row dimension equal to the length
of mu and column dimension equal to NumDraws.

4.5.20. CauchyRndFcn

The function CauchyRndFcn computes random draws from a Cauchy distribution. The function
takes two required input variables, mu and sigma. These contain the location and scale param-
eters; see equation (4.24). The function does not check if the dimensions of these variables
match; this is instead handled by the function that calls it. An optional input variable for to-
tal number of draws, NumDraws, is also accepted. The default value for this integer is 1. The
algorithm used by the function is discussed above in Section 4.3.

The function provides one output variable, z, a matrix with row dimension equal to the length
of mu and column dimension equal to NumDraws.

4.5.21. MultiStudentTRndFcn

The function MultiStudentTRndFcn generates a desired number of draws from the multivariate
Student-t distribution. As input the function needs mu, CholSigma, and d. These contain the
location vector µ, the lower triangular Choleski decomposition of the positive definite scale
matrix Σ, and degrees of freedom parameter d, respectively; see equation (4.25). The last
input, NumDraws, is optional and defaults to 1.

As output the function gives z, a matrix with as the same number of rows as the dimension
of the mean and number of columns gives by NumDraws.

4.5.22. LogisticRndFcn

The function LogisticRndFcn computes random draws from a Type I generalized logistic dis-
tribution. The function takes 3 required input variables, mu, sigma and c. These contain the
location, scale and shape parameters; see equation (4.28). The function does not check if the
dimensions of these variables match; this is instead handled by the function that calls it. An
optional input variable for total number of draws, NumDraws, is also accepted. The default value
for this integer is 1. The algorithm used by the function is discussed above in Section 4.3.

The function provides one output variable, z, a matrix with row dimension equal to the length
of mu and column dimension equal to NumDraws.

4.5.23. GumbelRndFcn

The function GumbelRndFcn computes random draws from a Gumbel distribution. The function
takes two required input variables, mu and sigma. These contain the location and scale param-
eters; see equation (4.31). The function does not check if the dimensions of these variables
match; this is instead handled by the function that calls it. An optional input variable for to-
tal number of draws, NumDraws, is also accepted. The default value for this integer is 1. The
algorithm used by the function is discussed above in Section 4.3.

The function provides one output variable, z, a matrix with row dimension equal to the length
of mu and column dimension equal to NumDraws.

4.5.24. ParetoRndFcn

The function ParetoRndFcn computes random draws from a Pareto distribution. The function
takes two required input variables, a and b. These contain the shape and location parameters;
see equation (4.34). The function does not check if the dimensions of these variables match;
this is instead handled by the function that calls it. An optional input variable for total number
of draws, NumDraws, is also accepted. The default value for this integer is 1. The algorithm used
by the function is discussed above in Section 4.3. Since the function is based on a zero value
for the origin parameter, it can be added to the draws as needed.

The function provides one output variable, z, a matrix with row dimension equal to the length
of a and column dimension equal to NumDraws.
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5. The Kalman Filter

The solution to a log-linearized DSGE model can be written as a VAR model, where some of the
variables may be unobserved. This suggests that any approach to estimation of its parameters is
closely linked to estimation of state-space models. In the case of DSGE models, the solution of
the model is represented by the state equation, while the measurement equation provides the
link from the state (or model) variables into the observable variables, the steady-state of the
DSGE model, and possible measurement errors.

The Kalman filter was originally developed by Kalman (1960) and Kalman and Bucy (1961)
to estimate unobserved variables from observables via a state-space structure. A classic example
for its use concern tracking a satellite’s orbit around the earth. The unknown state would then
be the position and speed of the satellite at a point in time with respect to a spherical coordi-
nate system with the origin at the center of the earth. These quantities cannot be measured
directly, while tracking stations around the earth may collect measurements of the distance to
the satellite and the angles of measurement. The Kalman filter not only provides an optimal
estimate (in a mean-squared error sense) of the position and speed of the satellite at the next
instant in time, but also an optimal estimate of its current position and speed.

The output from the Kalman filter can also be used to compute the sample log-likelihood
function of the data for a given set of parameter values, i.e., lnp(Y |θ), once we have made
distributional assumptions about the noise terms in the state-space model. Another by-product
of the filter is an optimal forecast of the observed variables in the model. The notation used
in this section follows the notation in Hamilton (1994, Chapter 13) closely, where details on
the derivation of the filter are also found; see also Anderson and Moore (1979), Durbin and
Koopman (2012) and Harvey (1989) for details and applications based on the Kalman filter.
For a Bayesian interpretation of the filter, see, e.g., Meinhold and Singpurwalla (1983).

Apart from presenting the standard Kalman filter and smoothing recursions and the calcu-
lation of the log-likelihood function, this Section covers a number of additional aspects. The
estimators of the unobserved variables can be decomposed into shares determined by the in-
dividual observables over the full conditioning sample as well as specific periods in time. It is
thereby possible to analyse which individual observation matter for the estimates of unobserved
variables, such as the output gap. Estimation of the conditional distribution of the entire sam-
ple of the unobserved variables is handled by the so called simulation smoother. Furthermore,
numerical aspects can be improved on by relying on square root filtering and smoothing. The
issue of missing observations is easily dealt with in state-space models and is briefly discussed.
Moreover, the issue of initialization is dealt with, where the case of exact diffuse initialization
gives rise to modifications of the filtering and smoothing recursions during an initial sample.
Finally, it is possible to express the multivariate filtering and smoothing problems as univariate
problems and thereby avoid certain matrix inversions and other possibly large matrix manipu-
lations. This suggests that the univariate approach may improve computational speed as well
as numerical accuracy, especially under diffuse initialization.

5.1. The State-Space Representation

Let yt denote an n-dimensional vector of variables that are observed at date t. The measurement
(or observation) equation for y is given by:

yt = A′xt +H′ξt +wt. (5.1)

The vector xt is k-dimensional and contains only deterministic variables. The vector ξt is r-
dimensional and is known as the state vector and contains possibly unobserved variables. The
term wt is white noise and is called the measurement error.

The state (or transition) equation determines the dynamic development of the state variables.
It is here given by:

ξt = Fξt−1 + vt, (5.2)
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where F is the state transition matrix. The term vt is white noise and it is assumed that vt and
wτ are uncorrelated for all t and τ , with

E[vtv
′
τ] =




Q for t = τ,

0 otherwise,

while

E[wtw
′
τ] =




R for t = τ,

0 otherwise.

The parameter matrices are given by A (k×n), H (r ×n), F (r × r), Q (r × r), and R (n×n).
These matrices are known once we provide a value for θ. To initialize the process described by
(5.1) and (5.2), it is assumed that ξ1 is uncorrelated with any realizations of vt or wt.

5.2. The Kalman Filter Recursion

Let Yt = {yt, yt−1, . . . , y1, xt, xt−1, . . . , x1} denote the set of observations up to and including
period t. The Kalman filter provides a method for computing optimal 1-step ahead forecasts
of yt conditional on its past values and on the vector xt as well as the associated forecast

error covariance matrix.40 These forecasts and their mean squared errors can then be used to
compute the value of the log-likelihood function for y. Given the state-space representation in
(5.1) and (5.2), it can directly be seen that the calculation of such forecasts requires forecasts
of the state vector ξt conditional on the observed variables.

Let ξt+1|t denote the linear projection of ξt+1 on Yt. The Kalman filter calculates these fore-
casts recursively, generating ξ1|0, ξ2|1, and so on. Associated with each of these forecasts is a
mean squared error matrix, represented by

Pt+1|t = E
[
(ξt+1 − ξt+1|t)(ξt+1 − ξt+1|t)

′].
Similarly, let yt|t−1 be the linear projection of yt on Yt−1 and xt. From the measurement
equation (5.1) and the assumption about wt we have that:

yt|t−1 = A′xt +H′ξt|t−1. (5.3)

The forecast error for the observed variables can therefore be expressed as

yt − yt|t−1 = H′ (ξt − ξt|t−1

)
+wt. (5.4)

It follows that the 1-step ahead forecast error covariance matrix for the observed variables is
given by

E
[
(yt − yt|t−1)(yt − yt|t−1)′

]
≡ Σy,t|t−1 = H′Pt|t−1H + R. (5.5)

To compute the forecasts and forecast error covariance matrices for the observed variables (yt)
we therefore need to know the sequence of forecasts and forecast error covariance matrices of
the state variables (ξt).

Projecting the state variables in period t+ 1 on Yt we find from equation (5.2) that

ξt+1|t = Fξt|t, (5.6)

where ξt|t is called the updated or filtered value of ξt. From standard results on linear projections
(see, e.g., Hamilton, 1994, Chapter 4.5), the updated value of ξt relative to its forecasted value
is given by:

ξt|t = ξt|t−1 + Pt|t−1HΣ−1
y,t|t−1

(
yt − yt|t−1

)
. (5.7)

Substituting (5.7) into (5.6), gives us:

ξt+1|t = Fξt|t−1 +Kt

(
yt − yt|t−1

)
, (5.8)

where
Kt = FPt|t−1HΣ−1

y,t|t−1
, (5.9)

40 The forecasts are optimal in a mean squared error sense among any functions of (xt,Yt−1).
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is known as the Kalman gain matrix.
The product between Pt|t−1 and H in (5.7) is equal to the covariance matrix for the state

forecast errors, ξt − ξt|t−1, and the observed variable forecast errors in (5.4). This means that
the difference between the update and the forecast of state variables (the time t revision to the
time t − 1 forecast) is proportional to the time t forecast error for the observed variables. The
r × n matrix which is premultiplied to the latter error is simply the covariance matrix between
the state and observed variables forecast errors times the inverse of the forecast error covariance
matrix of the observed variables.

From (5.7) it can also be seen that that the update error for the state variables, ξt − ξt|t,
is equal to the forecast error of the state variables minus the impact of the observed variable
forecast error on the state variable update, i.e., the second term of the right hand side of this
equation. Taking the correlation between the forecast errors for the state variables and the
observed variables into accound, the update covariance matrix for the state variables can be
shown to be equal to

Pt|t = Pt|t−1 − Pt|t−1HΣ−1
y,t|t−1

H′Pt|t−1. (5.10)

We may alternatively define the update innovation

rt|t = HΣ−1
y,t|t−1

(
yt − yt|t−1

)
, (5.11)

so that the Kalman update equation is

ξt|t = ξt|t−1 + Pt|t−1rt|t. (5.12)

It may be noted that rt|t has mean zero and covariance matrix HΣ−1
y,t|t−1

H′. This innovation will

be shown to be useful below when we are interested in computing the state equation innovations
conditional on Yt.

To complete the filter, it remains to calculate Pt+1|t. It is straightforward to relate this matrix
to Pt|t through

Pt+1|t = FPt|tF
′ + Q. (5.13)

There are several ways to compute Pt+1|t matrix using Pt|t−1 and one is based on the Kalman
gain matrix. This updating formula states that

Pt+1|t =
(
F −KtH

′)Pt|t−1

(
F −KtH

′)′ +KtRK
′
t + Q. (5.14)

The Kalman gain-based expression for Pt+1|t follows from noticing the that difference between
the state variables at t+ 1 and the forecast can be expressed as

ξt+1 − ξt+1|t =
(
F −KtH

′)(ξt − ξt|t−1

)
−Ktwt + vt+1.

This relationship is obtained by using equation (5.8) for ξt+1|t, the state equation for ξt+1, and
the measurement equation for yt. The three terms on the right hand side are uncorrelated
conditional on the information at t, thus yielding (5.14).

To summarize, the Kalman filter recursions for forecasting the state variables are given by
(5.8) and (5.14), while equations (5.7) (or (5.11) and (5.12)) and (5.10) are the recursions for
updating the state variables. Finally, equations (5.3) and (5.5) determines the 1-step ahead
forecast and associated error covariance matrix for the observed variables.

5.3. Initializing the Kalman Filter

To run the Kalman filter recursions we now need to have initial values for the state variable
forecast ξ1|0 and its covariance matrix P1|0. To start up the algorithm we may let:

ξ1|0 = E[ξ1] = µξ.

In a DSGE model, the state variables are measured as deviations from steady state. A candidate
value for µξ is therefore zero so that all state variables are initially in steady state. This candidate
value is, for instance, reasonable when ξt is covariance stationary, i.e., if all eigenvalues of F
are inside the unit circle. Provided that this is the case, the unconditional covariance matrix
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E[ξtξ
′
t] = Σξ exists. From the state equation (5.2) we find that:

Σξ = FΣξF
′ + Q. (5.15)

The solution to (5.15) is given by

vec(Σξ) =
[
Ir2 −

(
F ⊗ F

)]−1
vec(Q), (5.16)

where vec is the column stacking operator, and ⊗ the Kronecker product. One candidate for
P1|0 is therefore Σξ.

However, if r is large then the calculation of Σξ in (5.16) may be too cumbersome, especially
if this has to be performed frequently (e.g., during the stage of drawing from the posterior).
In such cases, it may be better to make use of the doubling algorithm. Equation (5.15) is a
Lyapunov equation, i.e., a special case of the Sylvester equation. Letting γ0 = Q and α0 = F we
can express the iterations

γ
k

= γ
k−1

+ α
k−1

γ
k−1

α′
k−1

, k = 1,2, . . . (5.17)

where
αk = αk−1αk−1.

The specification in (5.17) is equivalent to expressing:

γk =
2k−1∑

j=0

FjQF′j .

From this relation we can see that limk→∞ γk = Σξ. Moreover, each iteration doubles the number

of terms in the sum and we expect the algorithm to converge quickly since ||αk|| should be close
to zero also for relatively small k when all the eigenvalues of F lie inside the unit circle.

Alternatively, it may be better to let P1|0 = cIr for some constant c. The larger c is the less
informative the initialization is for the filter. YADA allows for both alternatives to using equation
(5.16) for initializing P1|0. In addition, the exact treatment of diffuse initialization when c → ∞
is discussed in Section 5.14.

5.4. The Likelihood Function

One important reason for running the Kalman filter for DSGE models is that as a by-product it
provides us with the value of the log-likelihood function when the state shocks and the mea-
surement errors have know distributions. The log-likelihood function for yT , yT−1, . . . , y1 can
be expressed as:

lnL
(
yT , yT−1, . . . , y1 |xT , . . . , x1 ; θ

)
=

T∑

t=1

lnp
(
yt|xt,Yt−1; θ

)
, (5.18)

by the usual factorization and assumption regarding xt. To compute the right hand side for a
given θ, we need to make some distributional assumptions regarding ξ1, vt, and wt.

In YADA it is assumed that ξ1, vt, and wt are multivariate Gaussian with Q and R being
positive semidefinite. This means that:

lnp
(
yt|xt,Yt−1; θ

)
= − n

2
ln(2π) − 1

2
ln
∣∣Σy,t|t−1

∣∣+

− 1

2

(
yt − yt|t−1

)′
Σ−1
y,t|t−1

(
yt − yt|t−1

)
.

(5.19)

The value of the sample log-likelihood can thus be calculated directly from the 1-step ahead
forecast errors of yt and the associated forecast error covariance matrix.

5.5. Smoothed Projections of the State Variables

Since many of the elements of the state vector are given structural interpretations in the DSGE
framework, it is important to use as much information as possible to project this vector. That
is, we are concerned with the smooth projections ξt|T . In equation (5.7) we already have such a
projection for t = T . It thus remains to determine the backward looking projections for t < T .
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Hamilton (1994, Chapter 13.6) shows that the smooth projections of the state vector are
given by:

ξt|T = ξt|t + Jt
(
ξt+1|T − ξt+1|t

)
, t = 1,2, . . . , T − 1, (5.20)

where the Kalman smoothing matrix Jt is given by

Jt = P
t|tF

′P−1
t+1|t.

The mean squared error matrix of the smooth projection ξt|T is now:

Pt|T = Pt|t + Jt
(
Pt+1|T − Pt+1|t

)
J ′t. (5.21)

To calculate ξt|T and Pt|T one therefore starts in period t = T − 1 and then iterates backwards
until t = 1. Derivations of these equations can be found in, e.g., Ansley and Kohn (1982).

The smoothing expression in (5.20) requires that Pt+1|t is a full rank matrix. This assumption
is violated if, for instance, R = 0 (no measurement errors) and rank(Q) < r with P1|0 = Σξ. In

this case we may use an eigenvalue decomposition such that Pt+1|t = SΛS′, where S is r × s,

r > s, Λ is a diagonal full rank s × s matrix, and S′S = Is. Replacing Jt with

J∗t = Pt|tF
′S(S′Pt+1|tS)−1S′,

the smoothing algorithm remains otherwise intact; see, e.g., Kohn and Ansley (1983).41

There is an alternative algorithm for computing the smoother which does not require an
explicit expression for the inverse of the state forecast covariance matrix Pt+1|t; see, e.g., De Jong
(1988, 1989), Kohn and Ansley (1989), or Koopman and Harvey (2003). The smoothed state
vector can be rewritten as

ξt|T = ξt|t−1 + Pt|t−1rt|T , t = 1,2, . . . , T. (5.22)

The vector rt|T is here given by

rt|T = HΣ−1
y,t|t−1

(
yt − yt|t−1

)
+
(
F −KtH

′)′rt+1|T , (5.23)

where rT+1|T = 0.42 The only matrix that has to be inverted is Σy,t|t−1, the forecast error
covariance matrix of the observed variables, i.e., the same matrix that needs to be invertible
for the Kalman filter to be valid.43 Furthermore, notice that Pt|t−1 times the first term of the

41 To show that P− = SΛ−1S′ is a generalized inverse of P = SΛS′ we need to establish that PP−P = P ; see, e.g.,

Magnus and Neudecker (1988, p. 38). This follows directly from S′S = Is, while Λ−1 = (S′PS)−1 means that the

generalized inverse may also be written as in the expression for J∗
t .

42 These expressions can be derived by first substituting for ξt|t in (5.20) using equation (5.7), replacing Jt with

its definition, and substituting for Pt|t from (5.10). Next, we take the definition of the Kalman gain matrix Kt into

account and rearrange terms. This gives us (5.22), with

rt|T = HΣ−1

y,t|t−1

(
yt − yt|t−1

)
+
(
F −KtH

′)′P−1

t+1|t
(
ξt+1|T − ξt+1|t

)
, t = 1,2, . . . , T − 1. (5.23′)

The difference between the smoothed value and the forecast value of ξt+1 in period t = T −1 is obtained from (5.7),

yielding

ξT |T − ξT |T−1 = PT |T−1HΣ−1

y,T |T−1

(
yT − yT |T−1

)
.

Subsituting this into (5.23′) for t = T − 1 gives us

rT−1|T = HΣ−1

y,T−1|T−2

(
yT−1 − yT−1|T−2

)
+
(
F −KT−1H

′)′HΣ−1

y,T |T−1

(
yT − yT |T−1

)

= HΣ−1

y,T−1|T−2

(
yT−1 − yT−1|T−2

)
+
(
F −KT−1H

′)′rT |T ,

where rT |T = HΣ−1

y,T |T−1
(yT −yT |T−1). This implies that (5.23) holds for t = T −1 and, in addition, for t = T provided

that rT+1|T = 0. Notice also that if we substitute the definition of rt|T into equation (5.22) for t = T it gives us the

identical expression to what we have in (5.7).

Returning to (5.22) we now have that (ξT−1|T − ξT−1|T−2) = PT−1|T−2rT−1|T so that P−1

T−1|T−2
(ξT−1|T − ξT−1|T−2) = rT−1|T .

From (5.23′) we then find that (5.23) holds T − 2 as well. Continuing backwards recursively it can be established

that (5.23) holds for t = 1,2, . . . , T − 1.

43 When the Kalman filter and smoother is used to estimate unobserved variables of the model, then the inverse of

Σy,t|t−1 may be replaced with a generalized inverse; see, e.g., Harvey (1989, p. 106). However, a singular covariance

matrix is not compatible with the existence of a density for yt|Yt−1, θ. Hence, the log-likelihood function cannot be

calculated for models where Σy,t|t−1 does not have full rank.
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expression for rt|T gives the update part for ξt relative to the forecast part, while the same matrix
times the second term generates the forward looking part. Hence, the alternative expression
for the smoother has an intuitive interpretation, where the smoother is directly linked to the
information in the data at t − 1, t, and therafter from t + 1 until T .

The mean squared error matrix for the smoothed projections can likewise be expressed as

Pt|T = Pt|t−1 − Pt|t−1Nt|TPt|t−1, t = 1,2, . . . , T, (5.24)

where
Nt|T = HΣ−1

y,t|t−1
H′ +

(
F −KtH

′)′Nt+1|T
(
F −KtH

′), (5.25)

and NT+1|T = 0. It can again be seen that the only matrix that has to be inverted is the
forecast error covariance matrix of the observed variables. Notice also that the first term in the
expression for Nt|T is related to the update part of the covariance matrix for the state variables,
while the second term is linked to the forward looking part. Moreover, these terms clarify why
Pt|T ≤ Pt|t in a matrix sense.

5.6. Smoothed and Updated Projections of State Shocks and Measurement Errors

Smoothing allows us to estimate the shocks to the state equations using as much information
as possible. In particular, by projecting both sides of equation (5.2) on the data until period T
we find that

vt|T = ξt|T − Fξt−1|T , t = 2, . . . , T. (5.26)

To estimate v1 using the full sample, it would seem from this equation that we require an
estimate of ξ0|T . However, there is a simple way around this issue.

For ξt−1|T we premultiply both sides of (5.20) with F, subsitute (5.6) for Fξt−1|t−1, and re-
place (5.22) for (ξt|T − ξt|t−1). Next, take the definition of Jt−1 into account and use (5.13) for

FPt−1|t−1F
′. These manipulations give us

Fξt−1|T = ξt|t−1 +
(
Pt|t−1 −Q

)
rt|T .

At the same time equation (5.22) gives us an expression for ξt|T . Using (5.26) it follows that

vt|T = Qrt|T , t = 2, . . . , T. (5.27)

The variable rt|T in (5.22) is therefore seen to have the natural interpretation that when pre-
multiplied by the covariance matrix of the state shock (Q), we obtain the smoothed projection
of the state shock. In other words, rt|T in (5.22) is an innovation with mean zero and covariance
matrix Nt|T .

Equation (5.27) provides us with a simple means for estimating vt|T for t = 1 since rt|T is
defined for that period. In other words, equation (5.27) can be applied to compute the smooth
projection of the state shocks not only for periods t = 2, . . . , T but also for period t = 1, i.e.

v1|T = Qr1|T .

To calculate update projections of the state shocks, denoted by vt|t, we need the smooth
projection ξt−1|t. Since equation (5.20) holds for all T > t we can replace T with t + 1. Using
the definition of Jt and equation (5.7) for (ξt+1|t+1 − ξt+1|t) we obtain

ξt|t+1 = ξt|t + Pt|tF
′HΣ−1

y,t+1|t
(
yt+1 − yt+1|t

)
, t = 1, . . . , T − 1. (5.28)

Premultiplying ξt−1|t with F, replacing FPt−1|t−1F
′ with Pt|t−1−Q (see equation 5.13), and taking

equation (5.6) into account we find that

Fξt−1|t = ξt|t−1 +
(
Pt|t−1 − Q

)
HΣ−1

y,t|t−1

(
yt − yt|t−1

)
.

It now follows from (5.7) and (5.11) that

vt|t = QHΣ−1
y,t|t−1

(
yt − yt|t−1

)
= Qrt|t, t = 2, . . . , T. (5.29)

Hence, the state shock projected on observations up to period t is a linear combination of the
forecast error for the observed variables. Notice also that vt|t is equal to Q times the first term
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on the right hand side of (5.23) and therefore has a natural connection with the smoothed
projection of the state shock.

Moreover, a simple estimator of v1|1 is suggested by equation (5.29). Specifically,

v1|1 = QH
[
H′P1|0H + R

]−1 (
y1 −A′x1 −H′ξ1|0

)
= Qr1|1.

Implicitly, this assumes that Fξ0|1 is equal to

Fξ0|1 = ξ1|0 +
(
P1|0 − Q

)
H
[
H′P1|0H + R

]−1 (
y1 −A′x1 −H′ξ1|0

)
.

It is also interesting to note that the covariance matrix of the updated projection of the state
shock is given by

E
[
v
t|tv

′
t|t
]

= QHΣ−1
y,t|t−1

H′Q.

This matrix is generally not equal to Q, the covariance matrix of vt, unless ξt is observable at t.44

In fact, it can be shown that Q ≥ QHΣ−1
y,t|t−1

H′Q in a matrix sense since the difference between

these matrices is equal to the covariance matrix of (vt − vt|t). That is,

E
[
(vt − vt|t)(vt − vt|t)

′|Yt

]
= Q − QHΣ−1

y,t|t−1
H′Q, t = 1, . . . , T. (5.30)

Moreover, the covariance matrix of the smoothed projection of the state shock is

E
[
v
t|Tv

′
t|T
]

= QNt|TQ.

From (5.25) if also follows that QNt|TQ ≥ QHΣ−1
y,t|t−1

H′Q for t = 1, . . . , T . Moreover, we find

that
E
[
(vt − vt|T)(vt − vt|T)′|YT

]
= Q − QNt|TQ, t = 1, . . . , T. (5.31)

Additional expressions for covariance matrices of the state shocks are given in Koopman (1993);
see also Durbin and Koopman (2012, Chapter 4.7).

The measurement errors can likewise be estimated using the sample information once the
update or smoothed state variables have been computed. In both cases, we turn to the mea-
surement equation (5.1) and replace the state variables with the update or smooth estimator.
For the update estimator of the state variables we find that

wt|t = yt −A′xt −H′ξt|t = RΣ−1
y,t|t−1

(
yt − yt|t−1

)
, t = 1, . . . , T, (5.32)

where we have substituted for update estimate of the state variables using equation (5.7) and
rearranging terms. It follows from (5.32) that the update estimate of the measurement error is
zero when R = 0. Moreover, we find from this equation that the covariance matrix is given by

E
[
w
t|tw

′
t|t
]

= RΣ−1
y,t|t−1

R.

It follows that R ≥ RΣ−1
y,t|t−1

R in a matrix sense since the difference is a positive semidefinite

matrix. In fact,

E
[
(wt −wt|t)(wt −wt|t)

′|Yt

]
= R− RΣ−1

y,t|t−1
R, t = 1, . . . , T. (5.33)

It may also be noted that the population cross-covariance matrix for the update estimates of
the state shocks and the measurement errors is given by

E
[
v
t|tw

′
t|t
]

= QHΣ−1
y,t|t−1

R.

Unlike the population cross-covariance matrix for the state shocks and measurement errors, this
matrix is generally not zero.

Similarly, the smoothed estimate of the measurement error can be computed from the ma-
surement equation. If we subsitute for the smooth estimate of the state variables and rerrange

44 Observability of ξt at t means that Pt|t = 0. From equation (5.13) we therefore know that Pt|t−1 = Q. The claim

follows by noting that Pt|t always satisfies equation (5.10) and that Σy,t|t−1 = H ′QH + R.
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terms

wt|T = yt −A′xt −H′ξt|T

= RΣ−1
y,t|t−1

(
yt − yt|t−1 −H′Pt|t−1F

′rt+1|T
)
, t = 1, . . . , T.

(5.34)

If the covariance matrix R = 0, then wt|T = 0 by construction. Notice also that the covariance
matrix is equal to:

E
[
w
t|Tw

′
t|T
]

= RΣ−1
y,t|t−1

(
Σy,t|t−1 +H′Pt|t−1F

′Nt+1|TFPt|t−1H
)

Σ−1
y,t|t−1

R,

= R
(

Σ−1
y,t|t−1

+K′
tNt+1|TKt

)
R.

From this it follows that E[w
t|Tw

′
t|T] ≥ E[w

t|tw
′
t|t] in a matrix sense. Moreover,

E
[
(wt −wt|T)(wt −wt|T)′|YT

]
= R− R

(
Σ−1
y,t|t−1

+K′
tNt+1|TKt

)
R, t = 1, . . . , T. (5.35)

The measurement equation can also be extended to the case when the measurement matrix
H is time-varying. With H replaced by Ht in (5.1), the filtering, updating, and smoothing
equations are otherwise unaffected as long as Ht is treated as known. YADA is well equipped to
deal with a time-varying measurement matrix; see Sections 5.17 and 17.4 for details.

5.7. Multistep Forecasting

The calculation of h-step ahead forecasts of y is now straightforward. From the state equation
(5.2) we know that for any h ≥ 1

ξt+h|t = Fξt+h−1|t. (5.36)

The h-step ahead forecast of y is therefore:

yt+h|t = A′xt+h +H′ξt+h|t. (5.37)

The mean squared error matrix for the ξt+h|t forecast is simply:

Pt+h|t = FhPt|t(F
′)h +

h−1∑

i=0

FiQ(F′)i

= FPt+h−1|tF
′ + Q.

(5.38)

Finally, the mean squared error matrix for the yt+h|t forecast is:

E
[
(yt+h − yt+h|t)(yt+h − yt+h|t)

′] = H′Pt+h|tH + R. (5.39)

The h-step ahead forecasts of y and the mean squared error matrix can thus be built iteratively
from the forecasts of the state variables and their mean squared error matrix.

5.8. Covariance Properties of the Observed and the State Variables

It is sometimes of interest to compare the covariances of the observed variables based on the
model to the actual data or some other model. It is straightforward to determine these moments
provided that the state vector is stationary, i.e., that the eigenvalues of F are inside the unit
circle. The unconditional covariance matrix for the state vector is then given by Σξ, which
satisfies equation (5.15).

From the state equation (5.2) we can rewrite the first order VAR as follows for any non-
negative integer h:

ξt = Fhξt−h +
h−1∑

i=0

Fivt−i. (5.40)

From this it immediately follows that the autocovariance function of the state variables, given
the parameter values, based on the state-space model is:

E
[
ξtξ

′
t−h
]

= FhΣξ. (5.41)
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The autocovariance function of the observed variables can now be calculated from the mea-
surement equation (5.1). With E[yt] = A′xt, it follows that for any non-negative integer h

E
[(
yt −A′xt

)(
yt−h −A′xt−h

)′]
=




H′ΣξH + R, if h = 0,

H′FhΣξH, otherwise.

(5.42)

From equations (5.41) and (5.42) it can be seen that the autocovariances tend to zero as h
increases. For given parameter values we may, e.g., compare these autocovariances to those
obtained directly from the data.

5.9. Computing Weights on Observations for the State Variables

The Kalman filter and associated algorithms calculates optimal estimates of the unobserved
state variables using the parameters, the initial conditions for the state variables, and the data
for the observed variables y and x. Since the state-space model is linear, this means that we
expect that the forecast, update and smooth projections of the state variables can be expressed
as weighted sums of the inputs.

Koopman and Harvey (2003) show how such weights can be determined analytically for a

linear state-space model using inputs from the Kalman filter.45 Although the model in (5.1) and
(5.2) is a special case of their setup, the results that they derive are based on the assumption that
the initial value of the state vector, ξ1|0, is zero. Since YADA allows for a non-zero initial value
it makes sense to reconsider their approach to this case. In addition, some useful expressions
for how the weights can be computed more efficiently in practise will be considered below.

5.9.1. Weights for the Forecasted State Variable Projections

Letting zt = yt −A′xt and Lt = F −KtH
′ we can rewrite equation (5.8) such that

ξt+1|t = Ltξt|t−1 +Ktzt, t = 1, . . . , T − 1. (5.43)

Substituting for ξt|t−1, ξt−1|t−2, . . . , ξ2|1 in (5.43) and rearranging terms it can be shown that

ξt+1|t =
t∑

τ=1

ατ
(
ξt+1|t

)
zτ + β0

(
ξt+1|t

)
ξ1|0, t = 1, . . . , T − 1, (5.44)

where the r × n matrix

ατ
(
ξt+1|t

)
= βτ

(
ξt+1|t

)
Kτ , τ = 1, . . . , t, (5.45)

while the r × r matrix

βτ
(
ξt+1|t

)
=





∏t−1−τ
i=0 Lt−i, if τ = 0,1, . . . , t − 1,

Ir , if τ = t.

(5.46)

Notice that βτ(ξt|t−1) = Lt−1 · · · Lτ+1 for τ = 0,1, . . . , t − 1. We can therefore also express this
matrix as

βτ
(
ξt+1|t

)
= Ltβτ

(
ξt|t−1

)
, τ = 0,1, . . . t − 1.

If the intension is to compute the state variable forecasts for all (t = 1,2, . . . , T − 1), this latter
relationship between β-matrices is very useful in practise. It means that for the forecast of ξt+1

we premultiply all the β-matrices for the forecast of ξt by the same matrix Lt and then add
βt(ξt+1|t) = Ir to the set of β-matrices.

45 Their version of the state-space model allows the matrices H, R, F, and Q to be time-varying and known for all

t = 1, . . . , T when t ≥ 1. See also Gómez (2006) for conditions when the weighting matrices of Koopman and

Harvey (2003) converge to those obtained from steady-state recursions, i.e., to the asymptotes.
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Moreover, the ατ -matrices for the forecast of ξt+1 are related to those for the forecast of ξt
through

ατ
(
ξt+1|t

)
=




Ltατ

(
ξt|t−1

)
, if τ = 1, . . . , t − 1,

Kt, if τ = t.

In fact, the relationship between ατ(ξt+1|t) and ατ(ξt|t−1) can be inferred directly from (5.43).
Furthermore, from (5.44) we see that the only β-matrix we need to keep track of is β0(ξt+1|t)
since it is the weight on the initial condition ξ1|0.

5.9.2. Weights for the Updated State Variable Projections

With Mt = HΣ−1
y,t|t−1

and Gt = MtH
′, the updated projection of ξt in (5.7) can be rewritten as

ξt|t =
[
Ir − Pt|t−1Gt

]
ξt|t−1 + Pt|t−1Mtzt. (5.47)

Using equation (5.44) for the forecast of ξt it follows that we can express the updated projection
of ξt as

ξt|t =
t∑

τ=1

ατ
(
ξt|t
)
zτ + β0

(
ξt|t
)
ξ1|0, (5.48)

where

ατ
(
ξt|t
)

=





[
Ir − Pt|t−1Gt

]
ατ
(
ξt|t−1

)
, if τ = 1, . . . , t − 1,

Pt|t−1Mt, if τ = t,

(5.49)

while β0(ξt|t) = [Ir − Pt|t−1Gt]β0(ξt|t−1).

5.9.3. Weights for the Smoothed State Variable Projections

To compute the weights for the smoothed estimator of the state variables we may proceed in
two step. First, we determine the weights for the rt|T vector via (5.23) through a backward
recursion. Once we have these weights, it is straightforward to determine the weights for ξt|T
via (5.22).

The equation for rt|T in (5.23) can be rewritten as

rt|T = Mtzt − Gtξt|t−1 + L′trt+1|T . (5.50)

The general expression for rt|T as a weighted series of the observed data and the initial condi-
tions is given by

rt|T =
T∑

τ=1

ατ
(
rt|T
)
zτ + β0

(
rt|T
)
ξ1|0, t = 1, . . . , T.

For period t = T , where rT+1|T = 0, it then follows from (5.50) that

ατ
(
rT |T
)

=




−GTατ

(
ξT |T−1

)
, if τ = 1, . . . , T − 1,

MT , if τ = T,

(5.51)

and β0(rT |T) = −GTβ0(ξT |T−1). For periods t = 1, . . . , T − 1 it likewise follows from (5.50) that

ατ
(
rt|T
)

=





L′tατ
(
rt+1|T

)
− Gtατ

(
ξt|t−1

)
, if τ = 1, . . . , t − 1,

Mt + L′tατ
(
rt+1|T

)
if τ = t,

L′tατ
(
rt+1|T

)
if τ = t+ 1, . . . , T.

(5.52)

The weights on the initial condition is given by β0(rt|T) = L′tβ0(rt+1|T) − Gtβ0(ξt|t−1).
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The smoothed state variable projections are expressed as a weighted sum of the observed
variables and the initial conditions as follows:

ξt|T =
T∑

τ=1

ατ
(
ξt|T
)
zτ + β0

(
ξt|T
)
ξ1|0, t = 1, . . . , T, (5.53)

where the weights on the observations zτ are obtained through (5.22) and are given by:

ατ
(
ξt|T
)

=




ατ
(
ξt|t−1

)
+ Pt|t−1ατ

(
rt|T
)
, if τ = 1, . . . , t − 1,

Pt|t−1ατ
(
rt|T
)
, if τ = t, . . . , T.

(5.54)

The weights on the initial conditions is β0(ξt|T) = β0(ξt|t−1) + Pt|t−1β0(rt|T).
These expressions allow us to examine a number of interesting questions. For example,

column j of the ατ(ξt|T) weight matrix tells us how much the smooth estimate of the state
variables for period t will change if the j:th observed variable changes by 1 unit in period τ .
Letting this column be denoted by ατ,j(ξt|T) while zj,τ, denotes the j:th element of zτ , we can
decompose the smooth estimates such that

ξt|T =
n∑

j=1

T∑

τ=1

ατ,j
(
ξt|T
)
zj,τ + β0

(
ξt|T
)
ξ1|0.

Hence, we obtain an expression for the share of the smoothed projection of the state variables at
t which is determined by each observed variable and of the initial condition. Similar expression
can be computed for the state forecasts and the updates.

Since zt = yt−A′xt it follows that the weights for the state forecast, update and smoother are
equal to the weights on yt. If we wish to derive the specific weights on xt we simply postmultiply
the ατ -matrices with −A′. For example, in case xt = 1 we have that

ξt|T =
n∑

j=1

T∑

τ=1

ατ,j
(
ξt|T
)
yj,τ +

T∑

τ=1

γτ
(
ξt|T
)

+ β0

(
ξt|T
)
ξ1|0,

where the r-dimensional vector γτ(ξt|T) = −ατ(ξt|T)A′ for τ = 1, . . . , T .
It is also straightforward to express the smooth projection of the measurement error in (5.34)

as a weighted sum of the observed variables and the initial condition. Specifically, from (5.53)
we obtain

wt|T =
T∑

τ=1

ατ
(
wt|T

)
zτ + β0

(
wt|T

)
ξ1|0, t = 1, . . . , T, (5.55)

where

ατ
(
wt|T

)
=




−H′ατ

(
ξt|T
)
, if τ = 1, . . . , t − 1, t+ 1, . . . , T,

In −H′ατ
(
ξt|T
)
, if τ = t.

(5.56)

Moreover, the n × r matrix with weights on the initial condition is β0(wt|T) = −H′β0(ξt|T).
Observation weights for the state shocks can be determined from the observation weights for
the economic shocks. This topic is covered in Section 11.1.

5.10. Simulation Smoothing

The smooth estimates of the state variables, shocks and measurement errors that we discussed
in Sections 5.5 and 5.6 above give the expected value from the distributions of these unobserved
variables conditional on the data (and the parameters of the state-space model). Suppose in-
stead that we would like to draw samples of these variables from their conditional distributions.
Such draws can be obtained through what is generally known as simulation smoothing; see, e.g.,
Durbin and Koopman (2012, Chapter 4.9).

Frühwirth-Schnatter (1994) and Carter and Kohn (1994) independently developed tech-
niques for simulation smoothing of the state variables based on

p
(
ξ1, . . . , ξT |YT

)
= p

(
ξT |YT

)
· p
(
ξT−1|ξT ,YT

)
· · · p

(
ξ1|ξ2, . . . , ξT ,YT

)
. (5.57)
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The methods suggested in these papers are based on drawing recursively from the densities on
the right hand side of (5.57), starting with p(ξT |Y), then from p(ξT−1|ξT ,YT), and so on. Their
techniques were improved on in De Jong and Shephard (1995) who concentrated on sampling
the shocks (and measurement errors) and thereafter the state variables. The algorithm that I
shall discuss relies on the further significant enhancements suggested by Durbin and Koopman
(2002), which have made simulation smoothing both simpler and faster, and which is also
discussed by Durbin and Koopman (2012).

Let ω = [w′
1 v

′
1 · · · w′

T v
′
T]′, a vector of dimension (n + r)T with the measurement errors

and state shocks. We know that the conditional distribution of ω is normal, where the smooth
estimates in Section 5.6 gives the conditional mean, E[ω|YT ], and that the covariance matrix
is independent of YT , i.e., Cov[ω|YT] = C. We also know that the marginal distribution of ω is
N(0,Ω), where Ω = (IT ⊗ diag[R,Q]), while ξ1 ∼ N(µξ,Σξ) and independent of ω.

Drawing vectors ω̃ from p(ω|YT) can be achieved by drawing vectors fromN(0, C) and adding
the draws to E[ω|YT]. Durbin and Koopman suggest that this can be achieved through the
following three steps.

(1) Draw ω(i) from N(0,Ω) and ξ
(i)
1 from N(µξ,Σξ). Substitute these values into the state-

space model in (5.1)–(5.2) to simulate a sequence for y
(i)
t , t = 1, . . . , T , denoted by

Y(i)
T .

(2) Compute E[ω|Y(i)
T ] via equations (5.27) and (5.34).

(3) Take ω̃(i) = E[ω|YT] + ω(i) − E[ω|Y(i)
T ] as a draw from p(ω|YT ).

If the covariances matrices R and Q have reduced rank, we can lower the dimension of ω
such that only the unique number of sources of error are considered. Moreover, if we are only
interested in the simulation smoother for, say, the state shocks, then we need only compute the

smooth estimates vt|T and v
(i)
t|T = E[vt|Y(i)

T ], while ṽ
(i)
t = vt|T + v

(i)
t − v

(i)
t|T , t = 1, . . . , T, is a draw

from p(v1, . . . , vT |YT). Notice that the first step of the algorithm always has to be performed.

To see why the third step of the algorithm gives a draw from p(ω|YT ), note that ω(i) −
E[ω|Y(i)

T ] is independent of YT . This means that, conditional on YT , the vector ω̃(i) is drawn

from a normal distribution with mean E[ω|YT ] and covariance matrix E[(ω(i)−E[ω|Y(i)
T ])(ω(i)−

E[ω|Y(i)
T ])′] = C. Furthermore, a draw of ξt, t=1, . . . , T, from p(ξ1, . . . , ξT |YT) is directly

obtained as a by-product from the above algorithm by letting ξ̃
(i)
T = ξt|T + ξ

(i)
t − ξ

(i)
t|T .

Durbin and Koopman (2002) also suggest that antithetic variables can be computed via these
results. Recall that an antithetic variable in this context is a function of the random draw
which is equiprobable with the draw, and which when used together with the draw increases
the efficiency of the estimation; see, e.g., Mikhail (1972) and Geweke (1988). It follows that

ω̃(−i) = E[ω|YT] − ω(i) + E[ω|Y(i)
T ] is one such antithetic variable for ω̃(i). If a simulation

smoother of ω is run for i = 1, . . . , N, then the simulation average of ω̃(i) is not exactly equal

to E[ω|YT ], while the simulation average of ω̃(i) plus ω̃(−i) is, i.e., the simulation sample is
balanced for location. Additional antithetic variables for dealing with second moments of the
simulation can be constructured as suggested by Durbin and Koopman (1997); see also Durbin
and Koopman (2012, Chapter 11.4.3). The calculation of such variables for balancing the scale
of the simulation and how further efficiency gains can be made from properly taking the rank
of R and Q, respectively, into account are discussed in Section 11.1.

5.11. Chandrasekhar Recursions

An equivalent formulation of the state covariance updates in equation (5.14) is given by the
matrix Riccati difference equation

P
t+1|t = F

[
P
t|t−1

− P
t|t−1

HΣ−1
y,t|t−1

H′P
t|t−1

]
F′ + Q. (5.58)

When the number of state variables (r) is large relative to the number of observed variables
(n), it is possible to use the Chandrasehkar recursions of the state covariance matrix, originally
developed by Morf, Sidhu, and Kailath (1974) and recently suggested by Herbst (2015), to

– 87 –



improve the computational time; see also Anderson and Moore (1979, Chapter 6.7). For these
recursions to be valid, the system matrices need to be constant or, as in Aknouche and Hamdi
(2007), at least periodic, while the state variables are stationary.

Defining ∆Pt+1|t = Pt+1|t−Pt|t−1 and utilizing, e.g., Lemma 7.1 in Anderson and Moore (1979)
(or equivalently the Lemma in Herbst, 2015) we find that

∆P
t+1|t =

(
F −KtH

′)(∆P
t|t−1

− ∆P
t|t−1

HΣ−1
y,t−1|t−2

H′∆P
t|t−1

)(
F −KtH

′)′ (5.59)

With ∆Pt+1|t = WtMtW
′
t the following recursive expressions hold

Σy,t|t−1 = Σy,t−1|t−2 +H′Wt−1Mt−1W
′
t−1H, (5.60)

Kt =
(
Kt−1Σy,t−1|t−2 + FWt−1Mt−1W

′
t−1H

)
Σ−1
y,t|t−1

, (5.61)

Mt = Mt−1 +Mt−1W
′
t−1HΣ−1

y,t−1|t−2
H′Wt−1Mt−1, (5.62)

Wt =
(
F −KtH

′)Wt−1. (5.63)

Notice that the computation of Pt+1|t involves multiplication of r × r matrices in (5.14) and
(5.58). Provided that n is sufficiently smaller than r, as is typically the case with DSGE models,
the computational gains from the Chandrasekhar recursions in (5.60)–(5.63) can be substantial.
This is particularly the case when we only wish to evaluate the log-likelihood function in (5.19)
since the state covariance matrix is not explicitly needed in this expression. Being able to
recursive compute Σy,t|t−1 without involving multiplications of r × r matrices can therefore be
highly beneficial.

To initialize these recursions we need values of W1 and M1, Herbst (2015) notes that for
t = 1 the matrix Riccati equation in (5.58) can be expresses as

P
2|1 = FP

1|0F
′ + Q −K1Σ

y,1|0K
′
1

Provided that we have initialized the Kalman filter with P1|0 = Σξ in equation (5.15), it follows
that

P1|0 = FP1|0F
′ + Q,

so that
∆P

2|1 = −K1Σ
y,1|0K

′
1 = W1M1W

′
1.

This suggests that
W1 = K1, M1 = −Σy,1|0. (5.64)

Alternatively, we can replace recursions of the Kalman gain matrix with recursions of K̃t =
FPt|t−1H. This means that we replace equation (5.61) with

K̃t = K̃t−1 + FWt−1Mt−1W
′
t−1H.

This equation involves fewer multiplications than the recursive equation for the Kalman gain
matrix and may therefore be preferred. Furthermore, equation (5.63) can be rewritten as

Wt =
(
F − K̃tΣ

−1
y,t|t−1

H′)Wt−1.

The intializations of W1 and M1 are affected by these changes to the Chandrasekhar recursions
and are now given by

W1 = K̃1, M1 = −Σ−1
y,1|0.

This also emphasizes that the matrices Wt and Mt are not uniquely determined.
As pointed out by Herbst (2015), the Chandrasekhar recursions are sensitive to the numerical

accuracy of the solution to the Lyapunov equation in (5.15). When the doubling algorithm in
Section 5.3 is used to compute P1|0 it is therefore recommended that the number of recursions
k is large enough for the error matrix

Γǫ,k+1 = γk+1 − γk =
2k+1−1∑

j=2k

FQF′j ,
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to be sufficiently close to zero. The convergence criterion for the doubling algorithm in YADA
concerns the norm of Γǫ,k+1, i.e., the largest singular value of this matrix. This makes it straight-
forward to have control over the numerical accuracy of the solution to the Lyapunov equation
when this fast, numerical approach is used.

It may also be noted that if Σξ = γk, then the error of the Lyapunov equation (5.15) is given
by

FγkF
′ + Q − γk = F2kQF′2k .

This is equal to the term in Γǫ,k+1 with the smallest exponent and since each increment to
the error matrix is positive semidefinite the norm of the solution error for γk is smaller than
(or equal to) the norm of the error matrix. Furthermore, using γk+1 as the solution for the
Lyapunov equation yields a solution error which is never bigger than that of γk.

5.12. Square Root Filtering

It is well known that the standard Kalman filter can sometimes fail to provide an error co-
variance matrix which is positive semidefinite. For instance, this can happen when some of
the observed variables have a very small variance or when pairs of variables are highly corre-
lated. The remedy to such purely numerical problems is to use a square root filter; see Morf
and Kailath (1975), Anderson and Moore (1979, Chapter 6.5), or Durbin and Koopman (2012,
Chapter 6.3).

To setup a square root filter we first need to define the square roots of some of the relevant

matrices. Specifically, let P
1/2

t|t−1
be the r × r square root of Pt|t−1, R1/2 the n × n square root of

R, while B0 is an r × q square root of Q, with r ≥ q.46 That is,

Pt|t−1 = P1/2

t|t−1
P1/2′
t|t−1

, R = R1/2R1/2′, Q = B0B
′
0. (5.65)

Let us now define the (n + r) × (r + n+ q) matrix

Ut =


H

′P1/2

t|t−1
R1/2 0

FP
1/2

t|t−1
0 B0


 . (5.66)

Notice that

UtU
′
t =

[
Σy,t|t−1 H′Pt|t−1F

′

FPt|t−1H FPt|t−1F
′ + Q

]
.

The matrix Ut can be transformed to a lower triangular matrix using the orthogonal matrix
G, such that GG′ = In+r+q. Postmultiplying Ut by G we obtain

UtG = U∗
t , (5.67)

where

U∗
t =


U

∗
1,t 0 0

U∗
2,t U∗

3,t 0


 . (5.68)

The three matrices inside U∗
t are given by

U∗
1,t = Σ1/2

y,t|t−1
, U∗

2,t = FPt|t−1HΣ−1/2′
y,t|t−1

, U∗
3,t = P

1/2

t+1|t.

This means that the Kalman filter step in (5.8) can be expressed as

ξt+1|t = Fξt|t−1 + U∗
2,t

(
U∗

1,t

)−1 (
yt − yt|t−1

)
. (5.69)

Moreover, the state covariance matrix in (5.14) can instead be computed from

Pt+1|t = U∗
3,tU

∗′
3,t. (5.70)

46 The matrix B0 is defined in Section 3 and satisfies vt = B0ηt, where ηt ∼ N(0, Iq), where q is the number of iid

economic shocks. Hence, Q = B0B
′
0 and B0 may therefore be regarded as a proper square root matrix of Q.
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The right hand side of (5.70) is positive semidefinite by construction and the same is true for

Σy,t|t−1 = U∗
1,tU

∗′
1,t.

The crucial step in the square root filter is the computation of the orthogonal matrix G. One
approach to calculating this matrix along with U∗

t is the so called Q-R factorization. For an
n ×m matrix A this factorization is given by A = QR, where the n × n matrix Q is orthogonal
(QQ′ = In), while the n×m matrix R is upper triangular; see, e.g., Golub and van Loan (1983,
p. 147) or the qr function in Matlab. To obtain U∗

t we therefore compute the Q-R factorization
of U′

t and let U∗
t be the tranpose of the upper triangular matrix R (which should not be confused

with the covariance matrix of the measurement errors), while G is given by the Q matrix.
It is also possible to calculate square root versions of the update and smooth estimates of the

states and of the state covariance matrices. Concerning the update estimates we have that ξt|t
is determined as in equation (5.12), where the square root filter means that Pt|t−1 is based on
the lag of equation (5.70), while

rt|t = H
(
U∗

1,tU
∗′
1,t

)−1 (
yt − yt|t−1

)
. (5.71)

Furthermore, the update covariance matrix is determined by equation (5.10) where Pt|t−1 and
Σy,t|t−1 are computed from the square root expressions.

The smothed state variables can similarly be estimated using the square root filter by utilizing
equation (5.22), where Pt|t−1 is again determined from the output of the square root filter, while
the expression for the smooth innovations in equation (5.23) can now be expressed as

rt|T = rt|t +

(
F −U∗

2,t

(
U∗

1,t

)−1

H′
)′
rt+1|T , (5.72)

with rT+1|T = 0 and where rt|t is given by (5.71).
The state covariance matrix for the smooth estimates is computed as in equation (5.24), but

where a square root formula for Nt|T is now required. Following Durbin and Koopman (2012)
we introduce the r × r lower triangular matrix N∗

t+1|T which satisfies

Nt+1|T = N∗
t+1|TN

∗′
t+1|T .

Next, define the r × (n + r) matrix

Ñt|T =

[
H
(
U∗′

1,t

)−1
(
F − U∗

2,t

(
U∗

1,t

)−1

H′
)′
N∗
t+1|T

]
, (5.73)

from which it follows that Nt|T = Ñt|TÑ′
t|T ; see equation (5.25). The last step is now to compute

N∗
t|T from Ñt|T through the (n + r) × (n+ r) matrix G, i.e.,

Ñt|TG =
[
N∗
t|T 0

]
, (5.74)

where GG′ = In+r . A Q-R factorization of Ñ′
t|T may therefore be considered, where N∗

t|T is

obtained as the r first columns of the transpose of the R matrix from the factorization. The
square root based algorithm for Nt|T is initialized by letting N∗

T+1|T = 0.

5.13. Missing Observations

Dealing with missing observations is relatively straightforward in state-space models. We can
simply think of this as adding a layer of measurement on top of the original measurement equa-
tion (5.1); see, e.g., Durbin and Koopman (2012, Chapter 4.10), Harvey (1989, Chapter 3.4.7),
Harvey and Pierse (1984), or Kohn and Ansley (1983).

Specifically, suppose that y
(o)
t is nt-dimension and related to yt through the equation

y
(o)
t = S′tyt, t = 1, . . . , T, (5.75)

where the matrix St is n × nt and nt ≤ n with rank equal to nt. The columns of this matrix are
given by columns of In, whose i:th column is denoted by ei. The i:th element of yt, denoted
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by yi,t, is observed at t if and only if ei is a column of St, i.e., e′iSt 6= 0. In the event that
observations on all variables are missing for some t, then St is empty for that period. Hence,

the vector y
(o)
t is given by all observed elements in the vector yt, while the elements with

missing values are skipped.
The measurement equation of the state-space model can now be expressed as

y
(o)
t = A

(o)′
t xt +H

(o)′
t ξt +w

(o)
t , t = 1, . . . , T, (5.76)

where A
(o)
t = ASt, H

(o)
t = HSt, and w

(o)
t = S′twt. This means that the measurement errors are

given by w
(o)
t ∼ N(0, R

(o)
t ), where the covariance matrix is given by R

(o)
t = S′tRSt.

The Kalman filtering and smoothing equations under missing observations have the same
general form as before, except that the parameter matrices in (5.76) replace A, H, and R when
nt ≥ 1. In the event that nt = 0, i.e., there are no observation in period t, then the 1-step ahead
forecasts of the state variables become

ξt+1|t = Fξt|t−1, (5.77)

while the covariance matrix of the 1-step ahead forecast errors of the state variables is

Pt+1|t = FPt|t−1F
′ + Q. (5.78)

That is, the Kalman gain matrix, Kt, is set to zero; cf. equations (5.8) and (5.14). For the update
estimates we likewise have that rt|t = 0, ξt|t = ξt|t−1, and Pt|t = Pt|t−1.

Furthermore, when nt = 0 then the smoothing equation in (5.23) is replaced by

rt|T = F′rt+1|T , (5.79)

while the smoothing equation in (5.25) is instead given by

Nt|T = F′Nt+1|TF. (5.80)

Regarding the log-likelihood function in (5.19) we simply set it to 0 for the time periods when

nt = 0, while nt replaces n, y
(o)
t is used instead of yt, and Σy(o),t|t−1 instead of Σy,t|t−1 for all

time periods when nt ≥ 1.

5.14. Diffuse Initialization of the Kalman Filter

The Kalman filters and smoothers that we have considered thus far rely on the assumption that
the initial state ξ1 has a (Gaussian) distribution with mean µξ and finite covariance matrix Σξ,
where the filtering recursions are initialized by ξ1|0 = µξ and P1|0 = Σξ; this case may be referred
to as the standard initialization.

More generally, the initial state vector ξ1 can be specified as

ξ1 = µξ + Sδ + S⊥v1, (5.81)

where S is an r × s selection matrix with s ≤ r columns from Ir , S⊥ is an r × (r − s) selection
matrix with the remaining columns of Ir (S′S⊥ = 0), while δ ∼ N(0, cIs) and v1 ∼ N(0,Σv). If
we let s = 0 and Σv = Σξ the initialization in (5.81) is identical to the standard initialization.
Furthermore, if s = r and c is finite another common initialization for the Kalman filter is
obtained with ξ1 ∼ N(µξ, cIr). A large value for c may be regarded as an approximation of
diffuse initialization where the Kalman filters and smoothers discussed above are still valid.
However, this may be numerically problematic and an exact treatment of the case when c → ∞
is instead likely to be preferred. In what follows, we shall consider how the Kalman filter and
smoothing recursions need to be adapted to allow for such an initialization. If 0 < s < r this
means that the initialization is partially diffuse and when s = r it is fully diffuse.

An exact treatment of diffuse Kalman filtering and smoothing was first suggested by Ansley
and Kohn (1985, 1990) and later simplified by Koopman (1997) and Koopman and Durbin
(2003); see also Durbin and Koopman (2012, Chapter 5). The transition to the standard Kalman
filter occurs at some point in time t = d and is automatic. An alternative approach based on
augmentation was given by De Jong (1991) for filtering and smoothing, where the latter step
was simplified by De Jong and Chu-Chun-Lin (2003). A transition to the usual Kalman filter
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after some point in time t = d is here optional, but advisable for computational efficiency. The
discussion below follows the treatment in Koopman and Durbin (2003).

It should already at this point be stressed that diffuse initialization will not converge at a
finite point in time t = d if some state variable has a unit root, such as for a random walk.
Moreover, near non-stationarity is also a source for concern. In this situation d will be finite,
but can still be very large, difficult to determine numerically, and on top of this greater than
the sample size. Numerical issues are likely to play an important role under near unit roots
with certain covariance matrices possibly being close to singular or with problems determining
their rank. For such models it is recommended to stick with a finite initialization of the state
covariance matrix.

5.14.1. Diffuse Kalman Filtering

From equation (5.81) we define the covariance matrix of the initial value for the state variables
with finite c as

P = cP∞ + P∗,
where P∞ = SS′ and P∗ = S⊥ΣvS

′
⊥. The case of full diffuse initialization means that s = r so that

P∞ = Ir while P∗ = 0, while 0 < s < r concerns partial diffuse initialization. The implications
for the Kalman filter and smoother are not affected by the choice of s, but the implementation
in YADA mainly concerns s = r. In fact, if none of the variables have been specifically selected
as a unit-root process, then full diffuse initialization is used. Similarly, state variables that have
been selected as “unit-root” processes, whether they are or not, will be excluded from the s
diffuse variables such that the corresponding diagonal element of P∞ is zero, while the same
diagonal element of P∗ is unity. Further details on the selection of unit-root state variables is
found in the YADA help file, while such variables can be selected via the Actions menu in YADA.

The 1-step ahead forecast error covariance matrix for the state variables can be decomposed
in the same way as P so that

Pt|t−1 = cP∞,t|t−1 + P∗,t|t−1 + O(c−1), t = 1, . . . , T,

where P∞,t|t−1 and P∗,t|t−1 do not depend on c.47 It is shown by Ansley and Kohn (1985) and
Koopman (1997) that the influence of the term P∞,t|t−1 will disappear at some t = d and that
the usual Kalman filtering equations in Section 5.2 can be applied for t = d + 1, . . . , T .

Consider the expansion of the inverse of the matrix

Σy,t|t−1 = cΣ∞,t|t−1 + Σ∗,t|t−1 + O(c−1), t = 1, . . . , T, (5.82)

which appears in the definition of Kt in (5.9). The covariances matrices on the right hand side
are given by

Σ∞,t|t−1 = H′P∞,t|t−1H,

Σ∗,t|t−1 = H′P∗,t|t−1H + R.
(5.83)

Koopman and Durbin (2003) provide the Kalman filter equations for the cases when Σ∞,t|t−1

is nonsingular and Σ∞,t|t−1 = 0. According to the authors, the case when Σ∞,t|t−1 has reduced
rank 0 < nt < n is rare, although and explicit solution is given by Koopman (1997). The authors
suggest, however, that for the reduced rank case the univariate approach to multivariate Kalman
filtering in Koopman and Durbin (2000) should be used instead. This is also the stance taken
by YADA when Σ∞,t|t−1 is singular but not zero. The univariate approach for both the standard
initialization and diffuse initialization is discussed in Section 5.15.

The exact initial state 1-step ahead forecast equations when Σ∞,t|t−1 is nonsingular and c →
∞ are given by

ξt+1|t = Fξt|t−1 +K∞,t

(
yt − yt|t−1

)
,

P∞,t+1|t = FP∞,t|t−1L
′
∞,t,

P∗,t+1|t = FP∗,t|t−1L
′
∞,t −K∞,tΣ∞,t|t−1K

′
∗,t +Q,

(5.84)

47 The term O(c−1) refers to a function f(c) such that cf(c) is finite as c → ∞.
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for t = 1, . . . , d, with

K∞,t = FP∞,t|t−1HΣ−1
∞,t|t−1

,

K∗,t =
(
FP∗,t|t−1H −K∞,tΣ∗,t|t−1

)
Σ−1
∞,t|t−1

,

L∞,t = F −K∞,tH
′,

with the initialization ξ1|0 = µξ, P∗,1|0 = P∗ and P∞,1|0 = P∞. The forecast yt|t−1 is given by

equation (5.3).48

From the forecast equations in (5.84) it can deduced that the Kalman update equation can
be written as

ξt|t = ξt|t−1 + P∞,t|t−1HΣ−1
∞,t|t−1

(
yt − yt|t−1

)

= ξt|t−1 + P∞,t|t−1r∞,t|t.
(5.85)

while the update state covariance matrices are

P∞,t|t = P∞,t|t−1 − P∞,t|t−1HΣ−1
∞,t|t−1

H′P∞,t|t−1,

P∗,t|t = P∗,t|t−1 − P∗,t|t−1HΣ−1
∞,t|t−1

H′P∞,t|t−1 − P∞,t|t−1HΣ−1
∞,t|t−1

H′P∗,t|t−1

+ P∞,t|t−1HΣ−1
∞,t|t−1

Σ∗,t|t−1Σ−1
∞,t|t−1

H′P∞,t|t−1.

(5.86)

If Σ∞,t|t−1 = 0, the exact initial state 1-step ahead forecast equations are instead

ξt+1|t = Fξt|t−1 +K∗,t
(
yt − yt|t−1

)
,

P∞,t+1|t = FP∞,t|t−1F
′,

P∗,t+1|t = FP∗,t|t−1L
′
∗,t + Q,

(5.87)

where

K∗,t = FP∗,t|t−1HΣ−1
∗,t|t−1

,

L∗,t = F −K∗,tH′.

It can here be seen that the forecast equations are identical to the standard Kalman filter equa-
tions where P∗,t+1|t serves the same function as Pt+1|t, while an additional equation is provided
for P∞,t+1|t. When P∞,d|d−1 = 0 it follows that Σ∞,d|d−1 = 0 and that it is no longer necessary
to compute the equation for P∞,t+1|t. Accordingly, the diffuse Kalman filter has automatically
shifted to the standard Kalman filter.

From (5.87) it is straightforward to show that the Kalman state variable update equation
when Σ∞,t|t−1 = 0 is

ξt|t = ξt|t−1 + P∗,t|t−1HΣ−1
∗,t|t−1

(
yt − yt|t−1

)

= ξt|t−1 + P∗,t|t−1r∗,t|t,
(5.88)

while the update covariance matrices are given by

P∞,t|t = P∞,t|t−1,

P∗,t|t = P∗,t|t−1 − P∗,t|t−1HΣ−1
∗,t|t−1

H′P∗,t|t−1.
(5.89)

Regarding the automatic collapse to the standard Kalman filter, for stationary state-space
models Koopman (1997) notes that

rank
(
P∞,t+1|t

)
≤ min

{
rank

(
P∞,t|t−1

)
− rank

(
Σ∞,t|t−1

)
, rank (F)

}
,

as long as the left hand side is nonnegative; see also Ansley and Kohn (1985). For example,
with the intialization P∗ = 0 and P∞ = Ir , it is straightforward to show that

P∞,2|1 = FPHF
′, Σ∞,2|1 = H′FPHF′H,

48 Notice that the second term within parenthesis in the expression for K∗,t is subtracted from the first rather than

added to it. The sign error in Koopman and Durbin (2003, page 89) can be derived using equations (5.7), (5.10),

(5.12), and (5.14) in Durbin and Koopman (2012).
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where PH = Ir −H(H′H)−1H′ and rank(PH) = r − n. This means that the rank of P∞,2|1 is less
than or equal to the minimum of r − n and the rank of F. As long as Σ∞,t|t−1 is nonsingular it
follows that the rank of P∞,t+1|t drops quickly towards zero.

From the updating equation for P∞,t+1|t in (5.87) it can be seen that if a row of F is equal to
a row from the identity matrix, i.e., the corresponding state variable has a unit root, then the
diagonal element in P∞,t+1|t is equal to the same element in P∞,t|t−1. This means that the rank of
P∞,t|t−1 will never converge to zero and whether the diffuse Kalman filter shifts to the standard
filter depends on the development of the covariance matrix Σ∞,t|t−1. Moreover, in the case of
near non-stationary where, say, a state variable follows an AR(1) process with autoregressive
coefficient close to unity, the diffuse Kalman filter need not converge to standard filter within
the chosen sample period.

When Σ∞,t|t−1 is nonsingular, we may deduce from the update equation (5.85) that the up-
date estimator of the state shock is given by

vt|t = Qr∞,t|t, (5.90)

while the update measurement error is zero, i.e., wt|t = 0. Similarly, when Σ∞,t|t−1 = 0 it can
be shown from equation (5.88) that the update estimator of the state shock is

vt|t = Qr∗,t|t, (5.91)

while the update estimate of the measurement error is equal to

wt|t = RΣ−1
∗,t|t−1

(
yt − yt|t−1

)
. (5.92)

The log-likelihood function can also be computed for periods t = 1, . . . , d as shown by Koop-
man (1997). In case Σ∞,t|t−1 is nonsingular the time t log-likelihood is equal to

lnp
(
yt|xt,Yt−1; θ

)
= −n

2
ln(2π) − 1

2
ln
∣∣Σ∞,t|t−1

∣∣ , (5.93)

and if Σ∞,t|t−1 = 0 we have that

lnp
(
yt|xt,Yt−1; θ

)
= −n

2
ln(2π) − 1

2
ln
∣∣Σ∗,t|t−1

∣∣− 1

2

(
yt − yt|t−1

)′
Σ−1
∗,t|t−1

(
yt − yt|t−1

)
. (5.94)

As expected, the log-likelihood in the latter case is exactly the same as for the standard filter;
cf. equation (5.19).

5.14.2. Diffuse Kalman Smoothing

The diffuse Kalman filtering stage is covered by the sample t = 1, . . . , d, while the standard
Kalman filter is used for the remaining sample dates t = d+ 1, . . . , T . This means that the stan-
dard Kalman smoother can be utilized for all dates after period d, while a modified smoother
needs to be applied for the sample until period d.

The diffuse Kalman smoother for the state variables is given by

ξt|T = ξt|t−1 + P∗,t|t−1r
(0)
t|T + P∞,t|t−1r

(1)
t|T , t = d, d − 1, . . . ,1 (5.95)

while the corresponding state covariance matrix is determined through

Pt|T =P∗,t|t−1 − P∗,t|t−1N
(0)
t|T P∗,t|t−1 − P∞,t|t−1N

(1)
t|T P∗,t|t−1

− P∗,t|t−1N
(1)′
t|T P∞,t|t−1 − P∞,t|t−1N

(2)
t|T P∞,t|t−1.

(5.96)

The initialization of the smoothing algorithm is:

r
(0)
d+1|T = rd+1|T , r

(1)
d+1|T = 0, N

(0)
d+1|T = Nd+1|T , N

(1)
d+1|T = N

(2)
d+1|T = 0.

For the case when Σ∞,t|t−1 is nonsingular it is shown by Koopman and Durbin (2003) that

r
(0)
t|T = L′∞,tr

(0)
t+1|T ,

r
(1)
t|T = H

[
Σ−1
∞,t|t−1

(
yt − yt|t−1

)
−K′

∗,tr
(0)
t+1|T

]
+ L′∞,tr

(1)
t+1|T .

(5.97)
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The covariance matrices similarly evolve according to

N
(0)
t|T = L′∞,tN

(0)
t+1|TL∞,t,

N
(1)
t|T = HΣ−1

∞,t|t−1
H′ + L′∞,tN

(1)
t+1|TL∞,t − L′∞,tN

(0)
t+1|TK∗,tH′ −HK′

∗,tN
(0)′
t+1|TL∞,t,

N
(2)
t|T = H

[
K′

∗,tN
(0)
t+1|TK∗,t − Σ−1

∞,t|t−1
Σ∗,t|t−1Σ−1

∞,t|t−1

]
H′ + L′∞,tN

(2)
t+1|TL∞,t

− L′∞,tN
(1)
t+1|TK∗,tH′ −HK′

∗,tN
(1)′
t+1|TL∞,t.

(5.98)

In case Σ∞,t|t−1 = 0 we instead find that

r
(0)
t|T = HΣ−1

∗,t|t−1

(
yt − yt|t−1

)
+ L′∗,tr

(0)
t+1|T ,

r
(1)
t|T = F′r(1)

t+1|T ,
(5.99)

while the covariance matrices are given by

N
(0)
t|T = HΣ−1

∗,t|t−1
H′ + L′∗,tN

(0)
t+1|TL∗,t,

N
(1)
t|T = F′N(1)

t+1|TL∗,t,

N
(2)
t|T = F′N(2)

t+1|TF.

(5.100)

The smoothing recursions in (5.97)–(5.98) and (5.99)–(5.100) may also be written more

compactly as in Koopman and Durbin (2003, Section 4). Specifically, let H̃ = [I2 ⊗H], whereas

r̃t|T =


r

(0)
t|T
r

(1)
t|T


 , Ñt|T =


N

(0)
t|T N

(1)
t|T

N
(1)
t|T N

(2)
t|T


 , z̃t =

[
yt − yt|t−1

0

]
,

and the vector z̃t is 2n-dimensional. If Σ∞,t|t−1 is nonsingular we let

Σ̃t|t−1 =


 0 Σ−1

∞,t|t−1

Σ−1
∞,t|t−1

−Σ−1
∞,t|t−1

Σ∗,t|t−1Σ−1
∞,t|t−1


 , L̃t =

[
L∞,t −K∗,tH′

0 L∞,t

]
.

On the other hand, when Σ∞,t|t−1 = 0 we instead define

Σ̃t|t−1 =


Σ−1

∗,t|t−1
0

0 0


 , L̃t =

[
L∗,t 0

0 F

]
.

For both cases, the recursions in (5.97)–(5.98) and (5.99)–(5.100) may be expressed as

r̃t|T = H̃Σ̃t|t−1z̃t + L̃′tr̃t+1|T , (5.101)

Ñt|T = H̃Σ̃t|t−1H̃
′ + L̃′tÑt+1|T L̃t. (5.102)

For the state shocks and the measurement errors, a nonsingular Σ∞,t|t−1 matrix yields the
following smooth estimates

vt|T = Qr
(0)
t|T , wt|T = −RK′

∞,tr
(0)
t+1|T . (5.103)

The corresponding covariance matrices are

C
(
vt|YT

)
= Q − QN

(0)
t|T Q, C

(
wt|YT

)
= R− RK′

∞,tN
(0)
t+1|TK∞,tR.

Similarly, when Σ∞,t|t−1 = 0 we find that

vt|T = Qr
(0)
t|T , wt|T = R

[
Σ−1
∗,t|t−1

(
yt − yt|t−1

)
−K′

∗,tr
(0)
t+1|T

]
. (5.104)

The covariance matrices for these estimates are

C
(
vt|YT

)
= Q − QN

(0)
t|T Q, C

(
wt|YT

)
= R− R

[
Σ−1
∗,t|t−1

+K′
∗,tN

(0)
t+1|TK∗,t

]
R.
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Kalman filtering and smoothing when Σ∞,t|t−1 is singular but has at least rank one is cov-
ered by the univariate approach discussed in Section 5.15.2. When YADA encounters this case
it automatically switches to a univariate routine for this time period and reverts back to the
multivariate routine when the Σ∞,t|t−1 is either nonsingular or zero. The multivariate approach
in Ansley and Kohn (1985) and Koopman (1997) is not be covered since it is mathematically
complex and computationally inefficient.

5.15. A Univariate Approach to the Multivariate Kalman Filter

The standard approach to Kalman filtering and smoothing is based on taking the full observation
vector into account at each point in time. The basic idea of univariate filtering is to incrementally
add the individual elements of the vector of observed variables; see Anderson and Moore (1979,
Chapter 6.4), Koopman and Durbin (2000), and Durbin and Koopman (2012, Chapter 6.4).
One important reason for considering such an approach is computational efficiency, which can
be particularly relevant when diffuse initialization is considered. In this subsection we shall
first consider the univariate approach, also known as sequential processing, under standard
initialization of the state vector, and thereafter the case of diffuse initialization.

5.15.1. Univariate Filtering and Smoothing with Standard Initialization

In order to make use of univariate filtering and smoothing, one must first deal with the issue of
correlated measurement errors. One solution is to move them to the vector of state variables and
shocks. Alternatively, the measurement equation can be transformed such the the measurement
errors become uncorrelated through the transformation. This latter case may be handled by a
Schur decomposition of R = SΛS′, where Λ is diagonal and holds the eigenvalues of R, while S

is orthogonal, i.e., S′S = In.49 By premultiplying the measurement equation by S′ we get

y∗
t = A∗′xt +H∗′ξt +w∗

t , t = 1, . . . , T,

where y∗
t = S′yt, A∗ = AS, H∗ = HS, w∗

t = S′wt. This means that E[w∗
t w

∗′
t ] = Λ, a diagonal

matrix, while the state equation is unaffected by the transformation. Since r can be a large
number for DSGE models, YADA always transforms the measurement equation when R is not
diagonal, rather than augmenting the state vector.

Assuming that R is diagonal, the Kalman forecasting and updating equations can be deter-
mined from the following univariate filtering equations

ξt,i+1 = ξt,i +Kt,iΣ
−1
t,i zt,i, (5.105)

Pt,i+1 = Pt,i −Kt,iΣ
−1
t,i
K′
t,i, (5.106)

for i = 1, . . . , nt, where nt ≤ n is equal to the actual number of observed variables at t (thereby
allowing for missing observations), and

zt,i = yt,i −A′
ixt −H′

iξt,i, (5.107)

Σt,i = H′
iPt,iHi + Ri, (5.108)

Kt,i = Pt,iHi. (5.109)

Observed element i in yt is denoted by yt,i and the corresponding columns of A and H are given
by Ai and Hi, respectively, while Ri is the measurement error variance for wt,i. The univariate
transition equations are

ξt+1,1 = Fξt,nt+1, (5.110)

Pt+1,1 = FPt,nt+1F
′ + Q. (5.111)

It follows that the forecasting and updating estimates for the state variables and the correspond-
ing covariance matrices are

ξt+1|t = ξt+1,1, ξt|t = ξt,nt+1, Pt+1|t = Pt+1,1, Pt|t = Pt,nt+1, (5.112)

while the standard initialization is handled by ξ1,1 = µξ and P1,1 = Σξ.

49 Since R is a square matrix, the Schur decomposition is identical to the eigenvalue decomposition.
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Note that although the univariate Kalman filter requires looping over all i = 1, . . . , nt, it
also avoids inverting Σy,t|t−1 and two matrix multiplications. For larger models, computational
gains can therefore be quite important. Furthermore, the log-likelihood can also be determined
without inverting Σy,t|t−1. Specifically, it can be shown that

lnp
(
yt|xt,Yt−1; θ

)
= −1

2

nt∑

i=1

(
ln(2π) + ln

(
Σt,i
)

+ z2
t,i/Σt,i

)
. (5.113)

Recall that we are assuming a diagonal covariance matrix for the measurement errors. This
assumption is not a restriction for the log-likelihood since the orthogonal transformation matrix
S has determinant one, i.e., the value of the log-likelihood function is invariant to S.

Smoothed estimates of the unobserved variables can likewise be determined from univariate
smoothing recursions. Let rT,nT = 0 and NT,nT = 0 intialize the univariate smoother while

rt,i−1 = HiΣ
−1
t,i zt,i + L′t,irt,i, (5.114)

Nt,i−1 = HiΣ
−1
t,i
H′
i + L′t,iNt,iLt,i, (5.115)

where Lt,i = Ir −Kt,iH
′
iΣ

−1
t,i , i = nt, . . . ,1, t = T, . . . 1, and with transitions

rt−1,nt−1
= F′rt,0, (5.116)

Nt−1,nt−1
= F′Nt,0F. (5.117)

The smooth innovations and covariance matrices are given by

rt|T = rt,0, Nt|T = Nt,0. (5.118)

Smooth estimates of the state variables and their covariances satisfy equations (5.22) and
(5.24), while smooth estimates of the measurement errors and the state shocks can be com-
puted from the smooth innovations as in Section 5.6.

The above algorithm may also be used for computing update estimates of the state shocks
(and measurement errors) with the rt|t innovation vector. Let ut,nt = 0 for t = 1, . . . , T and
consider the recursion

ut,i−1 = HiΣ
−1
t,i zt,i + L′t,iut,i, i = nt, . . . ,1. (5.119)

This procedure gives us
rt|t = ut,0,

so that the update estimator of the state shocks and the measurement errors are

vt|t = Qut,0, wt|t = R
(
H′H

)−1
H′ut,0, t = 1, . . . , T. (5.120)

For the calculation of the measurement error in (5.120) it is important to note that the original
H and R matrices are used, instead of those obtained when transforming the measurement
equation such that the errors have a diagonal covariance matrix. Naturally, the update estimator
of the measurement errors may also be computed directly from the measurement equation using
the update estimator of the state variables.

5.15.2. Univariate Filtering and Smoothing with Diffuse Initialization

The diffuse initialization of the Kalman filter considered in Section 5.14 implies that the matrix
Pt,i, the vector Kt,i and the scalar Σt,i can be decomposed as

Pt,i = P∗,t,i + cP∞,t,i + O(c−1),

Kt,i = K∗,t,i + cK∞,t,i + O(c−1),

Σt,i = Σ∗,t,i + cΣ∞,t,i + O(c−1),

(5.121)

where we have used the following

Σ∞,t,i = H′
iP∞,t,iHi, Σ∗,t,i = H′

iP∗,t,iHi + Ri,

K∞,t,i = P∞,t,iHi, K∗,t,i = P∗,t,iHi.
(5.122)
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Notice that Σ∞,t,i = 0 implies that K∞,t,i = 0 since Hi has rank one.

To obtain the diffuse filtering recursions, the scalar Σ−1
t,i needs to be expanded as a power

series in c−j . This yields

Σ−1
t,i =




c−1Σ−1

∞,t,i
− c−2Σ∗,t,iΣ

−2
∞,t,i

+ O(c−3), if Σ∞,t,i > 0,

Σ−1
∗,t,i otherwise.

This is easily established by computing (Σ∗,t,i + cΣ∞,t,i)Σ−1
t,i = 1. Provided Σ∞,t,i > 0, equations

(5.105) and (5.106) then gives us

ξt,i+1 = ξt,i +K∞,t,iΣ
−1
∞,t,izt,i, (5.123)

P∞,t,i+1 = P∞,t,i −K∞,t,iK
′
∞,t,iΣ

−1
∞,t,i, (5.124)

P∗,t,i+1 = P∗,t,i +K∞,t,iK
′
∞,t,iΣ∗,t,iΣ

−2
∞,t,i −

(
K∗,t,iK

′
∞,t,i +K∞,t,iK

′
∗,t,i

)
Σ−1
∞,t,i, (5.125)

for i = 1, . . . , nt. When Σ∞,t,i = 0, the univariate filtering equations for the standard initializa-
tion apply, i.e.,

ξt,i+1 = ξt,i +K∗,t,iΣ
−1
∗,t,izt,i, (5.126)

P∞,t,i+1 = P∞,t,i, (5.127)

P∗,t,i+1 = P∗,t,i −K∗,t,iK
′
∗,t,iΣ

−1
∗,t,i, (5.128)

for i = 1, . . . , nt. Notice that P∗,t,i+1 plays the role of Pt,i+1 under standard initialization and
that the filter under diffuse initialization is augmented with equation (5.127). The transition
from t to t + 1 satisfies the following

ξt+1,1 = Fξt,nt+1, (5.129)

P∞,t+1,1 = FP∞,t,nt+1F
′, (5.130)

P∗,t+1,1 = FP∗,t,nt+1F
′ + Q. (5.131)

As pointed out by Koopman and Durbin (2000), it is required that

rank
[
P∞,t+1,1

]
= rank

[
P∞,t,nt+1

]
,

and that this is not a restriction for a properly defined model, i.e., the rank of F does not

influence the rank of P∞,t+1,1. Moreover, when Σ∞,t,i > 0 it holds that50

rank
[
P∞,t,i+1

]
= rank

[
P∞,t,i

]
− 1.

The diffuse recursions are continued until the matrix P∞,t,i+1 becomes zero at t = d and i = i∗.
From then on, the univariate Kalman filter in Section 5.15.1 is used with Pt,i+1 = P∗,t,i+1.

Compared with the exact diffuse multivariate filtering approach in Section 5.14.1, we now
have that the forecasting and updating estimates of the state variables and their covariance
matrices are

ξt+1|t = ξt+1,1, ξt|t = ξt,nt+1, P∞,t+1|t = P∞,t+1,1,

P∞,t|t = P∞,t,nt+1, P∗,t+1|t = P∗,t+1,1, P∗,t|t = P∗,t,nt+1.
(5.132)

while initialization is handled by ξ1,1 = µξ, P∞,1,1 = P∞, and P∗,1,1 = P∗.
The log-likelihood function can be calculated without the need for computing some inverses

of Σ∞,t|t−1 and Σ∗,t|t−1. We here have that

lnp
(
yt|xt,Yt−1; θ

)
= −1

2

nt∑

i=1

lnpt,i, (5.133)

50 See Ansley and Kohn (1985, 1990), Koopman (1997), or Section 5.14.1.
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where

lnpt,i =





ln 2π + ln Σ∞,t,i if Σ∞,t,i > 0,

ln 2π + ln Σ∗,t,i + z2
t,i/Σ∗,t,i otherwise.

Turning to smoothing, the diffuse univariate recursions apply to the same sample as the
diffuse univariate filter, i.e., to the indices

(t, i) = (d, i∗), (d, i∗ − 1), . . . , (d,1), . . . , (1,1).

Expanding rt,i and Nt,i in equations (5.114) and (5.115), respectively, in terms of reciprocals of

c in the same way as for Σ−1
t,i

we obtain

rt,i = r
(0)
t,i

+ c−1r
(1)
t,i

+ O(c−2),

Nt,i = N
(0)
t,i + c−1N

(1)
t,i + c−2N

(2)
t,i + O(c−3),

with initialization r
(0)
d,i∗ = rd,i∗ , r

(1)
d,i∗ = 0, N

(0)
d,i∗ = Nd,i∗ , and N

(1)
d,i∗ = N

(2)
d,i∗ = 0. The initial values

rd,i∗ and Nd,i∗ are determined by equations (5.114) and (5.115), respectively. By defining

r̃t,i =


r

(0)
t,i

r
(1)
t,i


 , Ñt,i =


N

(0)
t,i N

(1)
t,i

N
(1)
t,i N

(2)
t,i


 ,

it can be shown using equations (5.114) and (5.115) that for Σ∞,t,i > 0

r̃t,i−1 =


 0

HiΣ
−1
∞,t,izt,i


+

[
L∞,t,i L0,t,i

0 L∞,t,i

]′
r̃t,i, i = nt, . . . ,1, (5.134)

where

L∞,t,i = Ir −K∞,t,iH
′
iΣ

−1
∞,t,i,

L0,t,i =
(
K∞,t,iΣ∗,t,iΣ

−1
∞,t,i −K∗,t,i

)
H′
iΣ

−1
∞,t,i.

Furthermore,

Ñt,i−1 =


 0 H

i
H′
i
Σ−1
∞,t,i

H
i
H′
i
Σ−1
∞,t,i

H
i
H′
i
Σ∗,t,iΣ−2

∞,t,i


+

[
L∞,t,i L0,t,i

0 L∞,t,i

]′
Ñt,i

[
L∞,t,i L0,t,i

0 L∞,t,i

]
, (5.135)

for i = nt, . . . ,1,, with transitions

r̃t−1,nt−1
=
(
I2 ⊗ F′)r̃t,0, Ñt−1,nt−1

=
(
I2 ⊗ F′)Ñt,0

(
I2 ⊗ F

)
, (5.136)

for t = d, . . . ,1.
If Σ∞,t,i = 0, it can likewise be shown that

r̃t,i−1 =


HiΣ

−1
∗,t,izt,i
0


+

[
L∗,t,i 0

0 L∗,t,i

]′
r̃t,i, i = nt, . . . ,1, (5.137)

where L∗,t,i = Ir −K∗,t,iH′
iΣ

−1
∗,t,i. Moreover,

Ñt,i−1 =


Hi

H′
i
Σ−1
∗,t,i 0

0 0


+

[
L∗,t,i 0

0 L∗,t,i

]′
Ñt,i

[
L∗,t,i 0

0 L∗,t,i

]
, (5.138)

for i = nt, . . . ,1. The transition from t to t − 1 is again covered by equation (5.136).
For both these cases, the diffuse state smoothing equations are given by

ξt|T = ξt,1 + P̃t,1r̃t,0, (5.139)

Pt|T = P∗,t,1 − P̃t,1Ñt,0P̃
′
t,1, (5.140)
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where

P̃t,1 =
[
P∗,t,1 P∞,t,1

]
.

Furthermore, the smooth state shocks are given by

vt|T = Qr
(0)
t,0 . (5.141)

We can also determine update estimates of the state shocks using the above algorithm. Specif-

ically, let u
(0)
t,nt

= u
(1)
t,nt

= 0 for all t and define the stacked vector

ũt,i =


u

(0)
t,i

u
(1)
t,i


 .

If Σ∞,t,i > 0 we let

ũt,i−1 =


 0

HiΣ
−1
∞,t,izt,i


+

[
L∞,t,i L0,t,i

0 L∞,t,i

]′
ũt,i, (5.142)

and if Σ∞,t,i = 0 we have that

ũt,i−1 =


Hi

Σ−1
∗,t,izt,i
0


+

[
L∗,t,i 0

0 L∗,t,i

]′
ũt,i, i = nt, . . . ,1. (5.143)

The update estimates of the state shocks are now given by equation (5.120) with ut,0 being

replaced with u
(0)
t,0 . Update estimates of the measurement errors can likewise be determined

by replacing ut,0 with u
(0)
t,0 in this equation. As in the case of standard initialization for the

univariate case, care has to be taken to ensure that the original H and R matrices are used,
rather than those implied by the transformation S.

5.16. Observation Weights for Unobserved Variables under Diffuse Initialization

Like it was shown in Section 5.9 with an initialization based on a finite covariance matrix of the
initial state, it is also possible to compute weights on the observed variables for unobserved vari-
ables under diffuse initialization. Below we shall first cover forecasted state variables, thereafter
updated state variables, and finally the smooth estimates of the state variables and the mea-
surement errors. Since the estimators of the unobserved variables when t > d are equal under
diffuse and finite initialization, the presentation below focuses on the initialization sample, i.e.,
t = 1, . . . , d.

5.16.1. Weights for the Forecasted State Variables under Diffuse Initialization

To determine the weights on the observed variables for the forecasted state variables under
the assumption of diffuse initialization we need to take three cases into account. Namely, the
covariance matrix Σ∞,t|t−1 has full rank nt, it has rank zero, and it has rank less than nt but
greater than zero. The last possibility is, as in Section 5.14, handled through the univariate
filter with diffuse initialization.

When Σ∞,t|t−1 has full rank nt equation (5.84) for the state variable forecast can be rewritten
as

ξt+1|t = L∞,tξt|t−1 +K∞,tzt,

where zt = yt−A′xt. Similarly, when Σ∞,t|t−1 has rank zero, equation (5.87) can be rearranged
according to

ξt+1|t = L∗,tξt|t−1 +K∗,tzt.
These two equations have the same general form as (5.43) in Section 5.9, thus suggesting how
we may proceed to determine the observation weights.
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The third case to examine is when Σ∞,t|t−1 has reduced rank but is nonzero. From the uni-
variate filter in Section 5.15.2 it may be recalled that ξt+1|t = ξt+1,1 = Fξξt,nt+1

= Fξt|t, while

ξt,i+1 =




ξt,i +K∞,t,iΣ

−1
∞,t,i

zt,i, if Σ∞,t,i > 0,

ξt,i +K∗,t,iΣ
−1
∗,t,izt,i, otherwise.

From equation (5.107) we know that zt,i = yt,i − A′
ixt −H′

iξt,i and, hence, we may rewrite the
above equation as

ξt,i+1 = Lt,iξt,i +Kt,iz̃t,i, (5.144)

where z̃t,i = yt,i −A′
ixt, and

Lt,i =




L∞,t,i, if Σ∞,t,i > 0,

L∗,t,i, otherwise,

and Kt,i is defined similarly from K∞,t,i and K∗,t,i, respectively. From recursive substitution for
ξt,i in (5.144) it can be shown that

ξt,nt+1 =

(
nt∏

i=1

Lt,i

)
ξt,1 +

nt∑

i=1

(
nt∏

j=i+1

Lt,j

)
Kt,iz̃t,i. (5.145)

Since the univariate filter is based on uncorrelated measurement errors, the transformation
R = SΛS′ discussed at the beginning of Section 5.15.1 must to be taken into account. Letting z̃t
be the nt-dimensional vector with typical element z̃t,i, we know that z̃t = S′zt. This means that
equation (5.145) can be rewritten as

ξt+1|t = FL̄tξt|t−1 + FK̄tzt, (5.146)

where

L̄t =
nt∏

i=1

Lt,i, K̄t =
[(∏nt

j=2 Lt,j

)
Kt,1 · · · Lt,ntKt,nt−1 Kt,nt

]
S′.

Combining the results for the three cases concerning the rank of Σ∞,t|t−1 we find that

ξt+1|t = L̂tξt|t−1 + K̂tzt, t = 1, . . . , d − 1, (5.147)

where

L̂t =





L∞,t, if rank
(
Σ∞,t|t−1

)
= nt,

L∗,t, if rank
(
Σ∞,t|t−1

)
= 0,

FL̄t, otherwise,

while K̂t is defined in a similar fashion from K∞,t, K∗,t, and FK̄t, respectively. It now follows
that equation (5.44) is also valid under diffuse initialization, but where the weights need to be
redefined for the initialization sample t = 1, . . . , d−1. Specifically, for this sample we have that
the weights are determined according to the forward recursion

ατ
(
ξt+1|t

)
=




L̂tατ

(
ξt|t−1

)
, if τ = 1, . . . , t − 1,

K̂t, if τ = t.

The weight on ξ1|0 for the initialization sample is likewise given by

β0

(
ξt+1|t

)
=

t−1∏

i=0

L̂t−i.

For t = d, . . . , T − 1, the weights on the observed variables are determined as in Section 5.9 but
with the caveat that the new weights for the initialization sample need to be used.
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It should be emphasized that if the univariate filtering under diffuse initialization is applied,
then the following matrices are redefined as follows

L̂t = FL̄t, K̂t = FK̄t,

for the initialization sample.

5.16.2. Weights for the Updated State Variable Projections under Diffuse Initialization

It is now straightforward to determine the weights on the observed variables over the initializa-
tion sample for the Kalman updater. Specifically, we now find that

ξt|t = M̂tξt|t−1 + N̂tzt, (5.148)

where

M̂t =





Ir − P∞,t|t−1HΣ−1
∞,t|t−1

H′, if rank
(
Σ∞,t|t−1

)
= nt,

Ir − P∗,t|t−1HΣ−1
∗,t|t−1

H′, if rank
(
Σ∞,t|t−1

)
= 0,

L̄t, otherwise,

and

N̂t =





P∞,t|t−1HΣ−1
∞,t|t−1

, if rank
(
Σ∞,t|t−1

)
= nt,

P∗,t|t−1HΣ−1
∗,t|t−1

, if rank
(
Σ∞,t|t−1

)
= 0,

K̄t, otherwise.

This means that equation (5.48) is also valid for the intialization sample t = 1, . . . , d, expect
that the weights on the observed variables are now determined by

ατ
(
ξt|t
)

=




M̂tατ

(
ξt|t−1

)
, if τ = 1, . . . , t − 1,

N̂t, if τ = t,

while the weights on the initial state for the intialization sample is

β0

(
ξt|t
)

= M̂tβ0

(
ξt|t−1

)
.

If univariate filtering has been used, then the following matrices are redefined as follows

M̂t = L̄t, N̂t = K̄t,

for the initialization sample.

5.16.3. Weights for the Smoothed State Variable Projections under Diffuse Initialization

The smooth estimates of the states variables for the initialization sample can be expressed as

ξt|T = ξt|t−1 + P̃t|t−1r̃t|T , t = 1, . . . , d,

where P̃t|t−1 = [P∗,t|t−1 P∞,t|t−1] and r̃t|T is the extended innovation vector in (5.101) or in
(5.139). To determine observation weights for the smoothed state variables it is therefore
convenient to first compute the observation weights for the innovation vector r̃t|T .

In the event that Σ∞,t|t−1 has rank nt or zero is can be shown that

r̃t|T = H̃Σ̃t|t−1Jnzt − H̃Σ̃t|t−1JnH
′ξt|t−1 + L̃′tr̃t+1|T , (5.149)

where Jn = [In 0]′ is 2n× n and the remaining the matrices are defined in Section 5.14.2.
For the case when the rank of Σ∞,t|t−1 is greater than zero but less than nt we examine the

univariate smoother in more detail. From equation (5.134) and (5.137) we have that

r̃t,i−1 = At,izt,i + Bt,ir̃t,i, i = nt, . . . ,1, (5.150)
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where

At,i =






 0

HiΣ
−1
∞,t,i


 , if Σ∞,t,i > 0


HiΣ

−1
∗,t,i

0


 , otherwise,

while

Bt,i =






L∞,t,i L0,t,i

0 L∞,t,i



′

, if Σ∞,t,i > 0


L∗,t,i 0

0 L∗,t,i



′

, otherwise.

By recursive substitution for r̃t,i in equation (5.150), making use of the transition equation
(5.136) for the innovations, and the relation r̃t,0 = r̃t|T it can be shown that

r̃t|T =
nt∑

i=1

(
i−1∏

j=1

Bt,j

)
At,izt,i +

(
nt∏

i=1

Bt,i

)
(
I2 ⊗ F′) r̃t+1|T . (5.151)

To obtain an equation similar to (5.149) we need to find an expression for zt,i in terms of zt
and ξt|t−1. By making use of equation (5.144) along with recursive substitution and recalling
that ξt,1 = ξt|t−1 some algebra leads to

ξt,i =

(
i−1∏

j=1

Lt,j

)
ξt|t−1 +

i−1∑

k=1

(
i−1∏

j=k+1

Lt,j

)
Kt,kz̃t,k , i = 1, . . . , nt. (5.152)

Next, by substituting the right hand side of (5.152) into equation (5.107) for ξt,i we obtain

zt,i = z̃t,i −H′
i

i−1∑

k=1

(
i−1∏

j=k+1

Lt,j

)
Kt,kz̃t,k −H′

i

(
i−1∏

j=1

Lt,j

)
ξt|t−1, i = 1, . . . , nt. (5.153)

The first two terms on the right hand side of (5.153) can be further simplified to Ct,iS
′zt, where

Ct,i is the 1 × nt vector given by

Ct,i =
[
−H′

i

(∏i−1
j=2 Lt,j

)
Kt,1 · · · −H′

i
Lt,i−1Kt,i−2 −H′

i
Kt,i−1 1 0 · · · 0

]
,

for i = 1, . . . , nt. It follows that (5.151) can be rewitten as

r̃t|T =

[
nt∑

i=1

(
i−1∏

j=1

Bt,j

)
At,iCt,i

]
S′zt −

nt∑

i=1

(
i−1∏

j=1

Bt,j

)
At,iH

′
i

(
i−1∏

j=1

Lt,j

)
ξt|t−1

+

(
nt∏

i=1

Bt,i

)
(
I2 ⊗ F′) r̃t+1|T ,

or more compactly
r̃t|T = F̄tzt − Ḡtξt|t−1 + H̄tr̃t+1|T . (5.154)

Combining the results for the rank of Σ∞,t|t−1 being nt, zero, or between these numbers in
equation (5.149) and (5.154) we find that

r̃t|T = F̂tzt − Ĝtξt|t−1 + Ĥtr̃t+1|T , (5.155)
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where

F̂t =




H̃Σ̃t|t−1Jn, if rank

(
Σ∞,t|t−1

)
∈ {0, nt},

F̄t otherwise,

Ĝt =




H̃Σ̃t|t−1JnH

′, if rank
(
Σ∞,t|t−1

)
∈ {0, nt},

Ḡt otherwise,

Ĥt =




L̃′ if rank

(
Σ∞,t|t−1

)
∈ {0, nt},

H̄t otherwise.

If univariate filtering and smoothing has been applied, then the following equalities hold:

F̂t = F̄t, Ĝt = Ḡt, and Ĥt = H̄t.
The observation weights for the innovations r̃t|T over the initialization sample (t = 1, . . . , d)

can now be established from (5.155). Specifically,

ατ
(
r̃t|T
)

=





Ĥtατ
(
r̃t+1|T

)
− Ĝtατ

(
ξt|t−1

)
, if τ = 1, . . . , t − 1,

F̂t + Ĥtατ
(
r̃t+1|T

)
, if τ = t,

Ĥtατ
(
r̃t+1|T

)
, if τ = t + 1, . . . , T.

The weights in the 2r × nt matrix ατ(r̃t|T) are initialized at t = d + 1 by

ατ
(
r̃d+1|T

)
=

[
ατ
(
rd+1|T

)

0

]
.

Furthermore, the weights on the initial state for t = 1, . . . , d are

β0

(
r̃t|T
)

= Ĥtβ0

(
r̃t+1|T

)
− Ĝtβ0

(
ξt|t−1

)
, β0

(
r̃d+1|T

)
=

[
β0

(
rd+1|T

)

0

]
.

Given the observation weights for the innovations r̃t|T , t = 1, . . . , d, it is straightforward to
determine the observation weights for the smooth estimates of the state variables. Specifically,
equation (5.53) remains valid for the full sample, but where the weights for the initialization
sample are now given by

ατ
(
ξt|T
)

=




ατ
(
ξt|t−1

)
+ P̃t|t−1ατ

(
r̃t|T
)
, if τ = 1, . . . , t − 1,

P̃t|t−1ατ
(
r̃t|T
)
, if τ = t, . . . , T.

The weights for the initial state is similarly equal to

β0

(
ξt|T
)

= β0

(
ξt|t−1

)
+ P̃t|t−1β0

(
r̃t|T
)
.

Since the measurement errors can be directly estimated using either updated or smoothed
estimates of the state variables, the observation weights under diffuse initialization can be de-
termined from the same relations. That is, the relationships in equations (5.55) and (5.56) are
still valid for the smooth estimates of the measurement errors. When calculating weights for
the update estimates of the measurement errors, the weights for the smooth state variables in
(5.56) are replaced with the weights for the update estimates of the state variables, recalling
that ατ(ξt|t) = 0 for τ ≥ t + 1.

5.17. YADA Code

5.17.1. KalmanFilter(Ht)

The function KalmanFilter in YADA computes the value of the log-likelihood function in (5.18)
for a given set of parameter values. It requires a n× T matrix Y = [y1 · · ·yT] with the observed
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variables, a k × T matrix X = [x1 · · ·xT] with exogenous variables, and parameter matrices A,
H, F, Q, and R. The F and Q matrices are constructed based on the output from the solution to
the DSGE model, while the A, H, and R matrices are specified in a user-defined function that
determines the measurement equation; cf. Section 17.4. Moreover, the vector with initial state
values ξ1|0 is needed. This input is denoted by KsiInit and is by default the zero vector.

Furthermore, KalmanFilter requires input on the variable initP. If this variable is 1, then
the function calculates an initial value for the matrix P1|0 as described in equation (5.15). If
this variable is set to 2, then the doubling algorithm is used to calculate an approximation of
Σξ (see DoublingAlgorithmLyapunov below). Next, the input variables MaxIter and Tolerance

are accepted and are used by the doubling algorithm function. The input variable StartPeriod

is used to start the sample at period tm ≥ 1. The default value of this parameter is 1, i.e., not to
skip any observations. Moreover, the boolean variable AllowUnitRoot is needed to determine
if undefined unit roots are accepted in the state equation or not. Finally, if initP is 3, then
P1|0 = cIr , where c > 0 needs to be specified; its default value is 100.

The function KalmanFilterHt takes exactly the same input variables as KalmanFilter. While
the input variable H is r × n for the latter function, it is now r × n × T for the former function.
This means that KalmanFilterHt allows for a time-varying measurement matrix.

As output, KalmanFilter (KalmanFilterHt) provides lnL, the value of the log-likelihood
function in (5.18), where the summation is taken from tm until T . Furthermore, output is
optionally provided for yt|t−1, H′Pt|t−1H + R (or H′

tPt|t−1Ht + R when the measurement matrix

is time-varying), ξt|t−1, Pt|t−1, lnp(yt|xt,Yt−1; θ) from tm until T , etc. The dimensions of the
outputs are:

lnL: scalar containing the value of the log-likelihood function in (5.18).
status: indicator variable being 0 if all the eigenvalues of F are inside the unit circle, and

1 otherwise. In the latter case, KalmanFilter (KalmanFilterHt) sets initP to 3. In
addition, this varaible takes the value -1 in the event that the value of the log-likelihood
function is not a real number. The latter can happen if the forecast covariance matrix
of the observed variables, H′Pt|t−1H +R, is not positive definite for some time period t.

lnLt: 1 × (T − tm + 1) vector [lnp(ytm |xtm ,Ytm−1; θ) · · · lnp(yT |xT ,YT−1; θ)]. [Optional]
Yhat: n× (T − tm + 1) matrix [ytm|tm−1 · · ·yT |T−1]. [Optional]

MSEY: n×n×(T−tm+1) 3 dimensional matrix where MSEY(:, :, t−tm+1) = H′Pt|t−1H+R.
[Optional]

Ksitt1: r × (T − tm + 1) matrix [ξtm|tm−1 · · · ξT |T−1]. [Optional]
Ptt1: r × r × (T − tm + 1) 3 dimensional matrix where Ptt1(:, :, t − tm + 1) = Pt|t−1.

[Optional]

The inputs are given by Y, X, A, H, F, Q, R, KsiInit, initP, MaxIter, Tolerance, StartPeriod,
and c. All inputs are required by the function. The integer MaxIter is the maximum number
of iterations that the doubling algorithm can use when initP is 2. In this case, the parameter
Tolerance, i.e., the tolerance value for the algorithm, is also used.

5.17.2. UnitRootKalmanFilter(Ht)

The function UnitRootKalmanFilter (UnitRootKalmanFilterHt) takes all the input variables
that KalmanFilter (KalmanFilterHt) accepts. In addition, this unit-root consistent version of
the Kalman filter needs to know the location of the stationary state variables. This input vector
is given by StationaryPos. Using this information the function sets up an initial value for the
rows and columns of P1|0 using the algorithm determined through initP. If this integer is 1 or 2,
then the rows and columns of F and Q determined by StationaryPos are used. The remaining
entries of the P1|0 are set to zero if off-diagonal and to c if diagonal.

The output variables from UnitRootKalmanFilter (UnitRootKalmanFilterHt) are identical
to those from KalmanFilter (KalmanFilterHt).
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5.17.3. ChandrasekharRecursions

The function ChandrasekharRecursions takes the same input variables as KalmanFilter, ex-
cept for the last two variables AllowUnitRoot and c in KalmanFilter. These inputs are not
needed by the Chandrasekhar recursion since they require that the state covariance matrix is
initialized with Σξ, the unconditional state covariance matrix.

The output variables from the function are the same as those from the KalmanFilter func-
tion.

5.17.4. StateSmoother(Ht)

The function StateSmoother (StateSmootherHt) computes ξt|t, ξt|T , Pt|t, Pt|T , and ξt−1|t using
yt, yt|t−1, ξt|t−1 and Pt|t−1 as well as the parameter matrices H, R, F, and B0 as input. The
dimensions of the outputs are:

Ksitt: r × (T − tm + 1) matrix [ξtm|tm · · · ξT |T].
Ptt: r × r × (T − tm + 1) 3 dimensional matrix where Ptt(:, :, t − tm + 1) = Pt|t.
KsitT: r × (T − tm + 1) matrix [ξtm|T · · · ξT |T].
PtT: r × r × (T − tm + 1) 3 dimensional matrix where PtT(:, :, t − tm + 1) = Pt|T .
Ksit1t: r × (T − tm + 1) matrix with the 1-step smoothed projections ξt−1|t.
rtvec: r × 1 vector with the smoothed innovation vector rtm|T . [Optional]
NtMat: r × r × (T − tm + 1) matrix with the smoothed innovation covariances Nt|T . [Op-

tional]

The required inputs are given by Y, Yhat, Ksitt1, Ptt1, H, F, R, and B0. For the StateSmoother

version, the H matrix has dimension r×n, while for StateSmootherHt is has dimension r×n×T .

5.17.5. SquareRootKalmanFilter(Ht)

The functions SquareRootKalmanFilter and SquareRootKalmanFilterHt compute the value
of the log-likelihood function using the square root filter rather than the standard filter; cf.
KalmanFilter and KalmanFilterHt. The functions take the same input variables as the stan-
dard filter functions except that Q is replaced with B0.

The required output variables are lnL and status. The optional variables are the same as for
the standard Kalman filter functions. In addition, the functions can compute output variables
Yerror (n× T − tm + 1 matrix with the 1-step ahead forecast errors of the observed variables),
SigmaSqRoot (n× n× T − tm + 1 matrix with the square root of the 1-step ahead forecast error
covariance matrix of the observed variables), InvMSEY (n×n×T−tm+1 matrix with the inverse
of Σy,t|t−1), and KalmanGain (r × n × T − tm + 1 matrix with the Kalman gain matrix based on
the square root calculations).

5.17.6. UnitRootSquareRootKalmanFilter(Ht)

The unit root consistent function UnitRootSquareRootKalmanFilter and calculates the value
of the log-likelihood function using the square root filter rather than the standard filter; cf.
UnitRootKalmanFilter. The function take the same input variables as the standard filter func-
tions except that Q is replaced with B0.

The output variables are exactly the same as the function SquareRootKalmanFilter provides.
The functions with Ht appended are mirror images exacpt that they allow for a time-varying

H matrix on the state variables in the measurement equation.

5.17.7. SquareRootSmoother(Ht)

The square root smoother are computed with the aid of the function SquareRootSmoother for
the case of a constantH matrix and by SquareRootSmootherHt for a time-varyingH matrix. The
input variables are slightly different than those accepted by the standard smoother functions,
StateSmoother and StateSmootherHt. In particular, the square root smoother functions accept
the input variables: Yerror, SigmaSqRoot, InvMSEY, KalmanGain, Ksitt1, Ptt1, H, F, and B0.
The first 4 variables are output variables from the square root filter functions discussed above,
while the remaining input variables are shared with the standard smoother functions.
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The output variables are the same as those given by StateSmoother and StateSmootherHt.

5.17.8. UnivariateKalmanFilter(Ht)

The functions UnivariateKalmanFilter and UnivariateKalmanFilterHt compute the value
of the log-likelihood function using the univariate filter rather than the standard filter; cf.
KalmanFilter and KalmanFilterHt. The functions take the same input variables as the stan-
dard filter functions.

The required output variables are lnL and status. The optional variables are the same as for
the standard Kalman filter functions. In addition, the functions can compute output variables
sigma2i (cell array of dimension 1 × T where the cells contain the 1 × n vector with scalars
Σt,i for i = 1, . . . , n), Kti (cell array of dimension 1 × T where the cells contains the r × n
matrix whose columns are given by Kt,i for i = 1, . . . , n), zti (cell array of dimension 1 × T
where the cells contain the 1 × n vector with scalars zt,i for i = 1, . . . , n), and Hti (cell array of
dimension 1× T where the cells contain the r × n matrix H, whose columns are given by Hi for
i = 1, . . . , n). The variables are presented in Section 5.15.1.

5.17.9. UnitRootUnivariateKalmanFilter(Ht)

The function UnitRootUnivariateKalmanFilter (UnitRootUnivariateKalmanFilterHt) is re-
sponsible for computing the value of the log-likelihood function using the univariate filter rather
than the standard filter; see, for instance, UnitRootKalmanFilter. The function takes the same
input variables as the standard filter functions.

The required output variables are lnL and status. The optional variables are the same as for
the univariate Kalman filter function UnivariateKalmanFilter.

5.17.10. UnivariateStateSmoother

The univariate Kalman smoother is computed with the function UnivariateStateSmoother.
The input 11 variables are given by zti, sigma2i, Hti, Kti, Ksitt1, Ptt1, Yerror, H, F, R, and
B0. The first 4 input variables are given by the same named output variables of the univariate
Kalman filter. The final 7 input variables are all used by the other smoother functions.

The output variables are the same as those given by the standard and square root smoother
functions.

5.17.11. KalmanFilterMO(Ht)

The standard Kalman filtering subject to possibly missing observations is handled by the func-
tion KalmanFilterMO for the case of a constant H matrix and by KalmanFilterMOHt for a time-
varying matrix. The input and output variables are identical to those for the standard Kalman
filter functions.

5.17.12. UnitRootKalmanFilterMO(Ht)

The standard Kalman filtering allowing for unit roots and possibly subject to missing obser-
vations is handled by UnitRootKalmanFilterMO for the case of a constant H matrix and by
UnitRootKalmanFilterMOHt for a time-varying matrix. The input and output variables are
identical to those for the standard Kalman filter functions that allow for unit roots.

5.17.13. SquareRootKalmanFilterMO(Ht)

The square root Kalman filtering subject to possibly missing observations is handled by the
function SquareRootKalmanFilterMO for the case of a constantH matrix and for a time-varying
H matrix by SquareRootKalmanFilterMOHt. The input and output variables are identical to
those for the square root Kalman filter functions.
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5.17.14. UnitRootSquareRootKalmanFilterMO(Ht)

The square root Kalman filtering allowing for unit roots and possibly subject to missing obser-
vations is handled by UnitRootSquareRootKalmanFilterMO for the case of a constant H matrix
and for a time-varying H matrix by UnitRootSquareRootKalmanFilterMOHt. The input and
output variables are identical to those for the square root Kalman filter functions which allow
for unit roots.

5.17.15. UnivariateKalmanFilterMO(Ht)

The univariate Kalman filtering subject to possibly missing observations is handled by the func-
tion UnivariateKalmanFilterMO for the case of a constant H matrix and for a time-varying H
matrix by UnivariateKalmanFilterMOHt. The input and output variables are identical to those
for the univariate Kalman filter functions.

5.17.16. UnitRootUnivariateKalmanFilterMO(Ht)

The univariate Kalman filtering allowing for unit roots and possibly subject to missing observa-
tions is handled by UnitRootUnivariateKalmanFilterMO for the case of a constant H matrix
and for a time-varying H matrix by UnitRootUnivariateKalmanFilterMOHt. The input and
output variables are identical to those for the univariate Kalman filter functions which allow for
unit roots.

5.17.17. StateSmootherMO(Ht)

The standard Kalman smoothing subject to possibly missing observations is handled by the
function StateSmootherMO when the H matrix in the measurement equation is constant and
by StateSmootherMOHt when it is time-varying. The input and output variables are exactly the
same as those provided by the standard Kalman smoothing functions.

5.17.18. SquareRootSmootherMO(Ht)

The square root Kalman smoothing subject to possibly missing observations is handled by
SquareRootSmootherMO when the H matrix in the measurement equation is constant and by
SquareRootSmootherMOHt when it is time-varying. The input variables are exactly the same
as those needed by the square root Kalman smoothing functions without missing observations.
The output variables are extended with two optional variables. Namely, the r × T matrices rtt
and rtT with estimates of the update and smooth innovations, rt|t and rt|T , respectively.

5.17.19. UnivariateStateSmootherMO

The univariate Kalman smoothing calculations subject to possibly missing observations is han-
dled by the function UnivariateStateSmootherMO for the cases of a constant or a time-varying
H matrix in the measurement equation. The input variables are exactly the same as those
needed by the function UnivariateStateSmoother. The output variables are extended with
two optional variables. Namely, the r × T matrices rtt and rtT with estimates of the update
and smooth innovations, rt|t and rt|T , respectively.

5.17.20. DiffuseKalmanFilter(MO)(Ht)

The functions DiffuseKalmanFilter(MO)(Ht) computes the standard Kalman filter with diffuse
initialization, where functions with the addition MO to the name handle possible missing obser-
vations, and functions with the addition Ht cover a time-varying H-matrix in the measurement
equation. The 11 input variables are: Y, X, A, H, F, Q, R, KsiLast, StartPeriod, AllowUnitRoot,
and StationaryPos which are all shared with other functions for the standard Kalman filter.

The functions provides 2 required and 7 optional output variables: lnL, status, lnLt, Yhat,
MSEY, Ksitt1, Ptt1, SigmaRank, and SmoothData. Only the last two are unique to functions
with diffuse initialization. The variable SigmaRank is a matrix with at most 2 rows and d
columns. The first row holds the rank of Σ∞,t|t−1 over the initialization sample, while the second
row (when it exsts) holds the number of observed variables for the same sample. The last
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output variable, SmoothData, is a structure with fields containing data needed for computing
the smooth and update estimates over the initialization sample.

5.17.21. DiffuseSquareRootKalmanFilter(MO)(Ht)

The functions DiffuseSquareRootKalmanFilter(MO)(Ht) computes the square-root Kalman fil-
ter with diffuse initialization. The function shares its 11 input variables with the function for
the standard Kalman filter with diffuse initialization, except that Q is replaced with B0.

The 9 output variables are shared with DiffuseKalmanFilter(MO)(Ht).

5.17.22. DiffuseUnivariateKalmanFilter(MO)(Ht)

The functions DiffuseUnivariateKalmanFilter(MO)(Ht) computes the univariate Kalman fil-
ter with diffuse initialization. The function shares its 11 input variables with the function for
the standard Kalman filter with diffuse initialization.

The 9 output variables are shared with DiffuseKalmanFilter(MO)(Ht).

5.17.23. DiffuseStateSmoother(MO)(Ht)

The functions DiffuseStateSmoother(MO)(Ht) computes the smooth and update estimates of
the state variables based on the standard Kalman smoother with diffuse initialization. The func-
tion requires 10 input variables: Y, Yhat, Ksitt1, Ptt1, H, F, R, B0, SigmaRank, and SmoothData.
The first 8 inputs are shared with StateSmoother(MO)(Ht), while the last two are outputs from
the Kalman filter routine subject to diffuse initialization.

The functions provides at least 5 and at most 9 output variables: Ksitt, Ptt, KsitT, PtT,
Ksit1t, rtvec, NtMat, rtt, and rtT. The first 7 are also obtained from the standard Kalman
smoother. The last two optional output variables are only provided by the smoothers that
support missing observations. For these functions, the rtt variable is a matrix of dimension
r×T with the update estimates of the disturbances rt|t, while the rtT variable is a matrix of the
same dimension with the smooth estimates of the distrurbances rt|T .

5.17.24. DiffuseSquareRootSmoother(MO)(Ht)

The functions DiffuseSquareRootSmoother(MO)(Ht) computes the smooth and update esti-
mates of the state variables based on the square-root Kalman smoother with diffuse initializa-
tion. The input and output variables are shared with the standard Kalman smoother functions
DiffuseStateSmoother(MO)(Ht).

5.17.25. DiffuseUnivariateStateSmoother(MO)

The functions DiffuseUnivariateStateSmoother(MO) computes the smooth and update esti-
mates of the state variables based on the univariate Kalman smoother with diffuse initializa-
tion. The input and output variables are shared with the standard Kalman smoother functions
DiffuseStateSmoother(MO)(Ht).

5.17.26. DoublingAlgorithmLyapunov

The function DoublingAlgorithmLyapunov computes Σξ, the unconditional covariance matrix
of the state vector ξ, using S (m × m), W (m ×m and positive semidefinite) as inputs as well
as the positive integer MaxIter, reflecting the maximum number of iterations to perform, and
the positive real ConvValue, measuring the value when the convergence criterion is satisfied.
The convergence criterion is simply the largest singular value of |γk+1 − γk|; see Matlab’s norm

function. The dimensions of the outputs are:

M: m×m positive semidefinite matrix.
status: Boolean variable which is 0 if the algorithm converged and 1 otherwise.
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When called from KalmanFilter, the first two inputs are given by F and Q, while the maximum

number of iterations and the tolerance value for the function can be determined by the user.51

51 The settings tab in YADA contains options for selecting the doubling algorithm rather than the vectorized solution

technique, and for selecting the maximum number of iterations and the tolerance level for the algorithm. The default

values are 100 and 1.0e-8.

– 110 –



6. Parameter Transformations

If some of the parameters in θ have a gamma, inverted gamma, left truncated normal, or Pareto
prior distribution, then the support for these parameters is bounded from below. Similarly, if
some of the θ parameters have a beta or uniform prior distribution, then the support is bounded
from below and above. Rather than maximizing the log posterior of θ subject to these bounds
on the support, it is common practise to transform the parameters of θ such that the support
of the transformed parameters is unbounded. Before turning the attention to posterior mode
estimation, the discussion will first consider the parameter transformation that YADA can apply.

6.1. Transformation Functions for the Original Parameters

For the p1 parameters with a gamma, inverted gamma, left truncated normal, or Pareto prior
distribution, denoted by θ1, the transformation function that is typically applied is the natural
logarithm

φi,1 = ln
(
θi,1 − ci,1

)
, i = 1, . . . , p1, (6.1)

where ci,1 is the lower bound. Please note that YADA sets the lower bound of the Pareto distri-
bution to c+ b, where c is the origin parameter and b the location parameter for y = c+ z with
z having lower bound b; cf. equation (4.34).

Letting θ2 denote the p2 parameters of θ with a beta or uniform prior distribution, the trans-
formation function is the generalized logit

φi,2 = ln

(
θi,2 − ai

bi − θi,2

)
, i = 1, . . . , p2, (6.2)

where bi > ai gives the upper and the lower bounds.52 The remaining p0 parameters are given
by φ0 = θ0, while φ = [φ′

0 φ
′
1 φ

′
2]′ and θ = [θ′0 θ

′
1 θ

′
2]′. The overall transformation of θ into φ

may be expressed as φ = g(θ), where g(θ) is a vector of monotonic functions.53

We can likewise define a transformation from φ back into θ by inverting the above relations.
That is,

θi,1 = exp
(
φi,1
)

+ ci,1, i = 1, . . . , p1, (6.3)

and

θi,2 =
ai + bi exp

(
φi,2
)

1 + exp
(
φi,2
) , i = 1, . . . , p2, (6.4)

while θ0 = φ0. The full transformation can be expressed as θ = g−1(φ).

6.2. The Jacobian Matrix

When the φ parameters are used for evaluating the posterior distribution, it should be noted
that the log-likelihood function is invariant to the transformation, i.e., p(Y |θ) = p(Y |g−1(φ)) =
p(Y |φ). Next, the value of the joint prior density p(φ) can be determined in the usual way by
using the fact that φ = g(θ); recall Section 4.2.1. That is, we need to take the Jacobian in the
transformation into account.

Since the individial parameters are assumed to be independent, the prior density of θ is equal
to the product of the marginal prior densities for each individual θ parameter. Moreover, since
the matrix with partial derivatives of θ with respect to φ is diagonal and equal to the inverse
of the matrix with partial derivatives of φ with respect to θ, it follows that the individual φ
parameters are also a priori independent, that the individual Jacobians are given by∣∣∣∣

1

g′
(
g−1
(
φi,j
))
∣∣∣∣ =

∣∣∣∣
dθi,j

dφi,j

∣∣∣∣ , i = 1, . . . , pj and j = 0,1,2,

and that p(φ) is equal to the product of the individual φ prior densities.

52 We may think of this transformation as a generalized logit since ai = 0 and bi = 1 implies the logit function.

53 There is no need to order the parameters according to their prior distribution. This is only done here for clarifying

reasons. YADA knows from reading the prior distribution input which parameters have a beta, a gamma, etc, prior

distribution.
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For the θ parameters that have a gamma, inverted gamma, left truncated normal, or Pareto
distribution, the log of the Jacobian is simply

ln

(
dθi,1

dφi,1

)
= φi,1, i = 1, . . . , p1. (6.5)

For the θ parameters with a beta or a uniform prior, the log of the Jacobian is

ln

(
dθi,2

dφi,2

)
= ln

(
bi − ai

)
+ φi,2 − 2 ln

(
1 + exp(φi,2)

)
, i = 1, . . . , p2. (6.6)

Finally, for the θ parameters with a normal, Student-t (and Cauchy), logistic, or Gumbel prior
the log of the Jacobian is zero since dθi,0/dφi,0 = 1.

Notice that the Jacobians are positive for all parameter transformations and, hence, each
Jacobian is equal to its absolute value. The sum of the log Jacobians in equations (6.5) and
(6.6) should now be added to the log prior of θ, evaluated at θ = g−1(φ), to obtain the value of
the log prior of φ; cf. equation (4.3) in Section 4.2.1.

6.3. YADA Code

YADA has four functions that handle the parameter transformations discussed above. The
φ = g(θ) mapping is handled by ThetaToPhi, the θ = g−1(φ) mapping by PhiToTheta, while
logJacobian takes care of calculating the log of the Jacobian. In addition, there is a function
(PartialThetaPartialPhi) that computes the matrix with partial derivatives of θ with respect
to φ.

6.3.1. ThetaToPhi

The function ThetaToPhi calculates the mapping φ = g(θ). It requires the inputs theta, the
θ vector; thetaIndex, a vector with the same length as θ with unit entries for all parameters
that have a gamma, an inverted gamma, a left truncated normal, or a Pareto prior distribu-
tion, with zero entries for all parameters with a normal, a Student-t, a Cauchy, a logistic, or a
Gumbel prior, with 2 for the beta prior, and 3 for the uniform prior; UniformBounds a matrix
with lower and upper bounds of any uniformly and beta distributed parameters (for all other
parameters the elements are 0 and 1); and LowerBound, a vector of the same length as θ with
the lower bound parameters ci,1; see also Section 7.4 regarding the function VerifyPriorData.
The output is given by phi.

6.3.2. PhiToTheta

The function PhiToTheta calculates the mapping θ = g−1(φ). It requires the inputs phi, the φ
vector; thetaIndex; UniformBounds; and LowerBound. The output is given by theta.

6.3.3. logJacobian

The function logJacobian calculates the sum of the log of the Jacobian for the mapping θ =
g−1(φ). It requires the inputs phi, the φ vector; thetaIndex; and UniformBounds. The output
is given by lnjac.

6.3.4. PartialThetaPartialPhi

The function PartialThetaPartialPhi calculates the partial derivatives of θ with respect to φ.
The required input is phi, thetaIndex, and UniformBounds. The output is given by the diagonal
matrix ThetaPhiPartial. This function is used when approximating the inverse Hessian at the
posterior mode of θ with the inverse Hessian at the posterior mode of φ.
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7. Computing the Posterior Mode

The estimation of the posterior mode is either performed using the transformed parameters φ
or the original parameters θ. Letting m be their common dimension, the posterior mode of φ
can be expressed as:

φ̃ = arg max
φ∈Rm

(
lnL
(
Y ; g−1(φ)

)
+ lnp

(
g−1(φ)

)
+ ln J

(
φ
)

+ lnp
(
Φω|g−1(φ), h

))
. (7.1)

The matrix Y represents the observed data, L(·) is the likelihood function, θ = g−1(φ), while
J(φ) is the determinant of the (diagonal) Jacobian; cf. Section 4.2.1. The posterior estimate of

θ is then given by θ̄ = g−1(φ̃).
Similarly, the posterior mode of θ is given by

θ̃ = arg max
θ∈Θ

(
lnL
(
Y ; θ

)
+ lnp

(
θ
)

+ lnp
(
Φω|θ, h

))
, (7.2)

where Θ ⊂ R
m. In Section 7.1 we shall discuss when the posterior estimate θ̄ is close to the

posterior mode θ̃.
In case the user has provided a system prior file, this file determines lnp(Φω|θ, h); see Sec-

tion 4.4. If the prior does not include a system prior part, but simply the marginal prior p(θ),
then lnp(Φω|θ, h) = 0 for all θ and therefore drops out of the optimization problem.

The actual optimization of the log posterior of φ or θ is performed numerically in YADA. The
user can choose between Christopher Sims’ csminwel routine, Marco Ratto’s newrat, Dynare’s
gmhmaxlik, and Matlab’s fminunc (provided that the Optimization Toolbox is installed and
YADA-related diff-files have been taken into account) and whether the transformed parame-
ters (φ) or the original parameters (θ) should be targetted. All these optimization routines
provide an estimate of the posterior mode of the targetted parameters and of the inverse Hes-

sian at the mode, denoted by Σ̃.54 The inverse Hessian at the mode is one candidate for the
covariance matrix of the proposal density that the random walk Metropolis algorithm discussed
in Section 8.1 needs for generating candidate draws from the posterior distribution of φ and of
θ.

Note that the YADA specific version of fminunc is not supplied with the public version
of YADA. Moreover, the original Matlab version of fminunc is not supported by the poste-
rior mode estimation routine in YADA since it uses an edited version of the function (named
YADAfminuncx, where x should be replaced with 5 or 7). The YADA specific version has some
additional output fields and also supports a progress dialog. To make it possible for users that
have Matlab’s Optimization Toolbox installed to use fminunc for posterior mode estimation in
YADA, diff-files are available for download from the YADA website. In addition, instructions on
how to make use of the diff-files are provided in the YADA help file.55

7.1. Comparing the Posterior Modes

The posterior estimate θ̄ based on the posterior mode of φ in (7.1) is approximately equal to the
posterior mode of θ in (7.2) provided that either the data is informative about the parameters
or the log Jacobian is constant; for the transformations in Section 6 the Jacobian is constant
when θ = φ. While the latter case is obvious, the former has a large sample explanation. That
is, once the likelihood dominates in the posterior over the prior for all elements of θ (and φ),

the posterior estimate θ̄ is almost equal to the mode of p(θ|Y) for finite T , with equality holding
asymptotically.

To show that θ̄ need not be the mode of p(θ|Y), consider for simplicity a one parameter
problem where φ = ln(θ), while θ ∼ G(a, b), with a > 1. For this case we know that the

prior mode of θ is θ̃ = b(a − 1); cf. Section 4.2.3. This corresponds to the prior estimate

φ̄ = ln(b(a − 1)). We may then ask if φ̄ is also the mode of p(φ).

54 The Matlab function fminunc actually produces an estimate of the Hessian at the mode.

55 The YADA website is located at: http://www.texlips.net/yada/. The YADA help file can also be read there.
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The prior density of φ can be found using the result in Section 4.2.1. This means that

p(φ) =
1

Γ(a)ba
exp
(
φ
)a

exp

(
−

exp
(
φ
)

b

)
.

This density resembles an extreme value distribution where, for instance, a = 1 yields a Gumbel
distribution (for ϕ = −φ) with location parameter µ = 0 and scale parameter σ = b; see

Section 4.2.11. It is straightforward to show that the mode of the density is φ̃ = ln(ab). This

translates to the prior estimate θ̄ = ab and, hence, the mode of p(θ) is not equal to the value of
θ = exp(φ) when φ is evaluated at the mode of p(φ).

Furthermore, we know that the posterior distribution of θ is equal to its prior distribution
when the data is not informative about the parameter θ. Similarly, the posterior distribution
of φ is also equal to its prior in this case and since the distributions have different modes, it
follows that the posterior distributions do as well.

One implication of this is that it may be useful to perform the optimum check discussed in

Section 7.2 also for the original parameters. Should the posterior estimate θ̄ = g−1(φ̃) be close
to the posterior mode for θ for all parameters, it suggests that the likelihood may be dominating

and, hence, that the data may be informative about all the parameters.56 On the other hand,
if the posterior mode of some element of θ appears to be far away from its posterior estimate

using θ̄, then the data is unlikely to be informative about this parameter. Hence, not only can
the plots of the log posteriors be useful when tuning a proposal density, but it may also be
informative about identification issues.

7.2. Checking the Optimum

In order to check if the value φ̃ is a local optimum, YADA makes use of some tools suggested
and originally coded by Mattias Villani. For each element φi of the vector φ a suitable grid with

d elements is constructed from the lower and upper bounds (φ̃i − cΣ̃1/2
i,i , φ̃i + cΣ̃1/2

i,i ), where

c > 0 and Σ̃i,i is element (i, i) of Σ̃, the inverse Hessian of the log posterior at the mode. Let φ−i
be a vector with all elements of φ except element i. For each φi in the grid, the log posterior is

evaluated at (φi, φ̃−i). For parameter φi this provides us with d values of the log posterior of φi
conditional on φ̃−i.

One proposal density that YADA can use for posterior sampling is N(φ, Σ̃), where the value
of φ is determined from the previous draw from the posterior. Since the computed values of the
log posterior of φi are conditional on all parameters being equal to their values at the posterior
mode, it is natural to compare them to a conditional proposal density for φi. For the grid values
of φi that were used to calculate the conditional log posterior values of the parameter, one such

density is the log of the normal density with mean φ̃i and variance Ω̃i|−i = Σ̃i,i − Σ̃i,−iΣ̃−1
−i,−iΣ̃−i,i.

The vector Σ̃i,−i is equal to the i:th row of Σ̃ with element i removed. Similarly, the matrix Σ̃−i,−i
is obtained by removing row and column i from Σ̃.

We can also estimate the variance of a conditional proposal density by running a regression

of the log posterior values on a constant, φi, and φ2
i
. The estimated variance is now given by

the inverse of the absolute value of two times the coefficient on φ2
i . A modified proposal density

can now be evaluated for each φi by using the log of the normal density with mean φ̃i and

variance given by the estimate in question.57

56 Note that this does not imply that the data is informative. It is possible that the prior mode of θ is close to the

mode of the prior for φ. In the one parameter example, large values for b imply that θ̄ is close to θ̃.

57 Such an estimated conditional variance can also be transformed into a marginal variance if, e.g., we are willing

to use the correlation structure from the inverse Hessian at the posterior mode. Let C = Σ ⊖ ςς′, where ⊖ denotes

element-by-element division, and ς is the square root of the diagonal of Σ. Let Ωi|−i be the conditional variance, while

Σi,i is the marginal variance. For a normal distribution we know that Ωi|−i = Σi,i − Σi,−iΣ
−1
−i,−iΣ−i,i. This relationship

can also be expressed through the correlation structure as Ωi|−i = (1 − Ci,−iC
−1
−i,−iC−i,i)Σi,i. Hence, if we have an

estimate of the conditional variance Ωi|−i and the correlation structure C, we can compute the marginal variance Σi,i
by inverting this expression.
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Figure 3. Plot of the conditional log posterior density around the estimated pos-
terior mode along with two conditional proposal densities (left) and
the log-likelihood (right) for the parameters τ , ρG, and σZ.
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Using these ideas, the 3 plots to the left in Figure 3 provides graphs of the conditional log
posterior density (blue solid line) of the parameters τ , ρG, and σZ from the An and Schorfheide
model in Section 17. The transformed (φ) space for the parameters is used here, i.e., the log of
τ and σZ and the logit of ρG. Since the support for φ is the real line, it is seems a priori more
likely that a normal distribution can serve well as a proposal density for φ than for θ, where,
for instance, ρG is restricted to be the 0-1 interval; cf. Section 6. The red dotted line shows the
normal approximation of the log posterior using the posterior mode as mean and conditional
variance based on the inverse Hessian at the mode. The green dashed line is similarly based on
the normal approximation with the same mean, but with the conditional variance estimated as
discussed in the previous paragraph.

It is worth noticing from the Figure that the normal approximations based on the inverse
Hessian and on the modification are close to the log posterior for all these parameters except
for ρG. In the case of ρG, however, these differences seem to be particularly severe and indicates

that if the proposal density has the inverse Hessian, Σ̃, as its covariance matrix, then it may take
a long time before the support of ρG is sufficiently covered. By comparison, the proposal density
based on the modification lies closer to the log posterior and is therefore a better approximation.

The posterior mode checking facilities in YADA also produces a second set of plots. These
graphs operate over the same grid as those discussed above, but instead of studying proposal
densities they plot the log-likelihood against the log posterior over the grid for each parameter.
To avoid scaling problems in the graphs, YADA adds the value of the log prior at the mode to
the log-likelihood. One important feature of these plots is that potential identification issues
can be detected from the slope of the log-likelihood. Moreover, they give an idea of how far
away a local maximum for the log-likelihood is relative to the local maximum of the posterior
for each parameter.

The 3 plots to the right in Figure 3 provides graphs of the conditional log posterior density
(blue solid line) along with the log-likelihood (red dashed line) for the same 3 parameters. As
mentioned above, the log-likelihood has been scaled such that the value of the log prior at the
mode has been added to each value. For the τ parameter it can be seen that the local maximum
of the log-likelihood gives a value for τ is somewhat smaller than the posterior mode value,
while the local maximum of the log-likelihood for σZ is very close to the posterior mode. It is
also noteworthy that the log-likelihood for ρG is increasing for values of this parameter that are
greater than the posterior mode value, but that the slope is rather flat. This suggests that at
least locally this parameter is not well identified. This is also supported by the result that the
prior mode of ρG (11/13 ≈ 0.8462) is very close to the posterior estimate (0.8890).

– 115 –



7.3. A Monte Carlo Based Optimization Routine

There are situations when it may be difficult to locate a suitable posterior mode through stan-
dard numerical optimization routines. The posterior distributions samplers discussed in, e.g.,
Section 8 do not necessarily need an estimate of the posterior mode and the inverse Hessian at
the mode in order to be applied. What is needed is a suitable covariance matrix for the jumping
distribution. At the same time, YADA requires that some estimate of the posterior mode exists
in order to run these posterior samplers.

Since at least version 4, Dynare includes a Monte Carlo based routine that attempts to locate
a parameter point with a high posterior probability through simulation. Based on a simple
selection procedure, similar to the random walk Metropolis routine considered in Section 8.1,
the Monte Carlo optimization procedure requires only a suitable proposal density. Specifically,
let this density be given by

ϕ(s) ∼ Nm(φ(s−1), c2Σφ), s = 1,2, . . . , S, (7.3)

where S is the maximum number of draws to use, m is the dimension of the parameter vector,
c is a positive scale factor, and Σφ is a positive definite matrix. The latter matrix may, e.g., be
diagonal with the prior variances of φ in the diagonal. Should the variances not exists, then the
corresponding element may be replaced with a large constant. Furthermore, the initial value

φ(0) may be taken from the prior distribution information in YADA.

The vector φ(s) can now be updated as in Section 8.1,58 while the posterior mean and poste-
rior covariance matrix are updated according to

µ(s) = µ(s−1) + (1/s)
[
φ(s) − µ(s−1)

]
,

Σ(s) = Σ(s−1) + µ(s−1)µ(s−1)′ − µ(s)µ(s)′

+ (1/s)
[
φ(s)φ(s)′ − Σ(s−1) − µ(s−1)µ(s−1)′] ,

(7.4)

and the posterior mode from

φ̄(s) =




φ(s) if p(φ(s)|Y) > p(φ̄(s−1)|Y),

φ̄(s−1) otherwise.

(7.5)

The Dynare function gmhmaxlik also includes a portion of code that attempts to tune the
scale factor c before it simulates the posterior mean, mode, and covariance matrix. During this
tuning step, the initial value for φ (or θ) also changes as draws are accepted by Monte Carlo
procedure. Moreover, once it has estimated the posterior covariance matrix via (7.4), the dynare
code optionally uses this estimate to first re-tune the scale factor c and thereafter to make a final
attempt of climbing the posterior hill to its peak, i.e.,the mode of the posterior distribution. The
tuning of the scale parameter is for this optional case, as well as for the initial tuning case,
based on a suitable target for the acceptance rate of the simulation procedure; YADA works
with a targeted acceptance rate of 1/4, while the original Dynare function has a target rate of
1/3.

7.4. YADA Code

The posterior mode is computed in YADA by the function PosteriorModeEstimation. The main
inputs for this function are the structures DSGEModel, CurrINI, and controls. The first contains
paths to the user files that specify the log-linearized DSGE model, the prior distribution of its
parameters, the data, the measurement equations, and any parameter functions that should be
dealt with. It also contains information about options for the Kalman filter, the sample to use,
names of observed variables, of exogenous variables, of state variables, and names of the state
shocks, your choice of optimization routine and parameters to target (transformed or original),

58 For the transformed parameters this means that the rule in equation (8.1) is used. For the original parameters

the ratio on the right hand side of the selection rule are replaced with the log posteriors for this parameterization.
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the tolerance value, the maximum number of iterations to consider, as well as some other useful
features.

The CurrINI structure contains data on initialization information needed by YADA. This
structure contains non-model related information, while the DSGEModel structure contains the
model related information. Finally, the controls structure holds handles to all the controls on
the main GUI of YADA.

7.4.1. VerifyPriorData

Based on the input that PosteriorModeEstimation receives, the first task it performs is to
check the data in the prior distribution file. This is handled by the function VerifyPriorData.
Given that the prior distribution data is complete (cf. Section 17.2), this function returns the
prior distribution data in various variables. These variables are given by theta, thetaIndex,
thetaDist, LowerBound, ModelParameters, thetaPositions, PriorDist, ParameterNames, and
UniformBounds.

The vector theta contains the initial values of the parameters to be estimated, i.e., θ. The
vectors thetaIndex and thetaDist have the same length as theta with integer entries indicat-
ing the type of prior distribution that is assumed for each element of theta. The difference
between these two vectors is that thetaIndex indicates the type of transformation that should
be applied to obtain φ, while thetaDist gives the prior distribution. The vector LowerBound

gives the lower bound specified for the parameters in the prior distribution file. This bound is,
for example, used by the parameter transformation function discussed in Section 6.3.

The structure ModelParameters has fields given by the parameter names assigned in the
prior distribution file; see, e.g., Table 2. Each field is assigned a value equal to the initial
value for that parameter. Both estimated and calibrated parameters are given a field in the
ModelParameters structure. Similarly, the vector structure thetaPositions has dimension
given by m, the dimension of θ. Each element in the vector structure has a field parameter

that contains a string with the name of the parameter. The vector structure is constructed such
that thetaPositions(i).parameter gives the name of the parameter in position i of θ.

The structure PriorDist has 11 fields: beta, gamma, normal, invgamma, truncnormal, cauchy,
student, uniform, logistic, gumbel, and pareto. Each such field contains a matrix whose
number of rows depends on the number of parameters assigned a given prior distribution. The
number of columns is 2 for the normal, uniform, gamma, inverted gamma, Cauchy and Gum-
bel, while it is 3 for the left truncated normal, the Student-t, the logistic, and the Pareto; the
third column holds the lower bound for the left truncated normal, the number of degrees of
freedom for the Student-t, and the origin for the Pareto. For the beta distribution, finally,
the matrix has 4 columns, where the last two hold the lower and upper bounds. Columns
1 and 2 have the values of prior parameter 1 and 2 that were given in the prior distribu-
tion file. The PosteriorModeEstimation function later creates 4 new fields in the PriorDist

structure. These fields are beta_ab, gamma_ab, logistic_ab, and gumbel_ab, containing the
(a, b) parameters for the beta (eq. (4.15)) and the gamma (eq. (4.7)) distributions, the loca-
tion, scale and shape parameters (µ, σ, c)) for the logistic distribution, and the location and
scale parameters for the Gumbel distribution (µ, σ). The functions MomentToParamStdbetaPDF,
MomentToParamGammaPDF, MomentToParamLogisticPDF and MomentToParamGumbelPDF, respec-
tively, deal with the transformations from mean and standard deviation (and shape parameter
c for the logistic) to the needed parameters; cf. Section 4.5.

The structure ParameterNames has fields all, calibrated, beta, gamma, normal, invgamma,
truncnormal, uniform, student, cauchy, logistic, gumbel, pareto, and estimated. Each
field returns a string matrix with the parameter names. One field to this structure, additional,
is added by the function ReadAdditionalParameterNames. This term holds a string matrix
with the names of all the new parameters defined in the file with parameters to update; cf.
Section 17.3. Moreover, it extends the string matrix ParameterNames.calibrated with any
new calibrated parameters that YADA has found in the file with parameters to initialize.
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Finally, the matrix UniformBounds has dimension m × 2. For all prior distributions but the
uniform and the beta each row has 0 and 1. For the uniform and the beta the rows have the
lower and the upper bounds.

7.4.2. logPosteriorPhiDSGE

Since csminwel, newrat, and fminunc are minimization routines, the function to minimize when
transformed parameters are targetted by the optimizer is given by minus the expression within
parenthesis on the right hand side of (7.1); this function is called logPosteriorPhiDSGE in
YADA. Before attempting to minimize this function, YADA runs a number of checks on the user
defined functions. First of all, all user defined Matlab functions are copied to the tmp directory
to make sure they are visible to Matlab.

Second, YADA attempts to run the user defined Matlab functions. The first group contains
any functions with additional parameters that the user has included in the model setup; cf.
Section 17.3. Given that such functions exist, the order in which they are executed depends
on the user input on the DSGE Data tab on the YADA GUI; see Figure 8. If both types of
additional parameter files exist, the order is determined by the data in the checkbox “Run file
with parameters to initialize before file with parameters to update”. The execution of additional
parameters updates the ModelParameters structure with fields and values.

Given that these files are executed without errors (or that they do not exist), the following
step is to check the validity of the measurement equation function; cf. Section 17.4. Assuming
this function takes the necessary input and provides the necessary output (without errors),
YADA then tries to solve the DSGE model; see Section 3.5. If the model has a unique convergent
solution at the initial values (see Section 3.1), YADA proceeds with the final preparations for
running the optimization routine. If not, YADA returns an error message, reporting which
problem AiM discovered.

The final preparations first involves collecting additional parameters into the ParameterNames

structure in the field additional. Next, the initial values of the additional parameters as
well as the initial values of the calibrated parameters are located and stored in the vectors
thetaAdditional and thetaCalibrated, respectively. These two tasks are handled by the
functions ReadAdditionalParameterNames and ReadAdditionalParameterValues. Next, the
actual sample to use is determined by running the function CreateSubSample. This sub-sample
does not take into account that the user may have selected a value for the StartPeriod variable
different from tm = 1; see Section 5.17. The choice of StartPeriod is determined by the choice
of “First observation after Kalman filter training sample” on the Settings tab of the YADA dialog.

The last task before the chosen minimization routine is called is to check if the function
that calculates the log posterior returns a valid value at the initial parameter values. The
logPosteriorPhiDSGE function takes 10 input arguments. The first is phi, the transformed
parameters φ. Next, 6 inputs originally created by VerifyPriorData are required. They
are: thetaIndex, UniformBounds, LowerBound, thetaPositions, thetaDist, and the structure
PriorDist. Furthermore, the structure with model parameters ModelParameters, the DSGE
model structure DSGEModel, and the AIMData structure are needed. The latter structure is cre-
ated when the DSGE model is parsed through the AiMInitialize function. That function saves
to a mat-file the outputs from the compute_aim_data function. When this mat-file is loaded into
YADA it creates the AIMData structure with fields having names equal to the output variables
of compute_aim_data. Finally, the variable OrderQZ is needed by the Klein (2000) and Sims
(2002) DSGE model solvers. Recall that this is a boolean variable which is unity if ordqz is a
built-in Matlab function (true for version 7 and later) and zero otherwise. Furthermore, the
choice of DSGE model solver is determined by the setting in the DSGE Model Data frame on the
DSGE Data tab; see Figure 8.

Based on this input the log posterior evaluation function logPosteriorPhiDSGE first trans-
forms φ into θ by calling PhiToTheta. Next, it makes sure that ModelParameters is cor-
rectly updated for the parameters that are estimated. This is achieved through the function
ThetaToModelParameters. Apart from ModelParameters it needs theta and thetaPositions
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to fulfill its task. With ModelParameters being updated for the estimated parameters, any re-
maining parameters are reevaluated next, i.e., the user defined function with parameters to
update.

With the parameter point determined, the log-likelihood function is examined and evalu-
ated if the parameter point implies a unique convergent solution for the DSGE model and
the state vector is stationary (the largest eigenvalue of F is inside the unit circle). The func-
tion logLikelihoodDSGE deals with the calculation. The inputs for the function are the three
structures ModelParameters, DSGEModel, and AIMData. The function returns three variables:
logLikeValue, the value of the log-likelihood; mcode, indicating if the DSGE model has a
unique convergent solution or not; and status, a boolean variable, indicating if the F ma-
trix in the state equation (5.2) has all eigenvalues inside the unit circle or not. Given that mcode
is 1 and that status is 0, the value of the log-likelihood is considered valid. If either of these
variables returns a different value, the function returns 1000000, otherwise it proceeds with the
evaluation of the log of the prior density at θ = g−1(φ) through logPriorDSGE and, if the prior
density value is not a NaN, the log of the Jacobian. The latter function is given by logJacobian,
presented in Section 6.3. If the log prior density value is NaN, then logPosteriorPhiDSGE again
returns 1000000. Otherwise, the function checks if the user has a system prior by examining
the DSGEModel field SystemPriorFile. If such an additional prior exists, it computes the log
height of this user written density function and checks if the value is valid or not. Should the
value be NaN, then logPosteriorPhiDSGE once again returns 1000000, otherwise it returns mi-
nus the sum of the log-likelihood, the log prior density, the log Jacobian, and the log system
prior density. The latter value is always 0 when the model does not have a system prior.

In addition to the mandatory logPost output variable, the logPosteriorPhiDSGE function
also supports the optional logLike output variable. It is equal to NaN when logPost returns
1000000, and to logLikeValue when all computations could be carried out successfully.

7.4.3. logPosteriorThetaDSGE

The function logPosteriorThetaDSGE works in a very similar way as logPosteriorPhiDSGE.
One difference is, of coursem that it takes the input vector theta with the original parameters
instead of phi. Another difference is that the log posterior for the original parameters takes the
input variable ParameterBounds instead of UniformBounds. This matrix has two columns with
the lower and upper bounds for the parameters in theta. Finally, the output variable logPost is
equal to the sum of the log likelikhood, the log prior of theta, and the log value of any system
prior (default is 0). In all other respects, the two log posterior functions are equal.

7.4.4. logLikelihoodDSGE

The function logLikelihoodDSGE directs the main tasks when using the DSGE model for com-
puting the log-likelihood with a Kalman filter; see, e.g., Section 5.4. The inputs are, as already
mentioned, the three structures ModelParameters, DSGEModel, AIMData, and the boolean vari-
able OrderQZ.

First, logLikelihoodDSGE runs either the AiMSolver, the KleinSolver or the SimsSolver

function. Given that it returns an mcode equal to unity and AiM is used to solve the model,
the AiMtoStateSpace function is executed. This provides us with the data to determine F and
Q (B0) that the Kalman filter needs. Next, the measurement equation function is executed to
obtain the A, H, and R matrices for the current value of the parameters. These five matrices
are collected into the output variable Solution, a structure where the fields are named after
the matrices, such as Solution.A gives the value of A, Solution.H gives H, and so on until
Solution.B0 gives B0. Once this task is completed, the appropriate Kalman filter function is
executed, yielding the outputs logLikeValue and status. Optionally, the function will also
provide the time t values of the log-likelihood in the vector logLikeT.
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7.4.5. logPriorDSGE

The function logPriorDSGE computes the log height of the joint prior density function at a
given value of θ. It requires the four inputs theta, thetaDist, PriorDist, and LowerBound. If
the value of log prior density is not a real number, logPriorDSGE returns NaN.

7.4.6. System Prior File

If the user has provided a system prior file, it’s full path and name is stored in the field
SystemPriorFile of the DSGEModel structure. This must be a function which takes the six
input variables theta, thetaPositions, ModelParameters, AIMData, DSGEModel, and OrderQZ.
The last input variable is simply a boolean variable which is true if the built-in matlab function
ordqz is available; see Warne (2017) concerning the function SolveDSGEModel. The solution of
the DSGE model is often stored in DSGEModel.Solution and may therefore be directly accessed
inside the system prior file.

The function should only provide one output variable, which measures the log height of the
system prior density. Since the variable name is local to the function it can be called anything,
such as logSP.

7.4.7. YADAcsminwel

Given that the user has chosen to use Christopher Sims’ csminwel function, the YADA imple-
mentation YADAcsminwel is utilized to minimize either the function logPosteriorPhiDSGE or
logPosterioThetaDSGE. If the optimization algorithm converges within the maximum number
of iterations that the user has selected, YADA makes use of the main output variables from this
function. First of all, the vector phiMode or thetaMode is collected. Furthermore, the value of
(minus) the log posterior at the mode is saved into LogPostDensity, while the inverse Hessian
is located in the variable InverseHessian. In case the log posterior of φ is used for estimation
then the mode of θ is obtained from the parameter transformation function PhiToTheta.

If, for some reason, csminwel is unable to locate the mode, YADA presents the return code
message of csminwel indicating what the problem may be.

7.4.8. YADAnewrat

When Marco Ratto’s newrat function has been selected, the YADA implementation YADAnewrat

is utilized to minimize either the function logPosteriorPhiDSGE or logPosterioThetaDSGE.
Since newrat uses an outer product gradient for calculation the Hessian, newrat requires values
of the log posterior for all time periods in the estimation sample. The additional functions
logPosteriorPhiDSGE4Time and logPosterioThetaDSGE4Time therefore support as a second

output argument a vector logPostT with all time t values of the log posterior.59 The input
variables are identical to those in logPosteriorPhiDSGE and logPosterioThetaDSGE.

7.4.9. YADAgmhmaxlik

When Dynare’s gmhmaxlik Monte Carlo based optimization procedure has been chosen, the
YADA version YADAgmhmaxlik is applied to maximize either minus logPosteriorPhiDSGE or
minus logPosterioThetaDSGE; recall that both these functions are setup for minimization. The
Monte Carlo based simulation scheme that the function uses takes input from the posterior
sampling and the specifics of these inputs are discussed in Sections 8.1 and 8.6.2. The initial
scale factor, c, is taken from the Scale factor for the posterior sampler selection; see also Figure 4.
Moreover, the number is Monte Carlo draws for estimating the posterior covariance matrix
in equation (7.4) is equal to the number of posterior draws per chain minus the number of
posterior draws discarded as burn-in period. As initial values for the posterior mean and the
posterior covariance matrix YADA supplies the function with estimates based on draws from the
prior distribution.

59 The original version of newrat in Dynare expects function names ending with _hh. This has been changed in

YADAnewrat to 4Time.
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The function works in four different steps. First, it tunes the scale factor c such that the ac-
ceptance rate is close to the targeted rate of 1/4. The posterior mode estimate is also updated
as in equation (7.5) during this step, but the posterior mean and covariance matrix are not con-
sidered. The maximum number of parameter draws during this stage is equal to the minimum
of 200,000 and 10 times the number of Monte Carlo draws. Second, based on this tuned scale
factor and the initial covariance matrix, the posterior mean and posterior covariance matrix are
estimated via (7.4) using the number of selected Monte Carlo draws, with the posterior mode
estimate again being updated as in equation (7.5).

Third, the scale factor c is retuned based on the estimated posterior covariance matrix. This
step is otherwise the same as the first, with the posterior mode estimate being updated using
the rules of the sampler and equation (7.5). Once retuning has finished, the last step involves
an attempt to climb the summit of the of the log posterior. The maximum number of parameter
draws is the same as during step one and three with the same covariance matrix as in step
three, but now all draws are accepted as possible mode candidates and only the test in (7.5)
is applied. The scale factor is also retuned during this last step to cool down the system as it
comes closer to the summit of the log posterior.

7.4.10. YADAfminunc*

YADA has three versions of Matlab’s fminunc at its disposal. For Matlab versions prior to ver-
sion 7, an older fminunc function is called: it is named YADAfminunc5 and its original version
is dated October 12, 1999. For version 7 and later, YADAfminunc7 is used, and for Matlab
versions prior to 7.5 it is originally dated April 18, 2005, while for Matlab version 7.5 and
later it is dated December 15, 2006. The YADAfminunc* function attempts to minimize the
function logPosteriorPhiDSGE or logPosteriorThetaDSGE, and if it is successful the vector
phiMode or thetaMode, minus the value of the log posterior at the mode, and the Hessian at the
mode are provided. This Hessian is inverted by YADA and the results is stored in the variable
InverseHessian. In case the log posterior of φ is used for estimation then the mode of θ is
obtained from the parameter transformation function PhiToTheta.

Again, if YADAfminunc* fails to locate the posterior mode within the maximum number of
iterations, the return code message of fminunc is presented.

YADAfminunc* is only available in the version of YADA that is exclusive to the New Area-Wide
Model team at the European Central Bank. As mentioned in Section 7, the publicly available
version of YADA does not include these functions. Instead, diff-files are provided from the YADA
website. These files provide the information the user needs to properly edit some files from the
Optimization Toolbox such that fminunc can be used in YADA. It should be emphasized that the
original files from the Optimization Toolbox should not be edited, only copies of them that are
subject to the names changes required by YADA.

– 121 –



8. Posterior Sampling

8.1. The Random Walk Metropolis Algorithm

The Random Walk Metropolis (RWM) algorithm is a special case of the class of Markov Chain
Monte Carlo (MCMC) algorithms popularly called Metropolis-Hastings algorithms; see, Hast-
ings (1970) and Chib and Greenberg (1995) for an overview.

The Metropolis version of this MCMC algorithm is based on a symmetric proposal density,
i.e., q(θ∗, θ|Y) = q(θ, θ∗|Y), while the random walk part follows when the proposal density is
symmetric around zero, q(θ∗, θ|Y) = q(θ∗ − θ,0|Y). The random walk version of the algorithm
was originally suggested by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953) and
was first used to generate draws from the posterior distribution of DSGE model parameters by
Schorfheide (2000) and Otrok (2001).

The description of the RWM algorithm here follows An and Schorfheide (2007) closely.

(1) Compute the posterior mode of φ; cf. (7.1) or (7.2). The mode is denoted by φ̃.

(2) Let Σ̃ be the inverse of the Hessian evaluated at the posterior mode φ̃. YADA actually
allows this matrix to be estimated in four different ways and that its correlations are
scaled in a joint fashion towards zero.

(3) Draw φ(0) from Nm(φ̃, c2
0Σ̃), where m is the dimension of φ, and c0 is a non-negative

constant.
(4) For s = 1, . . . , N, draw ϕ from the proposal distribution Nm(φ(s−1), c2Σ̃), where c is

a positive constant. The jump from φ(s−1) is accepted (φ(s) = ϕ) with probability

min{1, r(φ(s−1), ϕ|Y)} and rejected (φ(s) = φ(s−1)) otherwise. The nonnegative func-
tion

r
(
φ,ϕ|Y

)
=
L
(
Y ;ϕ

)
p
(
g−1(ϕ)

)
J
(
ϕ
)

L
(
Y ;φ

)
p
(
g−1(φ)

)
J
(
φ
) , (8.1)

where J(φ) is the determinant of the Jacobian of θ = g−1(φ); cf. Section 6. Fur-
thermore, if the model includes a system prior, then the jump probability in (8.1) is
multiplied by p(Φω|g−1(ϕ), h)/p(Φω |g−1(φ), h). Notice that if the value of the numer-

ator in (8.1) is greater than the denominator, then the jump from φ(s−1) to φ(s) = ϕ is
always accepted.

An important difference between the algorithm described by An and Schorfheide (2007) and
the one stated above is that An and Schorfheide samples θ directly, while YADA samples φ and
transforms it into θ with g−1(φ); see Section 6. The main reason for sampling φ rather than
θ directly is that the support is Φ ≡ R

m for φ (the m-dimensional Euclidean space), while the
support for θ is typically constrained in some dimensions, i.e., Θ ⊂ R

m. Hence, every draw
from the proposal density of φ is an element of Φ, while all draws of θ need to be verified first.
Moreover, this also suggests that the selected proposal density may simply be a better (or not as
bad) approximation of the posterior density when sampling φ directly rather than θ.

8.1.1. Student-t Proposal Density

The above algorithm is based on having a normal proposal density. A simple generalization
of this is to consider a Student-t proposal density with d degrees of freedom; see equation
(4.25) in Section 4.2.9. This density is also symmetric, but has fatter tails than the normal

when d is finite. In step (3) of the RWM algorithm we would then instead draw φ(0) from

Tm(φ̃, c2
0Σ̃, d), while in step (4) we would sample from the proposal density Tm(φ(s−1), c2Σ̃, d).

All other computation of the RWM algorithm are unaffected.

8.1.2. Block Metropolis-Hastings Algorithms

Further extensions of the basic RWM algorithm for DSGE models are discussed by Herbst and
Schorfheide (2016, Chapter 4.4). As the number of parameters grows, the persistence of the
Markov chain tends to increase with the result that the efficiency of the posterior simulator
decreases. One possibility is therefore to split the parameters into separate groups and treat
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the possible updating of the parameters of each group separately. The parameters can either
be split into a fixed number of groups called blocks or into a random number of such blocks.
In addition, the parameters can be assigned to a particular block for all iterations, randomly
assigned to a block initially, or randomly assigned to a block for each iteration; see also Chib
and Ramamurthy (2010). One advantage with blocking is that it tends to lower the correlation
across iterations of the Markov chain since, e.g., not all parameters are necessarily updated in
the same way. A key feature for this to occur is that the blocking procedure is independent of
the Markov chain.

YADA supports two approaches to block Metropolis-Hastings posterior simulation. The first
blocking algorithm has a fixed number of blocks, NB = 2,3, . . . ,m, where for each iteration
the parameters are randomly assigned to a block through a uniform distribution and, as far

as possible, the number of parameters in each block is the same.60 This algorithm, which is
here called fixed-block RWM, is described in Herbst and Schorfheide (2016, Algorithm 7) and
the default value for NB = min{3,m}. This means that each parameter is assigned an iid draw
from U(0,1), the parameters are sorted according to the assigned random number, and given to
block b based on this ordering. For example, if NB = 4 and m = 12, then the three parameters
with the smallest assigned random numbers are placed in block 1, the three parameters with the
4th through 6th smallest random numbers in block 2, etc. The proposal density for each block
is a multivariate Student-t with a fixed number of degrees of freedom db = 1,2, . . . ,∞ and
therefore includes the normal proposal density as a special case. If the number of parameters
divided by the number of blocks, m/NB, is not an integer, the number of parameters per block
is automatically adjusted for the last block by YADA.

The second algorithm, called random-block RWM, allows for a random number of blocks
in each iteration, NB,i, drawn from a discrete uniform distribution over the allowed block size
values {ml,ml + 1, . . . ,mu}, 1 ≤ ml < mu ≤ m such that there are at least two possible
block sizes, and where uniformity means that each block size value is drawn with probability
1/(mu −ml + 1). Given this draw, the placement of parameters into blocks is performed like
in the fixed-block RWM case, while the same proposal densities is also supported.

Let φ
(s)
b

denote the parameters of block b for iteration s of φ, φ
(s)
<b

contains the parameters of

all blocks before b for simulation s, while φ
(s)
>b

similarly contains all the parameters of φ of all

blocks after b. With mb being the dimension of φb, a proposal value for these parameters, de-

noted by ϕb, is drawn from Tmb

(
φ

(s−1)
b

, c2Σ̃b, db
)
, where Σ̃b only contains the rows and columns

of Σ̃ which correspond to the parameters of φb, whereas db ≥ 1.61 The degrees of freedon
parameter db = d−m+mb when the joint proposal for all m parameters has d degrees of free-
dom. Since db ≥ 1 should hold, it follows that d > m−mb is required when selecting d. For the
fixed-block RWM algorithm, this means that d > m − ⌊m/Nb⌋ (where ⌊a⌋ is the floor function

for a), while for the random-block RWM d > m − ⌊m/mu⌋. Letting ϕ =
(
φ

(s)
<b
, ϕ

b
, φ

(s−1)
>b

)
and

φ =
(
φ

(s)
<b
, φ

(s−1)
b

, φ
(s−1)
>b

)
, the draw φ

(s)
b

= ϕ
b

is accepted with probability min{1, r
(
φ,ϕ|Y

)
},

and rejected (φ
(s)
b

= φ
(s−1)
b

) otherwise. The value r
(
φ,ϕ|Y

)
is computed from equation (8.1),

but with the new definitions of φ and ϕ.
For all block-based RWM algorithms, the calculation time for each iteration increases relative

to the standard RWM algorithm since the number of evaluations of the posterior density kernel
is linear in the number of blocks. For instance, we may expect that the fixed 3-block RWM
takes three times as long as the 1-block RWM for each iteration. It may also be noted that the
denominator in equation (8.1) is available from the previous jump probability computation, i.e.,
from the previous block or from the last block of the previous iteration.

60 The case of NB = 1 is already handled through the basic RWM algorithms with a normal or Student-t proposal

density.

61 In theory, the parameters of the other blocks will also enter the expression for the proposal density. However,

given that the joint proposal density is multivariate Student-t with a covariance matrix which does not depend on

the draws, the marginal proposal density for each block does not depend on the parameters of the other blocks.
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The acceptance rate for the blocking algorithms is based on the full set of parameters. This
means that if at least one block has been accepted, then this counts as an acceptance for the
iteration. While it would also be possible to count the number of times any parameter block is
accepted and compare this with the number of times that a proposal draw is made (equal to the
number of blocks times the number of iteration when a fixed number of blocks is used), this
alternative acceptance rate is not measured by YADA.

8.1.3. Numerical Standard Errors

The expected value of any real valued function h(φ) is approximated by N−1
∑N

s=1 h(φ(s)).
Hence, the posterior mean and covariance can be calculated directly from the RWM output.
Furthermore, the numerical standard error of the posterior mean can be calculated using the
Newey and West (1987) estimator.

The numerical standard error of the posterior mean φ̄ is computed as follows. Let N̄ ≤ N
be an integer such that the autocorrelation function for the posterior draws of φ tapers off.
Consider the matrix

Σ̂φ =
1

N

N̄∑

s=−N̄

N̄ + 1 − |s|
N̄ + 1

Γ(s), (8.2)

where

Γ(s) =
1

N

N∑

n=s+1

(
φ(n) − φ̄

) (
φ(n−s) − φ̄

)′
, if s ≥ 0,

and Γ(s) = Γ(|s|)′ when s ≤ −1. The numerical standard error of φ̄ is given by the square root

of the diagonal elements of Σ̂φ. The matrix Σ̂φ has the usual property that it converges to 0 in

probability as N → ∞ when the Markov chain that has generated the φ(s) sequence is ergodic;
see, e.g. Tierney (1994).

8.2. The Slice Sampling Algorithm

One drawback with Metropolis-Hastings algorithms is that they require quite a lot of tuning
to work well. Tuning involves the selection of a proposal density and its parameterization. If
the proposal density is a poor approximation of the posterior distribution, convergence of the
sampler may be very slow or, even worse, the sampler may not cover important subsets of the
support for the posterior distribution.

The issue of convergence of the MCMC sampler is covered in Section 9 and the tools discussed
there apply to any MCMC sampler. Assuming that, for instance, the RWM sampler has converged
we may nevertheless find that it is not very efficient. In particular, a large number of draws
may be required to achieve convergence due to high serial correlation in the MCMC chain. To
examine how efficient the sampling algorithm is, variance ratios, such as the inefficiency factor,
can be computed from draws of the individual parameters as well as for the value of the log

posterior; see, e.g., Roberts (1996, Section 3.4).62

An MCMC sampler that requires less tuning and which relies on standard distributions is the
so called slice sampler. This sampler is based on the idea that to sample a random variable one
can sample uniformly from a region under a slice of its density function; Neal (2003). This idea
is particularly attractive for models with non-conjugate priors, such as DSGE models, since for
the region under the slice to be unique the height of the density need only be determined up to
a constant.

To formalize the idea of slice sampling we shall first consider the univariate case. Let f(x) be
proportional to the density of x, denoted by p(x). A slice sampling algorith for x follows these
steps:

62 The inefficiency factor is equal to the ratio between the variance of the draws when autocorrelation is taken into

account and the variance under the assumption that the draws are iid. That is, the inefficiency factor is equal to 1

plus 2 times the sum of the autocorrelations. For serially correlated processes this factor is greater than unity, and

the larger its value is the more inefficient the sampler is. Roberts (1996) considers the inverse of this ratio, i.e., the

efficiency factor, which YADA presents as RNE (relative numerical efficiency); see also Geyer (1992).
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(1) Draw y from U(0, f(x0)), where x0 is a value of x such that f(x0) > 0. This defines
the horizontal slice: S = {x : y < f(x)}, where by construction x0 ∈ S.

(2) Find an interval, I = (L,R), around x0 that contains all, or much, of the slice.
(3) Draw a new point, x1, uniformly from the part of the slice within I.

Notice that the horizontal slice S is identical to the slice S∗ = {x : y∗ < p(x)}, where y∗ ≡
(p(x0)/f(x0))y.

The first step of the sampler involves the introduction of an auxiliary variable, y, which need
not be stored once a new value of x has been drawn. It only serves the purpose of determining a
lower bound for f(x), i.e., we are only interested in those values of x, on the horizontal axis, for
which f(x) is greater than y. The difficult step in the algorithm is the second, where a suitable

interval on the horizontal axis needs to be determined.63 Unless the interval I is identical to S,
the third step in the algorithm may require that the function f(x) is evaluated more than once
per iteration.

A multivariate case using hyperrectangles is described by Neal (2003, Section 5.1). The three
steps given above are still valid, except x is now m-dimensional, and the interval I is replaced
by the hyperrectangle H = (L1, R1) × · · · × (Lm, Rm). Let σi be scale estimates for each variable
i = 1, . . . ,m while x0 is the previous value of x. The multivariate slice sampler based on
hyperrectangles can be implemented as follows:

(1) Draw y from U(0, f(x0));
(2) Randomly position H: let ui ∼ U(0,1), Li = x0,i−σiui, and Ri = Li+σi for i = 1, . . . ,m;

and
(3) Sample from H, shrinking when points are rejected: (a) let x1,i = Li + vi(Ri − Li),

vi ∼ U(0,1) for i = 1, . . . ,m; (b) if f(x1) > y then exit loop, else let Li = x1,i if
x1,i < x0,i and Ri = x1,i, i = 1, . . . ,m, otherwise and return to (a) with new H.

Notice that this algorithm does not take dependencies between xi and xj into account and,
hence, there is room for improvements; see Neal (2003) and the discussion for more details
on more elaborate multivariate slice samplers. Convergence properties of slice samplers are
considered in Mira and Tierney (2002) and Roberts and Rosenthal (1999), while Roberts and
Tweedie (1996) considers convergence for Metropolis-Hastings samplers.

In practise, it is often not suitable to evaluate f(x) since problems with floating-point un-
derflow are likely to appear. To alleviate this issue we instead focus on ln(f(x)), where the
auxiliary variable y is replaced with z = ln(y) = ln(f(x0)) − ǫ, and where ǫ is exponentially
distributed with mean one. That is, ǫ ∼ E(1); cf. Section 4.2.3. The slice is now given by

S = {x : z < ln(f(x))}.64

Moreover, the above method shrinks the hyperrectangle in all dimensions until a point is
found inside the slice, even if the density is relatively flat in some of the dimensions, thereby
making shrinkage in these dimensions unnecessary. Neal (2003) has suggested that one way
to avoid this is to only shrink in one dimension, determined by the gradient of the density.
Specifically, the shrinkage dimension i is chosen such that (Li−Ri)|∂ ln f(x)/∂xi| is maximized
when the gradient is evaluated at the last chosen point (x0).

The slice sampler that has been implemented in YADA uses the hyperrectangle approach with
shrinkage in one dimension only. Let f(φ) = L(Y ;φ)p(g−1(φ))J(φ), gi = ∂ ln f(φ)/∂φi, and

σi = c
√

Σ̃ii for i = 1, . . . ,m, where Σ̃ii is the i:th diagonal element of the inverse Hessian at the
mode and c > 0. The initialization of the slice sampler is performed in the same way as for
the RWM algorithm, i.e., steps 1–3 in Section 8.1. For s = 1, . . . , N the slice sampler continues
with:

63 Draws from a normal distribution can be produced with this algorithm. Specifically, given a value for x draw

y uniformly from [0, exp(−x2/2)/
√

2π]. Define the upper bound of the horizontal slice by R =
√
−2 ln(y

√
2π),

while L = −R. Finally, draw x uniformly from [L, R].

64 The exponential distribution with mean µE has cdf F(z|µE) = exp(−z/µE). To sample from this distribution we

set the cdf equal to p ∼ U(0,1) and invert the expression, so that z = −µE ln(p). Notice that when y ∼ U(0, f(x0))
it follows directly that y/f(x0) ∼ U(0,1). Hence, lny − ln f(x0) = ln(p), where p ∼ U(0,1).
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(4) Let z = ln(f(φ(s−1))) − ǫ, where ǫ ∼ E(1);

(5) Randomly position H: let ui ∼ U(0,1), Li = φ
(s−1)
i − σiui, and Ri = Li + σi for i =

1, . . . ,m; and
(6) Sample from H, shrinking when points are rejected: (a) let ϕi = Li + vi(Ri − Li),

vi ∼ U(0,1) for i = 1, . . . ,m; (b) if ln(f(ϕ)) > z then φ(s) = ϕ and exit loop, else

let Li = ϕi if ϕi < φ
(s−1)
i and Ri = ϕi otherwise, where i is given by the element that

maximizes (Li − Ri)|gi| when gi is evaluated at φ(s−1), and return to (a) with new H.

8.3. Discussion

The computationally costly part of the slice sampler is the evaluation of the log posterior, while
all other steps can easily be vectorized and dealt with very quickly. It is likely that the log
posterior will be evaluated more than once during an iteration and, for any fixed number of
draws, it therefore takes more time to complete the slice sampler than the single block RWM
algorithm (which only requires one evaluation). However, the slice sampler does not require
much tuning (choice of σi), while the RWM relies on a particular proposal density and its
parameterization. Moreover, it seems less likely that draws from the slice sampler suffer from
a high autocorrelation than those from the single block RWM and, hence, that fewer draws
from the posterior may be required to achieve convergence. In other words, the slice sampler
is potentially more efficient than the single block RWM algorithm, at least for models where
the proposal density of the RWM is poorly chosen. Hence, there may be a trade-off between
sampling efficiency, need for tuning, and the average number of times the log posterior needs
to be evaluated; see Neal (2003) and the discussion to the article.

The multiple block RWM algorithms can potentially lead to lower autocorrelation in the
Markov chain since potentially larger parameter jumps can occur. The cost is that the log
posterior needs to be evaluated as many times as there are blocks per iteration; see Herbst and
Schorfheide (2016) for further discussions on this topic.

The choice of scale parameter, c2Σ̃, under the single and multiple block RWM algorithms is
particularly important. If it is too large, a large propertion of the iterations will be rejected

(φ(s) = φ(s−1)), and if the scale parameter is too small, the RWM will accept nearly all proposed
moves. In both cases, the RWM will be very inefficient. The studies by Gelman, Roberts, and
Gilks (1996b) and Roberts, Gelman, and Gilks (1997) give some theoretical arguments, sup-
ported by simulations, for aiming at acceptance rates of the RWM between 15 and 50 percent,
with the rate decreasing (and inefficiency increasing) as the dimension of the parameter vector
increases. In DSGE models, it is sometimes recommended that the acceptance rate should be
around 25-35 percent. Nevertheless, since the “optimal” acceptance rate depends on the di-
mension of the problem, it is wise to also monitor other properties of the sampler, such as the
inefficiency factor, and its convergence properties. The latter aspect is discussed in Section 9.

8.4. Sequential Monte Carlo Sampling

Importance sampling has long been one of the main algorithms in economerics and statistics for
posterior sampling, but has rarely been applied for DSGE models; see, e.g., Kloek and van Dijk
(1978), DeJong et al. (2000), Geweke (2005), or An and Schorfheide (2007). A key problem
with importance sampling is the selection of a good importance density. The sequential Monte
Carlo (SMC) algorithms considered below rely on the construction of importance densities in a
sequential fashion, starting from the prior distribrution, and where more weight is given to the
likelihood function over the sequence.

SMC algorithms were originally designed to deal with filtering problems in nonlinear state-
space models. Chopin (2002) showed how to make use of particle filtering methods for posterior
inference in static models. SMC methods have been suggested for DSGE models by Creal (2007),
while a recent survey of their use in economics and finance is provided by Creal (2012). The
SMC algorithms in Herbst and Schorfheide (2014, 2016) build on this literature, while the
theoretical underpinnings stem from Chopin (2004).
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The SMC algorithm with likelihood tempering in YADA is based on Herbst and Schorfheide

(2014, 2016) and follows their setup closely.65 Let τn, n = 1,2, . . . , Nτ be a sequence of scalars
that increases with n, where τ1 = 0 and τNτ

= 1. This sequence is called a tempering schedule
and we likewise define a sequence of tempered posteriors as

πn
(
φ
)

=
p
(
Y |φ

)τn
p
(
φ
)

∫
p
(
Y |φ

)τn
p
(
φ
)
dφ

, n = 1,2, . . . , Nτ . (8.3)

From the perspective of system priors, the prior p(φ) may also be conditional on Φω, but has
here been suppressed for notational convenience; see equation (4.37).

Following the standard SMC terminology, the overall number of particles (parameter draws)
is given by N and at any stage the posterior distribution πn(φ) is represented by a swarm of

particles {φ(s)
n ,W

(s)
n }Ns=1, where W

(s)
n are the normalized importance weights assigned to each

particle φ
(s)
n and which satisfy the condition:

N∑

s=1

W
(s)
n = N.

Embarking from the particles of stage n, {φ(s)
n ,W

(s)
n }Ns=1, the SMC algorithm loops through

three steps. Using Chopin’s (2004) terminology, the first step is called correction and it involves
the reweighting of the stage n particles to reflect the density in stage n + 1. The second step is
called selection where a too uneven distribution of particle weights is eliminated by resampling
of the particles when deemed necessary. Finally, the third step is called mutation where the
particles are propagated forward via a Markov transition kernel to adapt the particles to the
stage n + 1 bridge density πn+1(φ).

Once we have reached the end of the tempering schedule, n = Nτ , the set of particles

{φ(s)
Nτ
,W

(s)
Nτ

}Ns=1 provide a particle approximation of π(φ), the posterior distribution. With h(φ)
being a vector valued function of φ (such as the original parameters θ), the Monte Carlo esti-
mate

h̄Nτ ,N =
1

N

N∑

s=1

h
(
φ

(s)
Nτ

)
W

(s)
Nτ
, (8.4)

converges almost surely to Eπ[h(φ)], the expectation of h under the posterior π(φ), subject
to suitable regularity conditions; see, e.g., Geweke (2005). Notice that the weights need to be
used in combination with the parameter draws (like in the standard importance sampling based
Monte Carlo estimate of h) since the draws are obtained from the importance density πNτ−1(φ)
rather than from the approximate posterior density πNτ

(φ).
An alternative to tempering the likelihood function is to construct a sequence of posteriors

by adding observations to the likelihood function; see Del Moral, Doucet, and Jasra (2006) and
Durham and Geweke (2014). In this case

π
(D)
n

(
φ
)

=
p
(
Yτn |φ

)
p
(
φ
)

∫
p
(
Yτn |φ

)
p
(
φ
)
dφ

, n = 1, . . . , Nτ , (8.5)

where Yτn = [y1 · · · yτn], τn ∈ {0,1, . . . , T} with τn < τn+1 for all n < Nτ , τ1 = 0, and τNτ
= T .

Data tempering is particularly attractive in forecasting situations, but is also somewhat less
flexible than likelihood tempering since individual observations are not divisible, with Nτ ≤ T .
Herbst and Schorfheide (2016) point out that this may be important in the early stages of the
SMC sampler where it may be an advantage to add information is small increments.

An interesting application of SMC sampling with data tempering is Lanne and Luoto (2015),
who also suggest running a final nonsequential importance sampling step to be able to more eas-
ily assess the numerical accuracy of the point estimates from the SMC sampler. The basic idea

65 One difference is that YADA samples the transformed parameters, another is that YADA also supports a system

prior, although the procedures in Herbst and Schorfheide (2014, 2016) extend to such priors. Moreover, YADA

supports more efficient resampling algorithms in the selection step, as discussed in Section 8.4.3.
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is to estimate the parameters of the final importance sampling density, a mixture of Student-t
densities, via the EM algorithm (Dempster, Laird, and Rubin, 1977), using the SMC particles as
observations; see Hoogerheide, Opschoor, and van Dijk (2012) for a thorough treatment of the
(final) importance sampling step. Once this importance density has been parameterized, the
standard importance sampling algorithm may be applied, including the calculation of numerical
standard errors for point estimates; see Geweke (2005).

8.4.1. A Generic SMC Algorithm with Likelihood Tempering

The algorithm provided below relies on a number of tuning parameters. Following Herbst

and Schorfheide (2014, 2016), let {ρn}Nτ

n=1 be a sequence of zeros and ones that determine if

particles are resampled in the selection step. Furthermore, let {ζn}Nτ

n=1 be a sequence of tuning
parameters for the Markov transition density in the mutation step. The adaptive choice of these
tuning parameters will be discussed in Section 8.4.2.

(1) Initialization: Set n = 1 such that τ1 = 0. Draw the initial particles from the prior:

φ
(s)
1 ∼ p

(
φ
)

and W
(s)
1 = 1, s = 1, . . . , N.

(2) Recursion: For n = 2,3, . . . , Nτ .
(a) Correction: Reweight the particles from step n − 1 by defining

w̃
(s)
n =

[
p
(
Y |φ(s)

n−1

)]τn−τn−1

,

and

W̃
(s)
n =

w̃
(s)
n W

(s)
n−1

(1/N)
∑N

s=1 w̃
(s)
n W

(s)
n−1

, s = 1,2, . . . , N.

(b) Selection:
(i) If ρn = 1, resample the particles via multinomial (simple random) resampling.

Let {φ̂(s)
n }Ns=1 denoteN draws from the multinomial distribution characterized

by supporting points and weights {φ(s)
n−1

, W̃
(s)
n }Ns=1 and set W

(s)
n = 1 for s =

1, . . . , N.

(ii) If ρn = 0, let φ̂
(s)
n = φ

(s)
n−1

and W
(s)
n = W̃

(s)
n for s = 1, . . . , N.

(c) Mutation: Propagate the particles {φ̂(s)
n ,W

(s)
n }Ns=1 via M steps of a Metropolis-

Hastings algorithm with transition density

φ
(s)
n ∼ Kn

(
φn|φ̂(s)

n ; ζn
)
,

and stationary distribution πn(φ).
(3) End: For n = Nτ , the final importance sampling approximation of Eπ[h(φ)] is given by

equation (8.4).

This generic algorithm is called simulated tempering SMC by Herbst and Schorfheide (2014).

Notice that the weights W
(s)
n are initialized at W

(s)
1 = 1 for all s. An alternative is to initialize

these weights at 1/N, which implies that terms involving summations of weights in the algo-
rithm need to be adjusted accordingly. The choice of weights for the initialization step above
can be motivated from a purely numerical perspective, where for large N the initialization 1/N
is more likely to lead to numerical inaccuracies or overflow.

One interesting feature of the correction step is that it provides a recursive means to estimate
the marginal likelihood. Specifically,

p̂SMC

(
Y
)

=
Nτ∏

n=2

(
1

N

N∑

s=1

w̃
(s)
n W

(s)
n−1

)
. (8.6)

As pointed out by Herbst and Schorfheide (2016), the calculation of this estimate does not
require any additional likelihood evaluations.

Furthermore, the multinomial resampling method in the selection step can be replaced with
stratified, systematic, or residual resampling; see Section 8.4.3. As pointed out by, for example,

– 128 –



Douc, Cappé, and Moulines (2005), the multinomial resampling algorithm produces an unnec-
essarily large variance of the particles. Moreover, ordering of the underlying uniform draws
improves the computational speed considerably.

Before we turn our attention to the selection of tuning parameters ρn and ζn, it should be
noted that the tempering schedule, τn, also needs to be determined. Herbst and Schorfheide
(2014, 2016) suggest to let this schedule be calculated from

τn =

(
n − 1

Nτ − 1

)λ

, n = 1,2, . . . , Nτ , (8.7)

where λ is a bending (tempering schedule) parameter. A large value of λ means that the bridge
distributions, πn(φ), will be very similar and close to the prior when n is small and further
apart as n becomes larger. A value of λ = 2.1 is used by Herbst and Schorfheide (2014) in their
applications and YADA has therefore selected λ = 2 as its default value. According to Herbst and
Schorfheide (2014), a smaller value for λ means that the information from the likelihood will
dominate the prior too quickly, while a too large value leads to some of the bridge distributions
having little usefulness and thereby to unnecessary calculations. For example, Creal (2007) uses
a linear cooling schedule (λ = 1), with the effect that the information contained in p(Y |φ)τ2

dominates the information contained in the prior. For this reason, Creal (2007) initializes the
simulator from a Student-t distribution, centered at the posterior mode. By instead letting
λ > 1, the information from the likelihood can be added more slowly to the bridge distribution.

8.4.2. Adaptive Choice of Tuning Parameters

The algorithm in Section 8.4.1 is based on two sets of tuning parameters that affect the selection
and the mutation steps, respectively. Both sets of parameters are chosen adaptively in YADA, i.e.
the parameters for iteration n are selected on the basis of the particles from previous iterations.

Concerning the first set of tuning parameters, ρn, we follow Herbst and Schorfheide (2014)
and make use of the effective sample size. It is defined as

ESSn =
N

(
1/N

)∑N
s=1

(
W̃

(s)
n

)2
. (8.8)

Notice that if all particles have equal weights, then the effective sample size is N. Moreover, we
let the tuning parameter ρn be determined adaptively such that

ρ̂n = I (ESSn < N/k) ,

where k > 1, while the indicator function I(x < y) is unity if x < y and zero otherwise. The
rule-of-thumb threshold-based value of N/2 is suggested by Herbst and Schorfheide (2014,
2016) and is the default value in YADA. Alternative values of k supported by YADA are those
such that 100/k belongs to the set {10,15,20, . . . ,85,90}. This set therefore determines the
percent of the full sample size (N) where resampling is undertaken during the selection step,
while N/k is the corresponding threshold-based value of the effective sample size.

For the second set of tuning parameters, the implementation of the mutation step in YADA
allows for fixed blocking of parameters with random assignment to blocks (cf. Section 8.1.2),
mixed normal transition densities, adaptive estimation of the mean and covariance matrix for
the normals, and an adaptive determination of the scaling factor for the covariance matrix. The
fixed number of parameter blocks is again denoted by NB, while the parameters that belong to
block b are given by φb. The parameter 0 < α ≤ 1 is the mixing coefficient and M the number
of Metropolis-Hastings steps for the particle mutation.

Furthermore, let φ∗
n and Σ∗

n be a location vector and covariance matrix which are conformable
with φ, while φ∗

n,b
and Σ∗

n,b
are the partitions of φ∗

n and Σ∗
n, respectively, that correspond to

the subvector φn,b for b = 1, . . . , NB. In practice, we replace φ∗
n and Σ∗

n with the importance
sampling estimates:

φ̃n =
1

N

N∑

s=1

φ̂
(s)
n W

(s)
n , Σ̃n =

1

N

N∑

s=1

(
φ̂

(s)
n − φ̃n

)
W

(s)
n

(
φ̂

(s)
n − φ̃n

)′
.
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With cn being a scaling constant, we let the tuning parameters for the mutation step be given
by:

ζn =
[
cn, φ

∗′
n , vech

(
Σ∗
n

)′]′
,

where vech is the operator which stacks the elements of each column on and below the diago-

nal. Before running the SMC algorithm, generate a sequence of random partitions {Bn}Nτ

n=2 of
φ into NB equally sized blocks; as in Section 8.1.2. The mutation step of the SMC algorithm
now proceeds as follows:

(1) For each particle s = 1, . . . , N, step i = 1, . . . ,M, and block b = 1, . . . , NB, let φ
(s)
n,b,i

be

the parameter value of φ
(s)
n,b

in the i:th step, initialized with φ
(s)
n,b,0

= φ̂
(s)
n,b

and let

φ
(s)
n,−b,i =

(
φ

(s)
n,1,i, . . . , φ

(s)
n,b−1,i

, φ
(s)
n,b+1,i−1

, . . . , φ
(s)
n,NB ,i−1

)
.

(2) Generate a proposal draw ϕb from the mixture distribution for step i:

ϕ
b

∣∣∣
(
φ

(s)
n,b,i−1

, φ
(s)
n,−b,i, ζn

)
∼

αN
(
φ

(s)
n,b,i−1

, c2
nΣ

∗
n,b

)
+

1 − α

2
N
(
φ

(s)
n,b,i−1

, c2
ndiag

(
Σ∗
n,b

))

+
1 − α

2
N
(
φ∗
n,b
, c2
nΣ

∗
n,b

)
,

(8.9)

and denote this density by q
(
ϕ
b
|φ(s)
n,b,i−1

, φ
(s)
n,−b,i, ζn

)
.

(3) The proposal draw ϕ
b

is accepted with probability pα such that φ
(s)
n,b,i

= ϕ
b
, and rejected

with probability 1 − pα and such that φ
(s)
n,b,i

= φ
(s)
n,b,i−1

. As usual for Metropolis-Hastings

algorithms, the probability pα is given by

pα = min
{

1, r
(
φ

(s)
n,b,i−1

, ϕ
b

∣∣∣φ(s)
n,−b,i, Y, τn

)}
, (8.10)

where

r
(
φ

(s)
n,b,i−1

, ϕ
b

∣∣∣φ(s)
n,−b,i, Y, τn

)
=

p
(
Y |ϕ

b
, φ

(s)
n,−b,i

)τn
p
(
ϕ
b
, φ

(s)
n,−b,i

)

p
(
Y |φ(s)

n,b,i−1
, φ

(s)
n,−b,i

)τn
p
(
φ

(s)
n,b,i−1

, φ
(s)
n,−b,i

)

×
q
(
φ

(s)
n,b,i−1

|ϕ
b
, φ

(s)
n,−b,i, ζn

)

q
(
ϕ
b
|φ(s)
n,b,i−1

, φ
(s)
n,−b,i, ζn

) .

(4) Let φ
(s)
n,b

= φ
(s)
n,b,M

for b = 1, . . . , NB.

In the event that NB = 1, we may suppress the subscript b, and if M = 1 we can likewise
suppress i. Notice that if these conditions are met and α = 1, the above simplifies to a one-step
RWM algorithm with a normal proposal density for each n and s. More generally, with α = 1
the proposal density is symmetric such that the q(·) terms cancel out and can be removed from
equation (8.10).

The adaptive construction of ζn have already in large part been discussed where φ∗
n and Σ∗

n are
estimated with the importance sampling approximations of the posterior mean and covariance
matrix of φ. To determine the scaling constant cn we may also follow Herbst and Schorfheide
(2014) and let r̂n−1(ζn−1) be the average empirical rejection rate based on the mutation step in
iteration n− 1 and across the NB blocks. To initialize, let c2 = c∗ while

cn = cn−1f
(
1 − r̂n−1(ζn−1)

)
, n = 3,4, . . . , Nτ ,

where

f
(
x
)

= 0.95 + 0.10
exp
(
16(x− p∗α)

)

1 + exp
(
16(x − p∗α)

) .

The parameter p∗α is the target acceptance rate and is set equal to 0.25 by Herbst and Schorfheide
(2014, 2016). Notice that f(p∗α) = 1 such that the scaling factor is constant when the target
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acceptance rate has been reached. If the average acceptance rate is below (above) the target
rate then the scaling constant is lowered (raised).

8.4.3. Resampling Algorithms for the Selection Step

The resampling algorithm considered by Herbst and Schorfheide (2014) for the selection step
is called multinominal resampling and is discussed in more detail by, for example, Herbst and
Schorfheide (2016) and references therein. A number of alternative resampling methods are
discussed in this latter reference, such as residual, stratified, and systematic resampling; for an
overview see Hol, Schön, and Gustafsson (2006), which discusses some theoretical criteria for
choosing between these four resampling schemes, and Douc et al. (2005), who also study large
sample behavior.

8.4.3.1. Multinominal Resampling

The basic multinomial resampling algorithm consists in first obtaining N draws us from U(0,1).

Next, we compare each such draw to the accumulation of W̃
(i)
n over i, denoted by Ṽ

(i)
n =

(1/N)
∑i

k=1 W̃
(k)
n , and let js be the smallest positive integer such that us < Ṽ

(j)
n . We now

set φ̂
(s)
N = φ

(js)
n−1

for s = 1, . . . , N, yielding N draws from the multinomial distribution in the
selection step of the SMC algorithm.

To speed up this resampling algorithm we may sort the uniform random draws us from
the smallest to the largest. Rather than relying on a separate sorting function, such as sort

in matlab, one may instead generate N ordered uniform random numbers directly, as in Hol

et al. (2006). This means that ũs = ũs+1u
1/s
s , while ũN = u

1/N
N , where us ∼ U(0,1). The

efficient multinomial resampling algorithm requires O(N) operations, while sorting unsorted
uniform draws us and then performing the determination of the resampled indexes requires
O(N ln(N)) operations. The basic multinomial resampling algorithm needs O(N2) operations
and is therefore undesirable from a computational perspective.

8.4.3.2. Stratified Resampling

Stratified resampling also starts from N draws us from U(0,1) and lets ũs = (s− 1 + us)/N for
s = 1, . . . , N. It thereafter determines indexes js as for the multinomial resampling scheme, but
makes use of ũs instead of us. An advantage of this resampling approach over the multinomial

is that it results in a lower variance due to the stratification.66 Moreover, with ũs+1 ≥ ũs
for s = 1, . . . , N − 1, this resampling approach speeds up the computational time compared
with basic multinomial resampling since ordering means that js+1 ≥ js by construction and the
resampling scheme therefore needs O(N) operations.

8.4.3.3. Systematic Resampling

The systematic resampling approach is similar to the stratified, but instead of obtainingN draws
us, it relies on a single draw, u ∼ U(0,1), while ũs = (s−1 +u)/N for s = 1, . . . , N. With these
ordered draws, it proceeds to select js as under the basic multinomial resampling.

8.4.3.4. Residual Resampling

For residual resampling one first allocates Ns = ⌊NW̃(s)
n ⌋ copies of index s for s = 1, . . . N. The

remaining number of required indexes (the residual), N̄ = N −∑N
s=1 Ns, is obtained by using

multinomial, stratified or systematic resampling. YADA uses the stratified resampling scheme to
obtain the N̄ additional indexes from {1, . . . , N}.

66 Let ns be the possible number of times index s is drawn. Under multinomial resampling, ns = 0,1, . . . , N for all s.

By restricting the set of values for ns to lie closer to NW̃
(s)
n , the variance is reduced; see, e.g., Douc et al. (2005) for

details.
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8.5. Credible Sets and Confidence Intervals

The draws φ(s), s = 1, . . . , N from the RWM, slice sampling, and SMC algorithms are all from

the joint posterior density p(φ|Y). The individual elements of φ
(s)
i , i = 1, . . . ,m (with m being

the dimension of φ) are draws from the marginal posterior density p(φi|Y); see, e.g., Gelfand
and Smith (1990).

Let 0 < α < 1, p(φ) be a continuous probability density function of the random variable φ
having support Φ. A 100(1 − α) percent credible set (region) Cα ⊆ Φ is defined such that∫

Cα

p(φ)dφ = 1 − α.

The credible set is generally not unique; see, e.g., Bernardo and Smith (2000, Chapter 5.1) or
Geweke (2005, Chapter 2.5). For example, we may select Cα = (φl, φu), φl < φu such that
Pr[φ < φl] = 1−Pr[φ > φu] = α/2, i.e., an equal tails credible interval. One advantage of this
choice is that it is always unique. At the same time, a disadvantage is that it is generally not the
shortest possible credible set in terms of distance from the maximum to the minimum, or even
the set with the highest probability density values.

The highest probability density (HPD) credible set is a popular choice in Bayesian inference.

Such a set, C
(HPD)
α , is defined with respect to p(φ) such that

(i)
∫
C

(HPD)
α

p(φ)dφ = 1 − α; and

(ii) p(φ) ≥ p(ϕ) for all φ ∈ C
(HPD)
α and ϕ /∈ C

(HPD)
α , except possibly for a subset of Φ having

probability zero.

If p(φ) is unimodal and symmetric, then the HPD credible region is typically equal to the equal
tails credible interval. This is, for example, true when p(φ) is Gaussian. However, when p(φ) is
skewed, then the the equal tails credible interval is not equal to the HPD set. At the same time,
while the equal tails credible interval is unique the HPD credible set need not be; for instance,
when φ is uniformly distributed.

The HPD set may be estimated directly from the posterior draws. Let φ
(s)
i be ordered as φi,j ,

where j = 1, . . . , N and φi,j ≤ φi,j+1 for all j = 1, . . . , N−1. Furthermore, let [(1−α)N] denote
the closest integer and define the interval Rj(N) = (φi,j , φi,j+[(1−α)N]) for j = 1, . . . , N − [(1 −
α)N]. Provided that the posterior density of φi is unimodal and that the sample of draws is
ergodic, it is shown by Chen and Shao (1999, Theorem 2) that

Rj∗(N) = min
1≤j≤N−[(1−α)N]

Rj(N), (8.11)

converges almost surely to C
(HPD)
α . Since j∗ need not be unique, Chen and Shao suggest using

the lowest value of j satisfying (8.11) to obtain a unique estimate.
Furthermore, since the HPD is not unique to transformations of φi, such as h(φi), one needs

to estimate the HPD on the transformation. Moreover, the transformation may also be a function
of φ (and the data), HPD’s for such transformations should also be estimated directly from the
transformed values.

8.6. YADA Code

8.6.1. NeweyWestCovMat

The function NeweyWestCovMat computes the numerical standard error of any sampled real
valued vector using the Newey and West (1987) corrected covariance matrix. The only required
input argument is PostSample, a matrix of dimensionN×m, withN being the number of sample
points andm the dimension of the vector. The function also accepts the input BarN, representing
N̄ in (8.2). If this input is either missing or assigned an empty value, the function sets N̄ =
[N(1/2.01)], unless [N(1/2.01)] < 100 and N > 200 when N̄ = 100 is selected. This ensures that
limN→∞ N̄ = +∞, while limN→∞ N̄2/N = 0; see, e.g., Geweke (2005, Theorem 4.7.3). The
output is given by StdErr, an m×m covariance matrix such that the numerical standard errors
are available as the square root of the diagonal elements.
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Figure 4. The Posterior Sampling frame on the Options tab in YADA for MCMC
sampling algorithms.

8.6.2. DSGERWMPosteriorSampling & DSGEFixedBlockingRWMPosteriorSampling &
DSGERandomBlockingRWMPosteriorSampling

The functions DSGERWMPosteriorSampling and DSGERWMStudentPosteriorSampling handle the
actual run of the (single block) RWM algorithm with the normal and the Student-t proposal
densities, respectively while the functions DSGEFixedBlockingRWMPosteriorSampling for the
normal proposal and DSGEFixedBlockingRWMStudentPosteriorSampling for the Student-t pro-
posal take care of the fixed blocking RWM algorithm for the corresponding proposal densities.
Finally, DSGERandomBlockingRWMPosteriorSampling handles the random block RWM posterior
sampling with a normal proposal, while DSGERandomBlockingRWMStudentPosteriorSampling

does the same but with a Student-t proposal density. All these functions use the same inputs
as the function PosteriorModeEstimation, i.e., DSGEModel, CurrINI, controls. One important
difference relative to the posterior mode estimation function is that some fields in the DSGEModel

structure are ignored in favor of values saved to disk while running the posterior mode estima-
tion routine. In particular, YADA stores data about the prior distribution and sample dates
information to disk and DSGERWMPosteriorSampling makes sure that the same prior and dates
are used when sampling from the posterior as when estimating the posterior mode.

Before starting up the RWM algorithm, the functions perform a number of tests. First, they
attempt to execute the additional parameter functions that are present. If they run without
giving any errors, the measurement equation function is executed next and, thereafter, YADA
attempts to solve the DSGE model at the posterior mode estimate. Given that all checks return
positive results, the log posterior function logPosteriorPhiDSGE is executed for the posterior
mode estimate of φ.

The RWM algorithm in YADA has been designed to be flexible and to avoid computing things
more often than necessary. The Posterior Sampling frame on the Options tab is displayed in
Figure 4 for MCMC samplers. First, the choice of posterior sampler is provided: (1) the RWM
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algorithm with a normal proposal, (2) the slice sampler, (3) the RWM with a Student-t proposal,
(4) fixed block RWM algorithm with a normal proposal, (5) fixed block RWM algorithm with
a Student-t proposal, (6) random block RWM with a normal proposal, (7) random block RWM
with a Student-t proposal, or (8) Sequential Monte Carlo with likelihood tempering. Notice
that the posterior sampling frame on the Options tab changes when the user has selected SMC
rather than one of the MCMC algorithms; see Figure 6. We will return to the SMC selections
below when discussing the implementation of SMC with likelihood tempering in YADA.

For the MCMC algorithms, the number of degrees of freedom is also selected provided the
algorithm requires it, the number of fixed blocks for the fourth and fifth algorithm, and the
lower and upper number of blocks for the random blocking algorithms. Next, the total number
of draws from the posterior per sampling chain can be selected as well as the number of sample
batches per chain. YADA always stores the data to disk when a sample batch has been com-
pleted. The number of draws in each batch depends on the total number of draws per chain
and the number of sample batches per chain. This allows the user to abort a run and later on
restart the posterior sampler from the last saved position.

Furthermore, the number of sampling chains can be selected as well as the length of the
burn-in period for the sampler. The draws obtained during the burn-in period are later on
discarded from the total number of posterior draws per chain, although they will still be saved
to disk.

The selections thereafter turn to the proposal density. First, the method for estimating the
inverse Hessian at the posterior mode can be selected. YADA makes use of the output from
the selected optimization routine by default. Alternatively, YADA can fit a quadratic to the log
posterior kernel evaluated in a symmetric interval around the posterior mode for each param-
eter and from these estimates construct the diagonal of the inverse Hessian; cf. Section 7.2. In
addition, when the option “Transform conditional standard deviations for modified Hessian to
marginal using correlations from Hessian” on the Miscellaneous tab is check marked, then these
estimates are scaled up accordingly. For both possibilities, the correlation structure is thereafter
taken from the inverse Hessian that the optimization routine provides. Third, a finite difference
estimator can be applied. Here, the step length is determined by the user and this selection
is located on the Miscellaneous tab. Finally, a user specified parameter covariance matrix for
the proposal density is also supported. Such a matrix may, for instance, be estimated using old
draws from the posterior distribution. YADA supports this feature from the View menu, but any
user defined matrix is also allowed provided that it is stored in a mat-file and that the matrix
has the name ParameterCovarianceMatrix.

The estimator of the inverse Hessian can be influenced through a parameter that determines
its maximum absolute correlation. This parameter is by default set to 1 (no restriction), but
values between 0.95 and 0 can also be selected. This parameter interacts with the largest
absolute correlation for the inverse Hessian such that the off-diagonal elements of the new
inverse Hessian are given by the old off-diagonal elements times the minimum of 1 and the
ratio between the desired maximum absolute correlation and the estimated maximum absolute
correlation. Hence, if the desired maximum absolute correlation is greater than the estimated
maximum absolute correlation then the inverse Hessian is not affected. On the other hand, if
the ratio between these correlations is less than unity, then all correlations are scaled towards
zero by with the ratio. At the extreme, all correlations can be set to zero by selecting a maximum
absolute correlation of zero.

The following two selections concern the c0 and c scale parameters for the initial density
and for the proposal density, respectively. The selection of the c parameter influences greatly
the sample acceptance probability. If you consider this probability to be too low or high, then
changing c will often help; see, e.g., Adolfson, Lindé, and Villani (2007c). The c0 parameter

gives the user a possibility to influence the initial value φ(0). For instance, if c0 = 0, then

φ(0) = φ̃, i.e., the posterior mode.
The next parameter in the Posterior Sampling frame is only used under multiple sampling

chains. The weight on randomization refers to the weight given to a randomly drawn φ, deter-
mined as in the case of the single chain but with c0 = 4, relative to the posterior mode when

– 134 –



Figure 5. The DSGE Posterior Sampling frame on the Settings tab in YADA.

setting up φ(0). Hence, if the weight on randomization is 1, then each sampling chain uses

φ(0) from Nm(φ̃,16Σ̃) and if the weight on randomization is 0, then each sampling chain starts
from the posterior mode. This means that the weight on randomization is identical to c0 except
that it is restricted to the 0-4 interval. Since multiple chains are used to check, for instance,
convergence related issues, it is not recommended to start all chains from the posterior mode.

The following parameter on this frame is the percentage use of posterior draws for impulse
responses, variance decompositions, etc. It allows the user to apply a fraction of the available
posterior draws when computing the posterior distribution of such a function. The case of less
than 100 percent may be particularly relevant when preliminary results are desired or when
the user is mainly concerned with point estimates, such as the posterior mean. Among the
stored posterior draws the parameter values used are obtained by either using a fixed interval
(default) or by drawing randomly from the available draws using a uniform distribution. The
length of the fixed interval is the maximum possible while ensuring that the desired share of
parameter draws is feasible. The option “Randomize draws from posterior distributions” on the
Miscellaneous tab determines which case is selected.

The final parameter on the Posterior Sampling frame determines the maximum number of
draws from the posterior that will be used in prediction exercises. When comparing the number
of posterior draws minus the length of the burn-in period to the desired maximum number of
draws to use in such exercises YADA selects the smallest of these two numbers. As above for the
less than 100 percent share of the draws case, if fewer than the maximum available are used, the
user can choose between the largest fixed interval between draws (default) or uniform draws
from the posterior draws.

One additional user determined parameter influences how the RWM algorithm is executed.
This parameter in located on the DSGE Posterior Sampling frame on the Settings tab; see Fig-
ure 5. If the checkbox Overwrite old draws is check marked, then previous draws will be over-
written. Conversely, when this box is not checked, then old draws will be used when available.
This allows the user to recover from a previously aborted run of the RWM algorithm provided
that the number of sample batches is greater than 1 and that at least one batch was saved to
disk.

There is also another case when YADA can recover previously saved posterior draws. Given
that the checkbox Overwrite old draws is check marked and the posterior draws are only ob-
tained from one sampling chain, YADA will check if, for your current selection about the num-
ber of sample batches, posterior draws exist on disk such that the number of posterior draws is
lower than what you have currently selected. For instance, suppose you have selected to save
10 sample batches per chain and that you currently consider 100,000 posterior draws. YADA
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will then check if you have previous run the posterior sampler with less than 100,000 draws for
10 sample batches. The highest such number of posterior draws will then be considered as a
candidate. Supposing that you have already run the posterior sampler for 75,000 draws with
10 sample batches, YADA will ask you if you would like to make use of these 75,000 draws.

When the RWM algorithm has finished, YADA first allows for (but does not force) sequential
estimation of the marginal likelihood. The alternative estimators are discussed in Section 10.
The choice of algorithm is stated on the DSGE Posterior Sampling frame, where certain other
parameters that are needed by the marginal likelihood estimation function can also be selected.

Before one of the posterior sampling functions has completed its mission it sends the results
to a function that writes a summary of them to file. This file is finally displayed for the user.

8.6.3. DSGESlicePosteriorSampling

The function DSGESlicePosteriorSampling handles the actual run of the slice sampler. It uses
the same inputs as DSGERWMPosteriorSampling, i.e., DSGEModel, CurrINI, controls. Moreover,
it behaves in essentially the same way as the RWM function with the exception of the actual
sampling part. Moreover, the RWM algorithm keeps track of the acceptance rate, while the
slice sampler counts the number of times the log posterior is computed. In all other respects,
the functions perform the same tasks except that the slice sampler will never call the Chib and
Jeliazkov (2001) marginal likelihood estimator function; see Section 10.4.4.

8.6.4. ExponentialRndFcn

The function ExponentialRndFcn computes random draws from an exponential distribution.
The function takes 1 required input variables, mu, the mean of the distribution. An optional
input variable for total number of draws, NumDraws, is also accepted. The default value for this
integer is 1. The algorithm used is discussed in footnote 64 on page 125.

The function provides one output variable, z, a matrix with row dimension equal to the length
of mu and column dimension equal to NumDraws.

8.6.5. DSGESMCLikelihoodTemperingPosteriorSampler

The function DSGESMCLikelihoodTemperingPosteriorSampler handles the execution of the se-
quential Monte Carlo with likelihood tempering posterior sampler. It uses the same inputs as
DSGERWMPosteriorSampling, i.e., DSGEModel, CurrINI, controls. As mentioned above, the
Posterior Sampler frame has different controls under the SMC sampler than under the MCMC
samplers; see Figure 6.

The number of posterior draws is the same as for the MCMC samplers, but the text part now
makes clear that this number of also the number of particles. Next, the number of tempering
stages can be selected. This number is equivalent to Nτ in Section 8.4 and YADA allows for
integer values between 100 and 10,000, with default equal to 100. The number of chains
controls appears thereafter and has the same functionality as for the MCMC samplers. The value
of the tempering schedule parameters, or bending parameter, denoted by λ, can be selected on
the following control. The default value is 2, but values from 1 to 4 are also allowed for.

The following five controls make it possible to tune the mutation step of the SMC algorithm.
First of all, the number of fixed parameter blocks, NB, can be selected where integer values
between 1 and 100 are possible, and its default value is 1. If this value exceeds the dimension
of φ, then YADA sets NB equal to the length of the parameter vector. The number of Metropolis-
Hastings steps, M, can be determined from 1 to 100, with default being 1. Next, the mixing
weight α for constructing the proposal density is selected by the user. Value between 0.60 and
1.0 are supported, where the default is 1.

The fourth tuning parameter for the mutation step is the initial value of the scale factor,
denoted by c∗. It is possible to set this parameter to values from 0.05 to 10 with the default
value of 0.30. Finally, the last tuning parameter of the mutation step that the user can determine
is the target acceptance rate. It is here possible to select values between 0.20 and 0.50, with the
default value being 0.25, i.e., a target acceptance rate of 25 percent.
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Figure 6. The Posterior Sampling frame on the Options tab in YADA for SMC
sampling algorithms.

The second to last control on this frame that the user can work with is the resampling algo-
rithm for the selection step. When the effective sample size is below the resampling threshold
(N/k), the multinomial, stratified, systematic, or residual resampling algorithm is used. The
default choice is multinomial resampling.

Finally, the resampling threshold for the effective sample size can be selected, with values
between 10 and 90 percent of the number of posterior draws (particles, N) being accepted. A
value of N/2, as in Herbst and Schorfheide (2014, 2016), corresponds to 50 percent and is the
default value in YADA.

8.6.6. MultinomialResampling

The function MultinomialResampling determines the resampling of the particles based on
draws from a multinomial distribution during the selection step of the SMC with likelihood
tempering algorithm. It takes one required input given by the vector Weights and one optional
integer input N. The latter integer is by default equal to the lenght of Weights and determines
the length of the output vector Indexes. This latter vector gives the index positions to use for
the resampling scheme of the parameter vectors as well as of the functions that depend on the
selected parameter vectors, such as the log-likelihood and the log prior values.

8.6.7. StratifiedResampling

The function StratifiedResampling determines the index positions of the resampled particles
during the selection step based on stratified resampling. It takes the same inputs and provides
the same output type as the MultinomialResampling function.

– 137 –



8.6.8. SystematicResampling

The function SystematicResampling determines the index positions of the resampled particles
during the selection step based on systematic resampling. It takes the same inputs and provides
the same output type as the MultinomialResampling function.

8.6.9. ResidualResampling

The function ResidualResampling determines the index positions of the resampled particles
during the selection step based on residual resampling. It takes the same inputs and provides
the same output type as the MultinomialResampling function.

8.6.10. MixedDistributionDraw

The function MixedDistributionDraw provides a draw from the proposal density during the
Metropolis-Hastings step of the mutations. The function takes seven required input variable:
phi, phiTilde, CholSigma, CholDiagSigma, alpha, cstar, and NumParam. These input variables

correspond in equation (8.9) to the parameters: φ
(s)
n,b,i−1

, φ∗
n,b

, the Choleski decomposition of

Σ∗
n,b

, the Choleski decomposition of diag(Σ∗
n,b

), the mixing weight α, the scale factor cn, and the

dimension of the parameter block b, respectively.
As output it gives phiProp, the proposal draw ϕb from the mixed normal distribution.
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9. Markov Chain Monte Carlo Convergence

This section is concerned with assessing the convergence of the MCMC sampler. A fundamental
problem of inference from Markov chain simulation is that there will always be areas of the
posterior (target) distribution that have not been covered by the finite chain. As the simulation
progresses the ergodic property of the Markov chain causes it eventually to cover all the target
distribution but, in the short run, the simulations cannot, generally, tell us about areas where
they have not been. As pointed out by, e.g., Gelman (1996), this is a general problem whenever
convergence is slow, even in a distribution that has a single mode; see, also, Gelman and Rubin
(1992).

This section is divided into two parts. The first deals with tools for evaluating convergence
using a single chain, while the following is concerned with multiple chains. For a review of
various tools for evaluating MCMC convergence see, e.g., Cowles and Carlin (1996).

9.1. Single Chain Convergence Statistics

The simplest tool for assessing if a MCMC chain has converged or not is to view graphs of the
raw draws; see, e.g., Adolfson, Laséen, Lindé, and Villani (2008b). If the draws are trending this
is a strong indication that the sampler has not converged. In fact, the reason for the trending
may be that the DSGE model is misspecified. The raw draws may also be graphed directly from
multiple chains to check if they cover the same region of the parameter space.

Next, sequential estimates of various location parameters may be examined. YADA allows
for sequential estimation of the posterior mean and the posterior median. If the sequential
estimates are trending this is indicative of poor convergence. Furthermore, sequential estimates
of the marginal likelihood may also be studied; see Section 10.

A common tool in time series analysis for studying parameter stability is the partial sum or
cusum. Yu and Mykland (1998) proposed to use this tool for evaluating convergence. Like
the sequential estimates of the posterior mean, median, and marginal likelihood, the cusum
estimates rely on first determining a burn-in period. Let S(X) be a chosen summary statistic
of the N post burn-in posterior draws. With µ̂ being the average of S(X) for all N draws, the
observed cusum is

Ĉi =
i∑

j=1

(
S(Xj) − µ̂

)
, i = 1, . . . , N. (9.1)

The cusum path plot is obtained by plotting {Ĉi} against i = 1, . . . , N. If N is very large it may
be practical to plot the statistic against, say, i = N0,2N0, . . . , N instead for some suitable integer
N0.

The cusum statistic in (9.1) is zero for i = N. In YADA the value of µ̂ is added to Ĉi and the
summary statistics are either the log posterior (lnL(Y ; g−1(φ)) + lnp(g−1(φ)) + lnJ(φ)), the
original parameters (θ), or the transformed parameters (φ). Moreover, YADA calculates moving
window cusum paths for a fixed window size of N1 = N/10, i.e.,

C̄i =
i∑

j=i+1−N1

(
S(Xj) − µ̂

)
, i = N1, . . . , N, (9.2)

where, again, µ̂ is added to C̄i.
A separated partial means test for a single MCMC chain has been suggested by Geweke;

see, e.g., Geweke (2005, Theorem 4.7.4). Let N be the number of draws and suppose that
Np = N/2p and p are positive integers. For instance, with N = 10,000 and p = 5 we have that
N5 = 1,000. Define the p separated partial means:

Ŝ
(N)
j,p =

1

Np

Np∑

m=1

S
(
φ(m+Np(2j−1))

)
, j = 1, . . . , p, (9.3)

where S is some summary statistic of the transformed parameters φ (such as the original pa-
rameters θ). Let τ̂j,p be the Newey and West (1987) numerical standard error for j = 1, . . . , p.
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Define the (p − 1) vector Ŝ
(N)
p with typical element Ŝ

(N)
j+1,p − Ŝ

(N)
j,p and the (p − 1) × (p − 1)

tridiagonal matrix V̂
(N)
p where

V̂
(N)
j,j = τ̂2

j,p + τ̂2
j+1,p, j = 1, . . . , p − 1

and
V̂

(N)
j,j+1 = V̂

(N)
j+1,j = τ̂2

j+1,p, j = 1, . . . , p − 1.

The statistic

G
(N)
p = Ŝ

(N)′
p

[
V̂

(N)
p

]−1
Ŝ

(N)
p

d→ χ2(p − 1), (9.4)

as N → ∞ under the hypothesis that the MCMC chain has converged with the separated partial
means being equal.

9.2. Multiple Chain Convergence Statistics

One approach for monitoring convergence using draws from multiple MCMC chains is to use
analysis of variance. The approach outlined below is based on Brooks and Gelman (1998),
which generalizes the ideas in Gelman and Rubin (1992); see also Gelman (1996) and Gelman
et al. (2004).

For a univariate scalar summary S we may assume that we have N draws from M chains.
Let Sij denote draw i from chain j. We may then define the average of S for chain j as S̄j =

(1/N)
∑N

i=1 Sij , while the overall average is S̄ = (1/M)
∑M

j=1 S̄j . The between-chain variance

B and the within-chain variance W are now given by

B =
N

M − 1

M∑

j=1

(
S̄j − S̄

)2
, (9.5)

and

W =
1

M(N − 1)

M∑

j=1

N∑

i=1

(
Sij − S̄j

)2
. (9.6)

The between-chain variance B contains a factor of N because it is based on the variance of the
within-chain means, S̄j , each of which is an average of N draws Sij .

From the two variance components two estimates of the variance of S in the target distribu-
tion, ΣS, can be constructed. First

Σ̂S =
N − 1

N
W +

1

N
B, (9.7)

is an unbiased estimate of the variance under the assumption of stationarity, i.e., when the
starting points of the posterior draws are actually draws from the target distribution. Under the
more realistic assumption that the starting points are overdispersed, then (9.7) is an overesti-
mate of the variance of S.

Second, for any finite N, the within-chain variance W in (9.6) should underestimate the vari-

ance of S. In the limit as N → ∞, both Σ̂S and W approach ΣS, but from opposite directions.
Accounting for sampling variability of the estimator S̄ yields a pooled posterior variance esti-

mate of V̂ = Σ̂S + B/(MN).
To monitor convergence of the posterior simulation Gelman and Rubin (1992) therefore sug-

gest estimating the ratio of the upper and the lower bounds of the variance of S through:

R̂ =

√
V̂

W
=

√
N − 1

N
+

(M + 1)B

MNW
. (9.8)

As the simulation converges, the potential scale reduction factor in (9.8) declines to 1. This
means that the M parallel Markov chains are essentially overlapping.

The scalar summary S can here be individual parameters of the DSGE model. A multivariate
version of the potential scale reduction factor is suggested by Brooks and Gelman (1998). Now
S is, e.g., a vector of all the model parameters, with B andW being covariance matrix estimators
of the between-chain and within-chain covariance. The multivariate potential scale reduction
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factor (MPSRF) is now:

R̂ =

√
N − 1

N
+
M + 1

M
λ1, (9.9)

where λ1 is the largest eigenvalue of the positive definite matrix (1/N)W−1B; see Brooks and
Gelman (1998, Lemma 2). The multivariate potential scale reduction factor in (9.9) declines

towards 1 as the simulation converges. Gelman et al. (2004) suggests that values for R̂ less
than 1.1 may be regarded as an indication that the MCMC sampler has converged.

In addition to monitoring the MPSRF in (9.9) Gelman et al. (2004) also suggest to monitor
the determinants of W and B. This allows the user to also check if both the within-chain
covariance matrix W and the between-chain covariance matrix B stabilize as functions of N.

9.3. YADA Code

9.3.1. CUSUM

The function CUSUM computes the cusum paths in equation (9.1) and (9.2) for the values of
the log posterior from the MCMC output, the draws of the original parameters (θ), or of the
transformed parameters (φ). The function takes 4 input variables: X, NumBurnin, PlotType, and
CurrINI. The matrix X has dimension NumIter × NumStat, where NumIter is the total number
of draws from the posterior, and NumStat is the number of summary statistics. The integer
NumBurnin gives the number of burn-in draws from the MCMC chain, while the string vector
PlotType can be either log posterior, original parameters, or transformed parameters.
Finally, the structure CurrINI contains initialization information.

The function provides 2 output arguments: CUSUMPost and CUSUMAverage. The former has
dimension (NumIter − NumBurnin) × NumStat and holds the cusum statistic in (9.1) plus the
mean of the input statistics over the post-burn-in sample. The second output variables has
dimension (0.9NumIter − NumBurnin) × NumStat with the moving window cusum statistic in
(9.2).

9.3.2. SeparatedPartialMeansTest

The function SeparatedPartialMeansTest calculates the separated partial means test in (9.4).
The function needs 4 input variables: PostSample, p, PlotType, and CurrINI. The matrix
PostSample has dimension NumIter × NumParam, where NumIter is now the number of post-
burn-in period draws from the posterior while NumParam is the number of summary statistics.
The integer p gives the number of separated partial means to evaluate. The last two input
arguments are the same as in the case of the CUSUM function.

As output the function gives a matrix GewekeStat that has dimension NumParam × 2. The
first column holds the values for the separated partial means test for the NumParam summary
statistics, and the second column the asymptotic p-values based on applying the χ2(p − 1)
distribution.

9.3.3. MultiANOVA

The function MultiANOVA computes the multivariate potential scale reduction factor in (9.9)

as well as the determinants of V̂ and W sequentially. The function takes 5 input variables:
NumChains, ComputeSequential, DSGEModel, CurrINI, and controls. The last three input vari-
ables are also used by the functions for estimating the posterior mode and running the random
walk Metropolis algorithm. The first input simply gives the number of parallel MCMC chains to
examine (M in Section 9.2), while the second variables is boolean and takes on the value 1 if
the output should be calculated sequentially and 0 otherwise. The output statistics are calcu-
lated from posterior draws of the original parameters θ, which are loaded from disk, one chain
at a time.

As output the function gives two variables: DoneCalc and MPSRF. The first is a boolean vari-
able which indicates if the calculations were finished (1) or not (0). The matrix MPSRF has 4
columns, where the first holds the number of draws used in the calculation, the second the R̂
value, the third the determinant of V̂ , while the fourth holds the determinant of W . The rows
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correspond to the sample sizes used for the sequential estimates, as can be read from the first
column.
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10. Computing the Marginal Likelihood

The Bayesian approach to model comparisons is based on the posterior odds ratio. This criterion
can be applied regardless of whether the “true” model is included in the set of models or not.
The posterior odds ratio between two models, denoted by m1 and m2, is given by

Pr
(
m1|Y

)

Pr
(
m2|Y

) =
p
(
Y |m1

)

p
(
Y |m2

) ×
Pr
(
m1

)

Pr
(
m2

) .

The posterior odds ratio on the left hand side is therefore equal to the Bayes factor, being the
ratio of marginal likelihoods, times the prior odds ratio; see Kass and Raftery (1995) for a
survey on model comparisons based on posterior probabilities. If the models are given equal
prior probabilities then the posterior odds ratio is simple equal to the Bayes factor.

The posterior model probabilities can be calculated for all models mi, i = 1, . . . ,M, once
the marginal likelihood has been evaluated for all M models. In that case, the posterior model
probabilities are given by

Pr
(
mi|Y

)
=

p
(
Y |mi

)
Pr
(
mi

)
∑M

j=1 p
(
Y |mj

)
Pr
(
mj

) .

If the “true” model is among the models being studied, then the posterior model probabilities
can be used to choose a preferred specification. One simple selection criterion is to choose the
model which has highest posterior probability. In fact, even in situations where all the models
being evaluated are misspecified, this criterion may be used. For instance, Phillips (1996) and
Fernández-Villaverde and Rubio-Ramírez (2004), show that posterior odds asymptotically favor
the model that is closest to the “true” data generating process in the Kullback-Leibler sense; see
also Gelfand and Dey (1994).

In order to compare models with posterior odds the marginal likelihood, p(Y |mi), needs to
be computed. The four methods that are supported in YADA for computing the value of this
density will be discussed next. One of them is an approximation method, called the Laplace
approximation, which only requires having estimates of the model parameters at the posterior
mode, while the other three are based on draws from the posterior distribution. These sampling
based methods differ in that two of them can be used for different MCMC methods, while the
third is specifically constructed for Metropolis-Hastings methods.

The discussion below is based on the assumption that the model does not have a system
prior. In the event that the model indeed has such a prior, then the estimators below need to
be adjusted by the normalizing constant of the system prior, i.e., by p(Φω|h). Using the terms
in equation (4.37), the posterior density can be decomposed as

p
(
θ|Y,Φω, h

)
=
p
(
Y |θ
)
p
(
Φω|θ, h

)
p
(
θ
)

p
(
Y |Φω, h

)
p
(
Φω|h

) . (10.1)

The numerator on the right hand side represents the posterior kernel and is given by the product
of the likelihood function, the system prior p(Φω|θ, h), and the marginal prior of the param-
eters. The first term in the denominator, p(Y |Φω, h), is the marginal density of the data, i.e.
the marginal likelihood we are interested in. The second term in the denominator is the mar-
ginal likelihood of the system prior, which typically is not known but needs to be estimated as
well. This can be achieved by replacing the likelihood function in the expressions below by the

conditional system prior p(Φω|θ, h), and then proceed with the estimators below.67

When estimating the marginal likelihood of the data using the posterior kernel (numerator)
in (10.1), the resulting marginal likelihood gives an estimate of p(Y,Φω|h), the denominator
of this equation. To obtain an estimate of what is often be the object of interest, p(Y |Φω, h),
we then need to divide its value by the marginal likelihood of the system prior. Except for the
Laplace approximation, this step is not performed by YADA.

67 In practise, the marginal likelihood of the system prior is estimated with good precision using the Laplace approx-

imation based on a finite difference estimator of the inverse Hessian.
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10.1. The Laplace Approximation

The Laplace approximation (or the Laplace-Metropolis estimator when posterior draws are used
to estimate the quantities it needs) of the log marginal likelihood, lnp(Y), was originally sug-
gested by Tierney and Kadane (1986); see, also, Raftery (1996) for discussions. It requires an
estimate of the posterior mode of the parameters and of the inverse Hessian at the mode. The
Laplace estimator of the marginal likelihood makes use of a normal approximation and YADA
considers only the transformed parameters φ. With the inverse Hessian evaluated at the mode

being given by Σ̃ and φ̃ being the posterior mode of the transformed parameters, the Laplace
approximation of the log marginal likelihood is given by:

ln p̂L(Y) = lnL
(
Y ; g−1(φ̃)

)
+ lnp

(
g−1(φ̃)

)
+ lnJ

(
φ̃
)

+
m ln(2π) + ln

∣∣Σ̃
∣∣

2
, (10.2)

where m is the dimension of φ. The third term on the right hand side approximates − lnp(φ̃|Y)
with O(T−1) accuracy and, hence, the expression in (10.2) is a reflection of Bayes theorem
through what Chib (1995) calls the basic marginal likelihood identify.

Notice that since YADA calculates the posterior mode by minimizing minus the log of the
posterior, the inverse Hessian does not need to be multiplied by minus 1 in (10.2). For the
Bayes factor, i.e., the ratio of the marginal likelihoods of two models, the relative error in
(10.2) was shown by Tierney and Kadane (1986) to be O(T−1) for regular statistical models.

It is also interesting to note that if the inverse Hessian of the log posterior for the θ parameter
is approximated through the delta method, then the Laplace approximation of the log marginal

likelihood using θ̄ = g−1(φ̃) is identical to the expression on the right hand side of (10.2). This

follows directly from noting that the determinant of the inverse Hessian is now J(φ̃)2|Σ̃|, while

the log posterior is lnL(Y ; θ̄) + lnp(θ̄).

10.2. Modified Harmonic Mean Estimators

Harmonic mean estimators are based on the identity:

p(Y) =

[∫
f(θ)

p(Y |θ)p(θ)
p(θ|Y)dθ

]−1

, (10.3)

where f(θ) is a proper probability density function such that
∫
f(θ)dθ = 1; see Gelfand and

Dey (1994).68 Given a choice for f(θ), the marginal likelihood p(Y) can then be estimated
using:

p̂H(Y) =

[
1

N

N∑

s=1

f
(
θ(s)
)

L
(
Y ; θ(s)

)
p
(
θ(s)
)
]−1

, (10.4)

where θ(s) is a draw from the posterior distribution and N is the number of draws. As noted
by, e.g., An and Schorfheide (2007), the numerical approximation is efficient if f(θ) is selected
such that the summands are of equal magnitude. It can be shown that the harmonic mean
estimator is consistent but not unbiased. In fact, due to Jensen’s equality it is upward biased.

10.2.1. Truncated Normal Weighting Function

Geweke (1999) suggested to use the density of a truncated multivariate normal distribution in
(10.4). That is, for 0 < p < 1

f(θ) =
exp
[
−(1/2)(θ − θ̄)′Σ−1

θ
(θ − θ̄)

]

p(2π)m/2|Σθ|1/2

{
(θ − θ̄)′Σ−1

θ
(θ − θ̄) ≤ χ2

p(m)

}
, (10.5)

where θ̄ is the mean and Σθ the covariance matrix from the output of the posterior simulator,

i.e., θ̄ = N−1
∑N

s=1 θ
(s) and Σθ = N−1

∑N
s=1 θ

(s)θ(s)′ − θ̄θ̄′. The expression {a ≤ b} is 1 if true

68 The identify follows from noticing that p(θ|Y) = p(Y |θ)p(θ)/p(Y) so that the right hand side of (10.3) is equal

to [(1/p(Y))
∫
f(θ)dθ]−1 .

– 144 –



and 0 otherwise, while χ2
p(m) is the 100p percentile value of the χ2 distribution with m degrees

of freedom; see also Geweke (2005, Section 8.2.4 and Theorem 8.1.2).

10.2.2. Truncated Elliptical Weighting Function

The accuracy of the harmonic mean estimator depends on the degree of overlap between the
numerator (weight function) and denominator (posterior kernel) in (10.4). When the posterior
density of θ is far from Gaussian, the Gaussian weighting function is less likely to work well.
First of all, the height of the posterior density can be very low at the mean, especially when
it is multimodal. Second, the truncated normal is often a poor local approximation to a non-
Gaussian posterior density. Third, the likelihood can get close to zero in the interior of the
parameter space. To deal with these three issues, Sims, Waggoner, and Zha (2008) (SWZ) have
suggested an alternative weighting function based on a truncated elliptical distribution.

Let θ̃ be the posterior mode and the scaling matrix Σ̃θ = N−1
∑N

s=1(θ(s) − θ̃)(θ(s) − θ̃)′. Next,
let the nonnegative scalar r be given by

r =
√(

θ − θ̃
)′

Σ̃−1
θ

(
θ − θ̃

)
. (10.6)

SWZ now define the elliptical density for θ as follows:

g
(
θ
)

=
Γ(m/2)

2πm/2|Σ̃θ|1/2

h
(
r
)

rm−1
, (10.7)

where m is the dimension of θ, and h(r) is a density function that does not depend on m which

is defined for nonnegative r and is to be estimated.69

Let r(s) be the value of r when θ = θ(s), i.e., it represents the value of r for the posterior
draws s = 1, . . . , N. Suppose that h(r) have a support on [a, b] and be defined as

h
(
r|a, b, c

)
=

crc−1

bc − ac
. (10.8)

The parameters a, b, and c are chosen as follows. Let Qx be the x percentile of the r(s) values,
ordered from the smallest to the largest, for x = 1,10,90. The values b and c are selected such
that the probability of r ≤ Q10 from h(r|0, b, c) is equal to 0.1 and the probability of r ≤ Q90

from h(r|0, b, c) is equal to 0.9. This means that

b =
Q90

0.91/c
, c =

ln(1/9)

ln(Q10/Q90)
.

Furthermore, the value of a = Q1 to keep h(r) bounded above.
In order to truncate the elliptical distribution, SWZ suggested using iid draws from g(θ).

These are constructed as

θ(i) =
r

‖x‖ Σ̃1/2
θ

x + θ̃, i = 1, . . . ,M, (10.9)

where Σ̃1/2
θ

is the Choleski factor of Σ̃θ, ‖x‖ =
√
x′x is the Euclidean norm, x ∼ Nm(0, Im), and

r is a random draw from h(r). The latter draws are obtained as

r =
[
(bc − ac)p

]1/c
, p ∼ U(0,1).

These draws are obtained by utilizing the cdf H(r) = rc/(bc − ac) and inverting it at H(r) = p.
Let k(θ|Y) = L(Y ; θ)p(θ), i.e., the kernel of the posterior density. Since the SWZ approach

is based on a nonzero value for h(r), the weight function f(θ) is effectively bounded above.
Hence, the upper bound truncation on the ratio f(θ)/k(θ|Y) can be implemented by a lower
bound truncation of the posterior kernel itself. Specifically, let L be a positive number and ΘL

be the region defined by

ΘL =
{
θ : k

(
θ|Y
)
> L
}
. (10.10)

69 The normal, Student t, logistic, and Laplace distributions are examples of elliptical distributions; see, e.g., Fang,

Kotz, and Ng (1990) and Landsman and Valdez (2003).
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The weighting function f(θ) is now chosen to be truncated elliptical with density such that its
support is ΘL. If qL is the probability that random draws from the elliptical lies in ΘL, then

f
(
θ
)

=
{θ ∈ ΘL}

qL
g
(
θ
)
, (10.11)

where {θ ∈ ΘL} is 1 if true and 0 otherwise. SWZ suggest that a good choice of L is a value
such that 90 percent of the posterior draws lie in ΘL.

To summarize, the SWZ appoach to estimating a suitable weighting function is as follows:

(1) Simulate N draws from the posterior density p(θ|Y) and record the minimum and maxi-
mum values of the posterior kernel, denoted by kmin and kmax, respectively, and let L ∈
(kmin, kmax).

(2) Simulate M iid draws from the elliptical distribution in (10.9) and compute the proportion
of these draws, denoted by q̂L, that belong to ΘL. This estimate has a binomial distribution
and its accuracy depends on the number of iid draws from g(θ). SWZ note that if q̂L <
1.0e − 06 then the estimate is unreliable since 3 or 4 standard deviations will include the
zero value. As a rule of thumb they suggest q̂L > 1.0e − 05.

SWZ also take note of the fact that the computation of qL gives a practical mechanism to
evaluate how much of the overlap f(θ) and k(θ|Y) share. In particular, if qL is too small the
weight function and the posterior kernel have very little overlap and the estimated marginal

likelihood is likely to be misleading.70

10.2.3. Transformed Parameters

Since YADA works internally with the transformed φ parameters, the expression for the modi-
fied harmonic mean estimator of the marginal likelihood is slightly different. Specifically,

p̂H(Y) =

[
1

N

N∑

s=1

f
(
φ(s)

)

L
(
Y ; g−1(φ(s))

)
p
(
g−1(φ(s))

)
J
(
φ(s)

)
]−1

, (10.12)

where f(φ) is either the truncated normal or the truncated elliptical for the transformed φ
parameters.

The numerical standard error can easily be computed for the modified harmonic mean esti-
mator of the (log of the) marginal likelihood. Let

m
(
φ
)

=
f
(
φ
)

k
(
φ|Y

) , (10.13)

where k(φ|Y) = L(Y ; g−1(φ))p(g−1(φ))J(φ) is the posterior kernel of p(φ|Y). To handle
possible numerical issues we introduce a constant c which guarantees that a rescaling of m(φ)
is bounded for all φ. An example of such a numerical problem is that the log posterior kernel is
equal to, say, −720 for some φ. While exp(−720) is a small positive number, computer software

such as matlab states that 1/ exp(−720) is infinite.71

One suitable choice is often c = maxφ k(φ|Y), i.e., the largest posterior kernel value over all
posterior draws of φ. For any suitable choice of c, it follows that

n
(
φ
)

=
f
(
φ
)

exp
(
lnk

(
φ|Y

)
− ln(c)

) . (10.14)

The rescaling needs to be accounted for when computing the marginal likelihood. Let n̄ be
the sample mean of n(φ). It follows that the log marginal likelihood based on the modified

70 SWZ note that for any sequence of posterior draws θ(s), s = 1, . . . , N, increasing the variance of f(θ) means

that the value of f(θ)/k(θ|Y) tends to decrease. As a consequence, the estimated marginal likelihood is artifically

inflated, irrespective of whether the tail of the distribution represented by the weight function is truncated or not.

By requiring qL to be computed, the estimate of this proportion goes to zero as the variance of f(θ) becomes too

large or too small.

71 In practise, it is important that rescaled log posterior kernel values are bounded from below by about −700 and

from above by approximately 700. This guarantees that the exponential function yields finite values.
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harmonic mean estimator is given by

ln p̂H(Y) = ln
(
c
)
− ln

(
n̄
)
. (10.15)

The n(φ) values can now be used to compute a numerical standard error of the log marginal
likelihood based on the modified harmonic mean estimator. The numerical standard error of
n(φ) can be computed from the Newey and West (1987) estimator in (8.2) by replacing φ with
n(φ). The delta method can thereafter be applied such that the numerical standard error of the
log marginal likelihood is equal to the numerical standard error of n(φ) divided by n̄.

10.3. The Chib and Jeliazkov Estimator

The Chib and Jeliazkov (2001) estimator of the marginal likelihood starts from the so called
marginal likelihood identity

p
(
Y
)

=
L
(
Y ; θ

)
p
(
θ
)

p
(
θ|Y
) =

L
(
Y ; g−1(φ)

)
p
(
g−1(φ)

)
J
(
φ
)

p
(
φ|Y

) . (10.16)

This relation holds for any value of φ (and θ), but a point with high posterior density should

preferably be selected, e.g., the posterior mode φ̃.
The numerator of (10.16) can be determined directly once the posterior mode has been found.

The denominator, however, requires a numerical approximation. Hence,

p̂CJ
(
Y
)

=
L
(
Y ; g−1(φ̃)

)
p
(
g−1(φ̃)

)
J
(
φ̃
)

p̂
(
φ̃|Y

) , (10.17)

where p̂(φ̃|Y) remains to be calculated.
Based on the definition of r(φ,ϕ|Y) in equation (8.1), let

α
(
φ,ϕ|Y

)
= min

{
1, r
(
φ,ϕ|Y

)}
. (10.18)

Let q(φ, φ̃|Y) be the proposal density for the transition from φ to φ̃. For the random walk
Metropolis algorithm we have used the multivariate normal density as the proposal, i.e.,

q
(
φ, φ̃|Y

)
=
(
2π
)−m/2 ∣∣c2Σ̃

∣∣−1/2
exp

{
− 1

2c2

(
φ̃ − φ

)′
Σ̃−1
(
φ̃ − φ

)}
. (10.19)

This density is symmetric, i.e., q(φ, φ̃|Y) = q(φ̃, φ|Y).72 The posterior density at the mode can
now be approximated by

p̂
(
φ̃|Y

)
=
N−1

∑N
s=1 α

(
φ(s), φ̃|Y

)
q
(
φ(s), φ̃|Y

)

J−1
∑J

j=1 α
(
φ̃, φ(j)|Y

)

=
N−1

∑N
s=1 q

(
φ(s), φ̃|Y

)

J−1
∑J

j=1 α
(
φ̃, φ(j)|Y

) ,
(10.20)

where φ(s), s = 1, . . . , N are sampled draws from the posterior distribution with the RWM

algorithm, while φ(j), j = 1, . . . , J, are draws from the proposal density (10.19). The second

equality stems from the fact that α(φ(s), φ̃|Y) = 1 for all φ(s) when φ̃ is the posterior mode,

i.e., the transition from φ(s) to φ̃ is always accepted by the algorithm. Hence, the Chib and

Jeliazkov estimator of p(φ̃|Y) is simply the sample average of the proposal density height for the
accepted draws relative to the posterior mode, divided by the sample average of the acceptance
probability, evaluated at the posterior mode.

The parameter J is always equal to N in YADA. In contrast with the modified harmonic mean
estimator of the marginal likelihood, the Chib and Jeliazkov estimator requires J additional
draws. When J is large and the parameter space is high dimensional, the Chib and Jeliazkov

72 Notice that α(φ, ϕ|Y) = min{1, r(φ,ϕ|Y)q(ϕ, φ|Y)/q(φ, ϕ|Y)} in Chib and Jeliazkov (2001); see, e.g., Section

2.1, above equation (7).

– 147 –



estimator will be considerably slower to compute since the log posterior function on the right
hand side of equation (7.1) needs to be evaluated an additional J times.

The numerical standard error of the log of the marginal likelihood estimate p̂(φ̃|Y) in (10.20)
can be computed from the vectors

h(s,j) =

[
h

(s,j)
1

h
(s,j)
2

]
=

[
q
(
φ(s), φ̃|Y

)

α
(
φ̃, φ(j)|Y

)
]
.

The average of h(s,j) is denoted by ĥ. This means that

ln p̂
(
φ̃|Y

)
= ln ĥ1 − ln ĥ2,

and the numerical standard error of the log marginal likelihood estimate can be calculated

from the sample variance of h(s,j) via the delta method. The sample variance of the latter can
be computed using the Newey and West (1987) estimator.

10.4. YADA Code

Geweke’s (1999) modified harmonic mean estimator of the marginal likelihood with a trun-
cated normal density as weighting function is computed with MargLikeModifiedHarmonic. This
function can also be used to estimate the marginal likelihood sequentially. The nature of the
sequential estimation is quite flexible, where a starting value and an incremental value for the
sequence can be selected on the Settings tab. By default, YADA sets the starting value to 100
and the increment value to 100. For a posterior sample with 10000 draws, this means that the
marginal likelihood is estimated for the sample sizes 100,200, . . . ,9900,10000. The selection
of sequential estimation sample is determined on the DSGE Posterior Sampling frame on the
Settings tab; cf. Figure 5.

Similarly, the modified harmonic mean estimator of the log marginal likelihood with a trun-
cated elliptical density as weighting function suggested by Sims et al. (2008) is computed with
the function MargLikeSWZModifiedHarmonic. It can also perform a sequential estimation of the
log marginal likelihood.

The function MargLikeChibJeliazkov calculates the Chib and Jeliazkov (2001) estimator of
the marginal likelihood as well as its numerical standard error. Like the modified harmonic
mean estimator function, MargLikeModifiedHarmonic, the calculations can be performed se-
quentially using the same sample grid.

The Laplace approximation is calculated by MargLikeLaplace. It is only run towards the
end of the posterior mode estimation routine and should only be viewed as a quick first order
approximation when comparing models.

10.4.1. MargLikeLaplace

The function MargLikeLaplace takes 3 inputs. First, it requires the value of the log posterior at
the mode of φ, LogPost, second minus (the inverse of) the Hessian at the mode, Hessian, and
third IsInverse, a boolean variable that takes the value 1 if Hessian is the inverse Hessian and
0 otherwise. Based on equation (10.2) the log marginal likelihood is calculated and provides as
the output LogMarg.

10.4.2. MargLikeModifiedHarmonic

The function MargLikeModifiedHarmonic takes 5 inputs. First of all, PostSample, an N × m
matrix with N being the number posterior draws that are used. This values is often smaller
than the total number of posterior draws that have been computed either since burn-in draws
are skipped or since the log marginal likelihood is computed from a subsample of the available
posterior draws (or both). Next, the values of the log posterior kernel are needed. These are as-
sumed to be given by the N dimensional vector LogPost. Third, the function accepts a boolean
variable ComputeSequential that is 1 if the marginal likelihood should be estimated sequen-
tially and 0 otherwise. Fourth, a vector with coverage probabilities are needed. This vector,
denoted by CovProb, can be empty or contain numbers between 0 and 1. Finally, the function

– 148 –



requires the structure DSGEModel with model related information. This structure should con-
tain the fields SequentialStartIterationValue and SequentialStepLengthValue, where the
former gives the starting value of the sequential estimates and the latter gives the increment
value. In case CovProb is empty, the structure should also include the fields CovStartValue,
CovIncValue, and CovEndValue. These fields determine the starting probability value, the in-
crement and the upper bound of the coverage probability p in (10.5); cf. the DSGE Posterior
Sampling frame on the Settings tab in Figure 5.

The output of MargLikeModifiedHarmonic is given by the variables LogMargs, CovProb, and
NWStdErr. The dimension of the first output variable is given by the number of successful
computations of the marginal likelihood for the given coverage probabilities times the number of
coverage probabilities plus 1. The first column of this matrix contains the number of draws used
for the computations, while the remaining columns contains the marginal likelihood values for
each given coverage probability. The second output argument is simply the vector of coverage
probabilities that was used by the function. Finally, the third output variable is a vector with the
numerical standard errors of the estimated log marginal likelihood for each coverage probability
at the full sample estimates using the Newey and West (1987) estimator; see equation (8.2).

10.4.3. MargLikeSWZModifiedHarmonic

The function MargLikeSWZModifiedHarmonic needs at nine input variables to complete its mis-
sion. These are: PostSample, LogPost, TotalDraws, PValue, ComputeSequential, ModeData,
lambda, DSGEModel, and CurrINI. Four of these variables are identical to the same names
inputs for MargLikeModifiedHarmonic. The integer TotalDraws is the number of parameter
draws that could be used and is often greater than N; see the explanation in 10.4.2. The in-
teger PValue lies between 0 and 100 and is the percent of log posterior kernel values that are
greater than a lower bound that is defined through its value. The structure ModeData has fields
with names that include data from the posterior mode estimation of the DSGE or DSGE-VAR
model. The scalar lambda is the DSGE-VAR hyperparameter λ (see Section 15) and is empty for
DSGE models. The structure CurrINI is discussed above.

The results from the calculations are provided in the four output variables LogMargs, qL,
LBound, and NWStdErr. The first is a matrix with rows equal to the number of successful compu-
tations of the log marginal likelihood and two columns. The first column holds the number of
parameter draws used, and the second the estimated log marginal likelihood at that number of
parameter draws. The scalar qL is the fraction of iid draws from the elliptical distribution such
that the log posterior kernel values at these draws are greater than LBound, the lower bound
for the log posterior kernel implied by PValue when all the N posterior draws are used. Finally,
the variable NWStdErr is the numerical standard error, based on the Newey and West (1987)
estimator, of the estimated log marginal likelihood value for all the N parameter draws.

10.4.4. MargLikeChibJeliazkov

The function MargLikeChibJeliazkov needs 17 input arguments. The first two are the matrix
PostSample and the vector LogPost that are also used by MargLikeModifiedHarmonic. Next,

the posterior mode φ̃ and the inverse Hessian at the posterior mode Σ̃ are needed, along with
the scale factor c that is used by the proposal density. These inputs are denoted by phiMode,
SigmaMode, and c, respectively. Furthermore, the function takes the inputs logPostMode (the
value of the log posterior at the mode), NumBurnin (number of burn-in draws), and the boolean
variable ComputeSequential that is also used by MargLikeModifiedHarmonic.

The remaining 9 input arguments are the last 9 inputs for the logPosteriorPhiDSGE function,

used to compute the α(φ̃, φ(j)|Y) term in the denominator of equation (10.20). The function
MargLikeChibJeliazkov always sets J = N in (10.20).

The output matrix is given by LogMargs. The first column gives the number of draws used for
estimating the marginal likelihood, the second column the estimated value of the log marginal
likelihood, while the numerical standard error of the log marginal likelihood is provided in the
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third column. The standard error is computed using the Newey and West (1987) estimator, with

N̄ = N(1/2.01).
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11. Analysing the Properties of a DSGE Model

There are several ways that you can evaluate an estimated DSGE model in YADA through the
behavior of its economic shocks. In this section I will consider a number of tools that are de-
signed for this purpose. Namely, the estimated economic shocks (the ηt’s), historical forecast
error decompositions, impulse response functions, conditional variance decompositions, fore-
cast error variance decompositions, conditional correlations and correlation decompositions,
historical observed variable decompositions, and parameter scenarios. We then turn to the
issue if a VAR model can uncover the economic shocks and measurement errors of the DSGE
model, as well as local identification via the rank of Fisher’s information matrix.

11.1. Estimation of the Economic Shocks

In Section 5.5 the smooth estimates of the state shocks for the state equation of the Kalman
filter were given in equation (5.26). Let us assume that B0 has full column rank so that B′

0B0 is

invertible. This assumption means that there are no redundant shocks in the DSGE model.73

For a given sequence of smoothly estimated state shocks, vt|T , smooth estimates of the eco-
nomic shocks are now given by:

ηt|T =
(
B′

0B0

)−1
B′

0vt|T = B′
0rt|T , t = 1, . . . , T, (11.1)

through equation (5.27) with Q = B0B
′
0. The covariance matrix of the smooth estimates of

the economic shocks is determined from the covariance matrix of the smooth estimates of the
state shocks and is given by B′

0Nt|TB0 ≤ Iq, where equality holds if ηt is observable at T . The
conditional covariance matrix of ηt is therefore given by

E
[
(ηt − ηt|T)(ηt − ηt|T)′|YT

]
= Iq − B′

0Nt|TB0, t = 1, . . . , T. (11.2)

Similarly, update estimates of the economic shocks can be computed directly from update
estimates of the state shocks. From equation (5.29) we therefore have that

ηt|t =
(
B′

0B0

)−1
B′

0vt|t = B′
0HΣ−1

y,t|t−1

(
yt − yt|t−1

)
= B′

0rt|t, t = 1, . . . , T. (11.3)

The covariance matrix of the update estimates of the economic shocks is also determined from

the covariance matrix of the state shocks and is equal to B′
0HΣ−1

y,t|t−1
H′B0 ≤ Iq, where equality

holds if ηt is observable at t. Accordingly, the conditional covariance matrix for ηt is

E
[
(ηt − ηt|t)(ηt − ηt|t)

′|Yt

]
= Iq − B′

0HΣ−1
y,t|t−1

H′B0, t = 1, . . . , T. (11.4)

11.1.1. Limit Covariance Matrices of Update and Smooth Estimates of the Structural Shocks

The population covariance matrix of the update estimates of the structural shocks, ηt|t, is given

by B′
0HΣ−1

y,t|t−1
H′B0 and therefore varies over time based on the one-step-ahead covariance

matrix of of the observed variables, which in turn varies over time with the one-step-ahead
covariance matrix for the state variables. It is shown in Section 11.5 that if n = q, R = 0, and
F has all eigenvalues inside the unit circle, then an asymptote to Pt|t−1 is given by P1 = B0B

′
0.

Letting Σy,1 denote the asymptote of Σy,t|t−1 and neglecting the fact that the asymptote for Pt|t−1

need not be unique, it follows that the limiting covariance matrix of the updated structural
shocks is In since

Σ−1
y,1 =

(
B′

0H
)−1(

H′B0

)−1
. (11.5)

For this particular case it therefore follows that the update estimates of the structural shocks
are uncorrelated once the Kalman filter recursions have converged to an asymptote for the state
covariance matrix. However, if the number of unique measurement errors and the number of
structural shocks is greater than the number of observed variables, then the asymptote for the
covariance matrix of the structural shocks, is not diagonal with unit diagonal entries. Although
it is very tempting to compare a sample estimate of the covariance matrix for the update estimate

73 YADA actually checks this by trying to find column of zeros in B0. Such columns may appear when a certain shock

is forced to have no effect on the variables in the AiM model file, but the shock has not been deselected in YADA.
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of these shocks to the identity matrix, it is generally not a useful exercise. Instead, one may
compare such a sample estimate to either an asymptote of the population covariance matrix or,

better yet, to the sample average of B′
0HΣ−1

y,t|t−1
H′B0.

The issue is, in fact, even more problematic once we turn to the smooth estimates of the
structural shocks. The covariance matrix of these estimates is given by B′

0Nt|TB0. Provided that
an asymptote of Nt|T exists, it is given by

Nk = N0 + L′Nk−1L, k = 1,2, . . . ,

where k = T − t,

N0 = HΣ−1
y,1H

′,

and

L = F
(
Ir − PH

)
, PH = P1H

(
H′P1H + R

)−1
H′.

Under the assumptions that n = q, R = 0, and the eigenvalues of F lie inside the unit circle
we know that equation (11.5) holds. It is now straightforward to show that B′

0N0B0 = In, while

LB0 = 0. As a consequence, it holds that B′
0NkB0 = In for k ≥ 0.

Concerning the autocovariances for the smooth estimates of the structural shocks, it holds
that

E
[
η
t|Tη

′
t+1|T

]
= B′

0

(
F −KtH

′)′Nt+1,TB0.

Hence, the smooth estimates of these shocks are generally correlated over time. Given that an
asymptote of this covariance matrix exists, it satisfies B′

0L
′Nk−1B0. It now follows that if n = q

and R = 0, this first order autocovariance matrix is zero since LB0 = 0.

11.1.2. Observation Weights under Standard Initialization

The dependence of the smooth estimates of the shocks on the observed variables and the initial
coinditions may be investigated by using the weighting results in Section 5.9. Since ηt|T = B′

0rt|T
for t = 1,2, . . . , T , it can directly be established that

ηt|T =
T∑

τ=1

ατ
(
ηt|T
)
zτ + β0

(
ηt|T
)
ξ1|0, t = 1, . . . , T. (11.6)

The q × n matrices with weights on the observed variables are given by

ατ
(
ηt|T
)

= B′
0ατ
(
rt|T
)
, τ = 1, . . . , T, (11.7)

while the q × r weighting matrix on the initial condition is

β0

(
ηt|T
)

= B′
0β0

(
rt|T
)
. (11.8)

Recalling that the forecast error, yt − yt|t−1, is equal to zt − H′ξt|t−1, it can be seen that
the update estimates of the shock depend on the observed variables and the initial conditions
according to

ηt|t =
t∑

τ=1

ατ
(
ηt|t
)
zτ + β0

(
ηt|t
)
ξ1|0, t = 1, . . . , T. (11.9)

The q × n matrices with weights on the observed variables are equal to

ατ
(
ηt|t
)

=




−B′

0HΣ−1
y,t|t−1

H′ατ
(
ξt|t−1

)
if τ = 1, . . . , t − 1,

B′
0HΣ−1

y,t|t−1
if τ = t.

(11.10)

The weights on the initial condition are now given by

β0

(
ηt|t
)

= −B′
0HΣ−1

y,t|t−1
H′β0

(
ξt|t−1

)
. (11.11)
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11.1.3. Observation Weights under Diffuse Initialization

It was noted in Sections 5.14.2 and 5.15.2 that under diffuse initialization of the Kalman filter
the smooth estimates of the state shocks for the initialization sample (t = 1, . . . , d) are given by

vt|T = Qr
(0)
t|T ,

where

r
(0)
t|T =

[
Ir 0

]
r̃t|T = J ′r r̃t|T .

Given the relationship between the economic shocks and the state shocks in (11.1), we therefore
find that smooth estimates of the economic shocks for the initialization sample are

ηt|T = B′
0J

′
r r̃t|T .

Concerning the observation weights of the smoothly estimated economic shocks, equation
(11.6) remains valid, but the q × nt matrices with weights for t = 1, . . . , d are now

ατ
(
ηt|T
)

= B′
0J

′
rατ
(
r̃t|T
)
, τ = 1, . . . , T, (11.12)

where the weights on the extended innovation vector r̃t|T are located in Section 5.16.3. The
q × r weighting matrices on the initial state value are similarly given by

β0

(
ηt|T
)

= B′
0J

′
rβ0

(
r̃t|T
)
.

In order to provide the observation weights for the update estimates of the economic shocks,
we first note that the update innovations

r̃t|t = F̂tzt − Ĝtξt|t−1, t = 1, . . . , d, (11.13)

where F̂t and Ĝt are defined in Section 5.16.3. These innovations satisfy the following relation-
ship with respect to the update estimates of the state variables

ξt|t = ξt|t−1 + P̃t|t−1r̃t|t, t = 1, . . . , d,

and may therefore also be used when computing observation weights for the update estimates
of the state variables. For the update innovations in (11.13) it follows that we have the following
r × r observation weight matrices

ατ
(
r̃t|t
)

=




−Ĝtατ

(
ξt|t−1

)
, if τ = 1, . . . , t − 1,

F̂t, if τ = t,

while the r × r matrices with weights on the initial state are

β0

(
r̃t|T
)

= −Ĝtβ0

(
ξt|t−1

)
.

The update estimates of the economic shocks over the initialization sample may now be
computed from the update innovations r̃t|t according to

ηt|t = B′
0J

′
r r̃t|t, t = 1, . . . , d.

It therefore follows that equation (11.9) is also valid for the initialization sample, but where the
q × nt weighting matrices are now

ατ
(
ηt|t
)

= B′
0J

′
rατ
(
r̃t|t
)
, τ = 1, . . . , t, (11.14)

while the q × r matrices with weights on the initial state are

β0

(
ηt|T
)

= B′
0J

′
rβ0

(
r̃t|t
)
.

11.1.4. Simulation Smoother

Since the dimension of ηt is typically lower than the dimension of vt, i.e., q < r, a more
efficient algorithm of the simulation smoother from Section 5.10 would take this account. This
can directly be achieved by replacing vt by ηt in the definition of ω and by letting Ω = (IT ⊗
diag[R, Iq]).
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Furthermore, the covariance matrix R will typically have reduced rank. We may therefore
apply the decomposition R = SΛS′, where S is n×nR, rank[R] = nR ≤ n, Λ = diag[λ1, . . . , λnR]
are the non-zero eigenvalues of R, ordered from the largest to the smallest, while S′S = InR .

We then let wt = R1/2ςt, with R1/2 = SΛ1/2, while ςt has covariance matrix InR . Finally, we
replace wt with ςt in the definition of ω, with the consequence that Ω = IT(nR+q).

It should be emphasized that if ηt (or wt) is observable at t, such that the right hand side
of (11.2) (or (5.35)) is zero, then the covariance matrix of the simulation smoother for the
economic shocks is zero. This may happen when q + nR = n. Assuming that nR = 0, this
can easily be checked by inspecting if B′

0NT |TB0 = Iq. In addition, if a diagonal element of the
covariance matrix in (11.2) is zero, then the corresponding economic shock can be observed
from the data and the parameter values; a similar conclusion about the measurement errors
can be drawn by inspecting the right hand side of (5.35).

To improve the efficiency of the simulation smoother we may use antithetic variables; see
Section 5.10. Given our redefinition of ω as being a vector of dimension T(nR + q) of N(0,1)
random variables, we can now provide some additional antithetic variables that allow the sim-
ulation sample to be balanced for scale. Recall first that

ω̃(i) = E[ω|YT ] + ω(i) − E[ω|Y(i)
T ],

where ω(i) is a draw from N(0,Ω), while the anithtetic variable

ω̃(−i) =2E[ω|YT] − ω̃(i)

=E[ω|YT] − ω(i) + E[ω|Y(i)
T ],

is equiprobable with the draw ω̃(i). Making use of this variable for the simulation smoother
means that the simulation sample is balanced for location.

Define c = ω(i)′ω(i) so that c ∼ χ2(T(nR + q)). This means that p = Pr[χ2(T(nR + q)) <
c] = F(c) gives the probability that a random variable with the same distribution as c is less
than the value of c. A value from the χ2(T(nR + q)) distribution which is equiprobable with c

is therefore d = F−1(1 − p). Following Durbin and Koopman (2012, Chapter 11.4.3), a third

antithetic variable for ω̃(i) is therefore

ω̄(i) = E[ω|YT] +
√
d/c

(
ω̃(i) − E[ω|YT]

)
,

while a fourth antithetic is

ω̄(−i) = E[ω|YT] +
√
d/c

(
ω̃(−i) − E[ω|YT]

)
.

These two vectors have the same distribution as ω̃(i) and ω̃(−i), i.e., N(E[ω|YT ], C), where
C = Cov[ω|YT] does not depend on YT .

11.2. Historical Forecast Error Decomposition

A common tool in the analysis of the structural VAR model is the decomposition of the forecast
errors for the observed variables into the underlying structural shocks. For such models, the
forecast errors are linear combinations of the structural shocks. In state-space models a forecast
error decomposition becomes more delicate since the forecast errors not only depend on the
structural, economic shocks, but also on measurement errors and prediction errors of the un-
observed state variables. Since the prediction errors of these variables depend on the economic
shocks and on the measurement errors, one cannot really speak about a unique decomposition
since one may further decompose the variable prediction errors.

Let εt+h = yt+h−yt+h|t denote the h-step ahead forecast error of the observed variables when
we condition on the parameters. Furthermore, notice that yt+h = yt+h|T provided that t+h ≤ T .
From the measurement error estimation equation (5.34) and the multistep forecasting equation
(5.37) we thus have that for any h such that t + h ≤ T :

εt+h = H′(ξt+h|T − ξt+h|t
)

+wt+h|T , t = 1, . . . , T − h. (11.15)
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By making use of equation (5.40) we can rewrite the difference between the smoothed and
the h-step forecasted state vector on the right hand side of (11.15) as

ξt+h|T − ξt+h|t = Fh
(
ξt|T − ξt|t

)
+

h−1∑

i=0

Fivt+h−i|T .

Substituting this expression into (11.15) and noticing that vt+h−i|T = B0ηt+h−i|T , we obtain the
following candidate of a historical forecast error decomposition

εt+h = H′Fh
(
ξt|T − ξt|t

)
+H′

h−1∑

i=0

FiB0ηt+h−i|T +wt+h|T , t = 1, . . . , T − h. (11.16)

Unless the state vector can be uniquely recovered from the observed variables74 the first term
on the right hand side is non-zero. It measures the improvement in the projection of the state
vector when the full sample is observed relative to the partial sample. As the forecast horizon
h increases, this term converges towards zero. It may be argued that the choice of time period
t for the state vector is here somewhat arbitrary. We could, in principle, decompose this term
further until we reach period 1. However, the choice of state variable period t for the forecast
error is reasonable since this is the point in time when the forecasts are made. Moreover,
shifting it back to, say, period 1 would mean that the historical forecast error decomposition
would include estimates of the economic shocks that are based not only on the full sample, but
also on the Yt information set and, furthermore, the timing of those shocks would be for time
periods τ = 2, . . . , t, and would therefore be shocks with time period prior to t + 1, the first
time period of the forecast period.

Apart from the timing of the terms, the decomposition in (11.16) also has the advantage that
the dynamics of the state variables enter the second moving average term that involves only
the economic shocks, while the measurement errors in the third term do not display any serial
correlation. We may regard this as a “model consistent” decomposition in the sense that only
the state variables display dynamics and the measurement errors are independent of the state
variables. Hence, serial correlation in the forecast errors should stem from the shocks that affect
the dynamics, i.e., the economic shocks.

11.3. Impulse Response Functions

11.3.1. Impulse Responses For Unanticipated Shocks in the Linear Model

The responses of the observed variables yt+h from shocks to ηt can easily be calculated through
the state-space representation and the relationship between the state shocks and the economic
shocks. Suppose that ηt = ej and zero thereafter, with ej being the j:th column of Iq. Hence,
we consider the case of a one standard deviation impulse for the j:th economic shock. From
the state equation (5.2) the responses in ξt+h for h ≥ 0 are:

resp
(
ξt+h|ηt = ej

)
= FhB0ej , h ≥ 0. (11.17)

If the model is stationary, then the responses in the state variables tend to zero as h increases.
From the measurement equation (5.1) we can immediately determine the responses in the

observed variables from changes to the state variables. These changes are here given by equa-
tion (11.17) and, hence, the responses of the observed variables are:

resp
(
yt+h|ηt = ej

)
= H′FhB0ej , h ≥ 0. (11.18)

Again, the assumption that the state variables are stationary implies that the responses of the
observed variables tend to zero as the response horizon h increases.

74 This would be the case if the state vector could be expressed as a linear function of the observed variables (and

the deterministic) by inverting the measurement equation.
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11.3.2. Impulse Responses when the Zero Lower Bound may be Binding

The impulse responses in the previous section were computed under the implicit assumption
that the model does not have any anticipated shocks. Such shocks are allowed for when dealing
with a nonlinearity such as the zero lower bound (ZLB). The general solution of the linear DSGE
model subject to such a condition was discussed in detail in Section 3.4 and involves allowing
for anticipated shocks which, when estimated, depend on which value the unanticipated shocks
take. This means that the impulse responses under the ZLB are different from those in the
purely linear model provided that this lower bound is binding over the response horizon.

Recall that the anticipated shocks are collected into At, a (T + 1)-dimensional vector with
entries αt+τ |t for τ = 0,1, . . . , T . The integer T corresponds to the number of time periods that
the ZLB may be binding. We will compute the impulse responses from period t until period
t + h, where h may differ from T . Below it is assumed that the ZLB is either not binding in
period t − 1 or, somewhat more generally, that At−1 = 0.

Impulse responses from a shock to ηt can now be computed as follows. Consider the following
unanticipated shock in period t:

ηt = cej , (11.19)

where ej as in Section 11.3.1 above is a q-dimensional vector with unity in its j:th position and
zeros elsewhere. The constant c is typically unity for impulse responses, but we will here allow
it to take on other values since it will influence the impulse reponses through its effect on the
size of the anticipated shocks, and this effect is not expected to be proportional to c. Moreover,
we will measure impulse reponses based on two ηt vectors, one with c being different from zero
and one when it is equal to zero. The difference between the paths of the state (observable)
variables using these two shock values constitutes their response to the shock in (11.19).

Specifically, the paths for the state variables can be calculated using the stochastic simulation

algorithm in Section 3.4.6 with S̄ = 1. This means that a sequence of anticipated shocks A
(c)
t+i,

i = 0,1, . . . , h, based on ηt satisfying (11.19) in period t and being zero for all t+ i (with i ≥ 1)
is computed with the forward-back shooting algorithm, first for c being nonzero and then for
c being equal to zero. With ξt = zt, the impulse response functions for the state variables are
given by the difference between these two paths:

resp
(
ξt+i|ηt = cej

)
= z

(c)
t+i − z

(0)
t+i, i = 0,1, . . . , h, (11.20)

where z
(c)
t+i is the simulated value of the state variables at t + i for a given value of c. Similarly,

using the measurement equation the responses of the observable variables are

resp
(
yt+i|ηt = cej

)
= H′(z(c)

t+i − z
(0)
t+i

)
, i = 0,1, . . . , h. (11.21)

These impulse response functions depend on the selected shock (j), the size of the shock (c),
and the location of the state variables before the shock (ξt−1 = zt−1). The latter effect stems
from the impact the location of the state variables at t − 1 has on values of the anticipated
shocks. On the one hand, if we assume that the model is in steady-state at t − 1 (ξt−1 = 0),
it is unlikely that the ZLB will be binding in some time periods from t and onwards unless c is
sufficiently large (in absolute terms). On the other hand, if we assume that the nominal interest
rate is close to the lower bound at t − 1, then also a small size of the shock can lead to the ZLB
becoming binding over the horizon for which impulse responses are computed.

To see how the impulse responses can be built, consider first period t. From equation (3.29)
we have for the extended vector of state variables that

Y
(c)
t =

[
z

(c)
t

r̂
(c)
t

]
= P




cej

zt−1

r̂t−1

A
(c)
t



,

where A
(c)
t is the vector of anticipated shocks obtained from the forward-back shooting algo-

rithm when (11.19) is taken into account. We therefore find that the initial response of Yt is
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given by

Y
(c)
t − Y

(0)
t = P




cej

0

0

A
(c)
t −A

(o)
t



.

In case A
(c)
t = A

(0)
t = 0 such that the ZLB is not binding in time period t and not projected

to be binding over the horizon until t + T , then the initial responses in (11.17) and (11.20) are
equal when c = 1, and proportional when c 6= 1 and nonzero.

Moving ahead, for period t + i with i ≥ 1 we find from equation (3.29) that

Y
(c)
t+i =

[
z

(c)
t+i

r̂
(c)
t+i

]
= P




0

z
(c)
t+i−1

r̂
(c)
t+i−1

A
(c)
t+i



.

Accordingly, the dynamic impulse responses for the state variables under the ZLB are given by

Y
(c)
t+i − Y

(0)
t+i = P




0

z
(c)
t+i−1

− z
(0)
t+i−1

r̂
(c)
t+i−1

− r̂
(0)
t+i−1

A
(c)
t+i −A

(0)
t+i




= P




0

Y
(c)
t+i−1

− Y
(0)
t+i−1

A
(c)
t+i −A

(0)
t+i


 , i = 1, . . . , h.

It may finally be noted that if A
(c)
t+i = A

(0)
t+i = 0 for all i ≥ 0, then all the impulse responses in

(11.17) and (11.20) are equal at when c = 1, and proportional when c 6= 1 and nonzero.

11.4. Conditional Variance Decompositions

The forecast error variance decomposition is derived from the historical forecast error decom-
position in equation (11.16). The h-step ahead forecast error using data until period T can be
expressed as:

εT+h = H′Fh
(
ξT − ξT |T

)
+H′

h−1∑

i=0

FiB0ηT+h−i +wT+h, h = 1,2, . . . , H. (11.22)

If we condition the forecast error εT+h on the state projection error (first term) and the mea-
surement error (third term), the conditional h-step ahead forecast error variance is given by the
variance of the second term on the right hand side. That is,

Vh =
h−1∑

i=0

H′FiB0B
′
0(F′)iH

= V
h−1

+ R
h−1

R′
h−1

,

(11.23)

where Ri = H′FiB0, V0 = 0, and h ≥ 0. This forecast error variance is identical to the forecast
error variance that we obtain when a VAR model is written on state-space form. It is therefore
analogous to a “variance decomposition” that is calculated from the impulse response functions
in (11.18).

The conditional forecast error variance decomposition can be expressed as the n × q matrix

vh =

[
h−1∑

i=0

(
RiR

′
i ⊙ In

)
]−1 [

h−1∑

i=0

(
Ri ⊙ Ri

)
]
, (11.24)
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where ⊙ is the Hadamard (element-by-element) product. With e
(n)
i being the i:th column of In,

the share of the h-step ahead conditional forecast error variance of the i:th observed variable

that is explained by the j:th economic shock is given by e
(n)′
i vhe

(q)
j .

YADA can also handle conditional variance decompositions for levels variables. To illustrate
how this is achieved assume for simplicity that all observed variables are expressed as first
differences so that the levels are obtained by accumulating the variables. This means that the
h-step ahead forecast error for the levels is the accumulation of the error in (11.22), i.e.,

ε̄T+h = H′
h∑

j=1

Fj
(
ξT − ξT |T

)
+H′

h∑

j=1

j−1∑

i=0

FiB0ηT+j−i +
h∑

j=1

wT+j , h = 1,2, . . . , H. (11.25)

The conditional h-step ahead forecast error for the levels variables is the second term on the
right hand side of (11.25). This can be expressed as

ε̄
(c)
T+h =

h∑

j=1

j−1∑

i=0

RiηT+j−i =
h−1∑

j=0

R∗
j ηT+h−j , (11.26)

where R∗
j =

∑j

i=0Ri. It therefore follows that the conditional forecast error variance for the

levels of the observed variables is

V ∗
h

=
h−1∑

j=0

R∗
jR

∗′
j

= V ∗
h−1

+ R∗
h−1

R∗′
h−1

,

(11.27)

where V ∗
0 = 0. We can then define the levels variance decomposition as in equation (11.24)

with R∗
j

instead of Ri (and summing over j = 0,1, . . . , h − 1).

By collecting the products RiR
′
i into one group and all other product into a second group and

dividing both sides of equation (11.27) by h, it can be rewritten as:

V̄h = V ∗
h
/h

=
h−1∑

i=0

(
h− i

h

)
RiR

′
i +

h−1∑

m=1

m−1∑

i=0

(
h −m

h

)(
RiR

′
m + RmR

′
i

)
.

(11.28)

Taking the limit of V̄h as the forecast horizon approaches infinity we obtain an finite expression
of the long-run forecast error covariance. We here find that

lim
h→∞

V̄h =
∞∑

i=0

RiR
′
i +

∞∑

m=1

m−1∑

i=0

(
RiR

′
m + RmR

′
i

)

=

( ∞∑

i=0

Ri

)( ∞∑

i=0

Ri

)′

= H′ (Ir − F
)−1

B0B
′
0

(
Ir − F′)−1

H.

(11.29)

Hence, if we divide the h-step ahead forecast error covariance matrix by h and take the limit
of this expression, we find that the resulting long-run covariance matrix is equal to the cross
product of the accumulated impulse responses.

These results allow us to evaluate how close the forecast error covariance matrix at the h-step
horizon is to the long-run forecast error covariance matrix. The ratio between the l:th diagonal
element in (11.28) and in (11.29) is an indicator of such convergence. A value close to unity
can be viewed as long-run convergence at forecast horizon h, while a very large or very small
value indicates a lack of convergence.

We can also use the result in (11.29) to calculate the long-run conditional forecast error
variance decomposition. Letting Rlr = H′(Ir − F)−1B0, we find that

vlr =
[
R
lr
R′
lr
⊙ In

]−1[
Rlr ⊙ Rlr

]
, (11.30)
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provides such a decomposition.

11.5. Forecast Error Variance Decompositions

The forecast error covariance matrix for the h-step ahead forecast of the observed vector yt+h
conditional on Yt is given in equation (5.39). It can be seen from this equation that this covari-
ance matrix is time-varying. Although this is of interest when we wish to analyse the forecast
errors at a particular point in time, the time-variation that the state-space model has introduced
is somewhat artificial since the covariance matrix Pt+h|t depends only on the choice of t = 1 and
not on the time t information Yt. For this reason we may wish to consider an “unconditional”
forecast error covariance matrix, where the value of (5.39) no longer depends on the chosen
initialization period.

Assume that a unique asymptote of the forecast error covariance matrix Pt+h|t exists and let
it be denoted by Ph for h = 0,1, . . .. By equation (5.38) it follows that

Ph = FPh−1F
′ + Q, h ≥ 1. (11.31)

Similarly, from the expression for Pt|t in equation (5.10) we deduce that P0 satisfies

P0 = P1 − P1H
[
H′P1H + R

]−1
H′P1. (11.32)

Let h = 1 in equation (11.31) and substitute for P0 from (11.32). We then find that the asymp-
tote P1 must satisfy

P1 = FP1F
′ − FP1H

[
H′P1H + R

]−1
H′P1F

′ + Q. (11.33)

Given that we can solve for a unique asymptote P1, all other Ph matrices can be calculated using
(11.31) and (11.32).

The assumptions that (i) F has all eigenvalues inside the unit circle, and (ii) Q and R are
positive semidefinite, are sufficient for the existence of an asymptote, P1, that satisfies (11.33);
see, e.g., Proposition 13.1 in Hamilton (1994). Let the asymptote for the Kalman gain matrix in
(5.9) be denoted by K, where

K = FP1H
[
H′P1H + R

]−1
.

The assumptions (i) and (ii) also imply that all the eigenvalues of L = F −KH′ lie on or inside
the unit circle.

In fact, if we replace (ii) with the stronger assumption that either Q or R is positive definite,
then the asymptote P1 is also unique; see Proposition 13.2 in Hamilton (1994). This stronger
assumption is in the case of DSGE models often not satisfied since the number of economic
shocks tends to be lower than the number of state variables (Q singular) and not all observed
variables are measured with error (R singular). Nevertheless, from the proof of Proposition 13.2
in Hamilton it can be seen that the stronger assumption about Q,R can be replaced with the
assumption that all the eigenvalues of L lie inside the unit circle. From a practical perspective
this eigenvalue condition can easily be checked once an asymptote P1 has been found; see also
Harvey (1989, Chapter 3.3).

The expression in (11.33) is a discrete algebraic Riccati equation and we can therefore try to
solve for P1 using well known tools from control theory. The matrix Q is typically singular for
DSGE models since there are usually fewer economic shocks than state variables. Moreover,
the matrix R is not required to be of full rank. For these reason, YADA cannot directly make
use of the function dare from the Control System Toolbox in Matlab or the procedures discussed
by Anderson, Hansen, McGrattan, and Sargent (1996). Instead, YADA uses a combination of
iterations (with Σξ as an initial value) and eigenvalue decompositions, where a solution to
(11.33) is attempted in each iteration using the dare function for a reduction of P1. The details
on this algorithm are presented in Section 11.6.

Prior to making use of such a potentially time consuming algorithm it makes sense to first
consider a very simple test. From equation (11.31) is can be seen that if FP0F

′ = 0 then P1 = Q.
This test can be performed very quickly and when successful save considerable computing time.
It may be noted that the condition FP0F

′ = 0 means that the rows of F are orthogonal to the
columns of P0. This means that if F has full rank r and P1 = Q, then P0 = 0.
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For state-space models with R = 0, n ≤ r, and n ≤ q, it is straightforward to show that L is
given by

L = F (Ir − PH) ,

where PH = P1H(H′P1H)−1H′ is idempotent with rank n, while Ir − PH is also idempotent but
with rank n − r, i.e., the latter matrix has n − r eigenvalues equal to unity and r eigenvalues
equal to zero. Accordingly, L is equal to F times an r × r idempotent matrix of rank n − r.
Furthermore, if L has a unit eigenvalue, then Ir − L is singular.

A likely source for a unit eigenvalue of L is that the state equation has a variable in levels,
but its measurement is in first differences. For instance, the An and Schorfheide model in
Section 2.1 gives a measurement for ∆yt, which is mapped to the state variables ŷt, ŷt−1,
and ẑt. With ŷt−1 being a definition and appearing as the last element in the vector of state
variables, the corresponding L matrix has a unit root. Moreover, when the last column and row
of L are removed the resulting matrix has all eigenvalues inside the unit circle. If instead the
row and column of L corresponding the ŷt are deleted, the derived matrix remains singular. In
the case of the Smets and Wouters model, described in Section 2.4, the L matrix has four unit
roots and these may be linked to having first difference measurements of real GDP, real private
consumption, real investments, and real wages, while these variables appear in levels in the
state equations.

From the expression in equation (5.14) we find that an asymptote P1 satisfying the Riccati
equation in (11.33) with R = 0 also satisfies

P1 = LP1L
′ + Q, (11.34)

when R = 0. For the case when P1 = Q is a solution to (11.33), it follows by equation (11.34)
that LQL′ = 0 must hold.

Specifically, for the case when n = q and R = 0, a solution to the Riccati equation (11.33) is
always given by P1 = Q = B0B

′
0. For this case, H′B0 is a square nonsingular matrix and

L = F
(
Ir − B0

(
H′B0

)−1
H′
)
.

It is clear from this expression that LB0 = 0 such that LB0B
′
0L

′ = 0. Provided that F and L both
have all eigenvalues inside the unit circle, it follows that the asymptote P1 = Q is unique.

The asymptotic h-step-ahead forecast error covariance matrix for the observed variables is
now given by:

Σεh = H′PhH + R, h ≥ 1. (11.35)

The h-step ahead forecast error for the observed variables when the forecasts are performed
based on the observations in period T can be expressed as:

εT+h = H′(ξT+h − ξT+h|T
)

+wT+h, h = 1,2, . . . . (11.36)

But we can also derive an alternative asymptotic forecast error variance decomposition from
(11.36). The forecast error of the state variables can — as we have already seen in, for example,
equations (5.36) and (5.40) — be expressed as

ξT+h − ξT+h|T = Fh
(
ξT − ξT |T

)
+

h−1∑

i=0

FiB0ηT+h−i,

where we have made use of vt = B0ηt. If ξT is observable at T , then P0 = 0 and P1 = Q, thus
making the computations particularly simple since we do not need to use the Riccati equation
solver. It therefore also follows that the reason why we need to use this solver is because we
need to determine the sources behind the state variable forecast error at T .

In fact, by substituting the above decomposition of the forecast error for the state variables
at T into (11.36) and taking expectations, the asymptote is

Σεh = H′FhP0(F′)hH + Vh + R, (11.37)

where Vh is given in equation (11.23).
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The decomposition in (11.37) can also be derived by recursively substituting for Ph based on
equation (11.31) into equation (11.35). Although the decomposition in (11.37) requires P0 to
be determined, we may opt to leave this term otherwise undetermined, i.e., the P0 matrix is not
decomposed into the shares of the individual economic shocks. For the impact of the individual
shocks on the forecast error covariances we may focus on the second term, while the third term

gives us the share of the measurement errors.75

The forecast error variance decomposition can now be performed using equation (11.37) in
combination with the tools developed in Section 11.4. Specifically, the n× (2 + q) matrix

σεh =
[
Σεh ⊙ In

]−1
[
diag

(
H′FhP0(F′)hH

)
diag

(
R
) ∑h−1

i=0

(
Ri ⊙ Ri

)]
, (11.38)

gives the h-step-ahead forecast error variance decompositions for the n observed variables
(rows) in terms of the joint impact of historical state variable uncertainty, the individual q struc-
tural shocks, and the joint impact of the measurement errors. Notice that we do not attempt to
separate the influence of the individial state variables or of the individual measurement errors
in the decomposition but simply take them as two independent sources of forecast uncertainty.

The long-run forecast error variance decomposition can also be calculated using the above
relations. First, we note that if the unique asymptote P1 exists, then all Ph exist and are unique.
Second, limh→∞ Ph = Σξ, where Σξ is obtained by solving the Lyapunov equation (5.15), so that
the long-run forecast error covariance of the observed variables is simply the contemporaneous
covariance matrix. The long run forecast error covariance due to measurement errors is R,

while the long run forecast error covariance matrix due to economic shock j is given byH′Σ(j)
ξ
H,

where:
Σ

(j)
ξ

= FΣ
(j)
ξ
F′ + B0jB

′
0j , j = 1, . . . , q, (11.39)

i.e., the solution to the Lyapunov equation when all shocks except shock j is zero. Summing the
q shocks terms we obtain:

Σξ =
q∑

j=1

Σ
(j)
ξ
.

This is easily verified by summing both sides of equation (11.39) over j and noting that
q∑

j=1

B0jB
′
0j = B0B

′
0.

Accordingly,
lim
h→∞

Vh = H′ΣξH.

Finally, the state variable term in (11.37) converges to zero when h becomes very large provided
that either all eigenvalues of F are inside the unit circle or all observed variables are station-
ary. The latter is actually already assumed since the covariance matrix is taken to be finite.
Accordingly, we have that

lim
h→∞

Σεh = H′ΣξH + R, (11.40)

Furthermore, the long-run forecast error variance decomposition is given by the n × (q + 1)
matrix:

σεlr =
[(
H′ΣξH + R

)
⊙ In

]−1
[
diag

(
R
)

diag
(
H′Σ(1)

ξ
H
)

· · · diag
(
H′Σ(q)

ξ
H
)]
. (11.41)

The asymptotic forecast error variance decompositions for levels variables can also be cal-
culated by YADA. As in Section 11.4 this is illustrated by assuming that all observed variables
are expressed as first differences so that the levels are obtained by accumulating the variables.
The h-step-ahead forecast error is given in equation (11.25). Substituting for the conditional

75 One justification for skipping the influence of economic shocks on P0 is that these shocks must have occurred

before the forecast were made and therefore concern the impact of not being able to observed the current state at

the time when the forecast is produced.
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h-step-ahead forecast error in equation (11.26), and taking expectations we obtain

Σ∗
εh

= H′F∗
h
P0F

∗′
h
H + V ∗

h
+ hR, (11.42)

where
F∗
h

= F∗
h−1

+ Fh, h = 1,2, . . . ,

F∗
0 = 0, and V ∗

h
is given in equation (11.27). We can now define levels forecast error variance

decompositions as in equation (11.38)

σ∗εh =
[
Σ∗
εh
⊙ In

]−1
[
diag

(
H′F∗

h
P0F

∗′
h
H
)

diag
(
hR
) ∑h−1

i=0

(
R∗
i
⊙ R∗

i

)]
. (11.43)

The long-run levels forecast error covariance decomposition can be determined as in equation
(11.28) for the conditional long-run variance decomposition. This means that

lim
h→∞

1

h
Σ∗
εh

= R
lr
R′
lr

+ R, (11.44)

where the term involving state variable uncertainty converges to zero since the first term on the

right hand side of (11.42) converges to a constant as h increases.76

11.6. The Riccati Equation Solver Algorithm in YADA

The algorithm used by YADA to (try to) solve the Riccati equation (11.33) for the forecast error
variances uses a combination of iterative and non-iterative techniques. Let the Riccati equation
be given by

P = FPF′ − FPH
[
H′PH + R

]−1
H′PF′ + Q, (11.45)

where Q and R are positive semidefinite and P is used instead of P1. I will discuss the main
ingredients of the algorithm below, where each iteration follows the same steps. It is assumed
that P = Q has already been tested and rejected.

First, a positive semidefinite value of P is required. This value is used to evaluate the right

hand side of (11.45), yielding a new value for P that we shall explore.77 Since the new value
of P may have reduced rank, we first use an eigenvalue decomposition such that for the r × r
positive semidefinite matrix P

P = NΛN′,
where N is r × s such that N′N = Is, while Λ is an s × s diagonal matrix with the non-zero
eigenvalues of P . Substituting this expression for P into (11.45), premultiplying both sides by
N′ and postmultiplying by N, we obtain the new Riccati equation

Λ = AΛA′ −AΛB
[
B′ΛB + R

]−1
B′ΛA′ + C, (11.46)

where A = N′FN, B = N′H, and C = N′QN.
Next, if the matrix B′ΛB+R in (11.46) has reduced rank, YADA performs a second eigenvalue

decomposition. Specifically,
B′ΛB + R = DΓD′,

where D is n × d such that D′D = Id, while Γ is a d × d diagonal matrix with the non-zero
eigenvalues of B′ΛB + R. Replacing the inverse of this matrix with D(B∗′ΛB∗ + R∗)−1D, with
B∗ = BD and R∗ = D′RD, the Riccati equation (11.46) can be rewritten as

Λ = AΛA′ −AΛB∗[B∗′ΛB∗ + R∗]−1
B∗′ΛA′ + C. (11.47)

When the matrix B′ΛB + R in (11.46) has full rank, YADA sets D = In.

76 Specifically, the state variable uncertainty term of (11.42) converges to

lim
h→∞

H ′F∗
hP0F

∗′
h H = H ′F

(
Ir − F

)−1
P0

(
Ir − F′)−1

F′H.

When the state variable uncertainty term is divided by h the corresponding expression converges to zero as h

becomes very large.

77 In the event that H ′PH + R has reduced rank, its “inverse” is replaced by S(S′[H ′PH + R]S)−1S′ where S is

obtained from the eigenvalue decomposition H ′PH + R = SΓS′.
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YADA now tries to solve for Λ in (11.47) using dare from the Control System Toolbox; see
Arnold and Laub (1984) for details on the algorithm used by dare. If dare flags that a unique
solution to this Riccati equation exists, Λ∗, then YADA lets P = NΛ∗N′. When the call to dare

does not yield a unique solution, YADA instead compares the current P to the previous P . If the
difference is sufficiently small it lets the current P be the solution. Otherwise, YADA uses the
current P as input for the next iteration.

11.7. Conditional Correlations and Correlation Decompositions

The basic idea behind conditional correlations is to examine the correlation pattern between
a set of variable conditional on one source of fluctuation at a time, e.g., technology shocks.
Following the work by Kydland and Prescott (1982) the literature on real business cycle mod-
els tended to focus on matching unconditional second moments. This was critized by several
economists since a model’s ability to match unconditional second moments well did not imply
that it could also match conditional moments satisfactorily; see, e.g., Galí (1999).

We can compute conditional correlations directly from the state-space representation. Let
column j of B0 be denoted by B0j , while the j:th economic shock is ηj,t. The covariance matrix
for the state variables conditional on only shock j is given by

Σ
(j)
ξ

= FΣ
(j)
ξ
F′ + B0jB

′
0j , (11.48)

where Σ
(j)
ξ

= E[ξtξ
′
t|ηj,t]. We can estimate Σ

(j)
ξ

at θ by either solving (11.48) analytically through

the vec operator, or numerically using the doubling algorithm discussed in Section 5.3. The con-
ditional correlation for the observed variables can thereafter be calculated from the conditional
covariance matrix

Σ
(j)
y = H′Σ(j)

ξ
H. (11.49)

As an alternative to conditional population moments we can also consider simulation meth-
ods to obtain estimates of conditional sample moments. In that case we can simulate a path for
the state variables conditional on only shock j being non-zero, by drawing T values for ηj,t and
letting

ξ
(s)
t = Fξ

(s)
t−1

+ B0jηj,t, t = 1, . . . , T. (11.50)

where ξ
(s)
0 is drawn from N(0,Σ

(j)
ξ

). The conditional sample correlations for simulation s can

now be computed from the covariance matrix:

Σ̂
(j,s)
y =

1

T

T∑

t=1

H′ξ(s)
t ξ

(s)′
t H, s = 1, . . . , S. (11.51)

By repeating the simulations S times we can estimate the distribution of the conditional sample
correlations for a given θ.

Correlation decompositions have been suggested by Andrle (2010b) as a means of decompos-
ing autocorrelations for pairs of variables in a linear model. These decompositions relate the
conditional correlations to the correlations by weighting them with the ratio of the conditional
variances and the variances. From equation (5.42) we know that the state-space model provides
us with

Σy(h) =




H′ΣξH + R, if h = 0,

H′FhΣξH, otherwise.

(11.52)

In addition, the covariance matrix of the state variables is related to the conditional covariance
matrices in (11.48) linearly with

Σξ =
q∑

j=1

Σ
(j)
ξ
.
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This means that

Σ
(j)
y (h) =




H′Σ(j)

ξ
H, if h = 0,

H′FhΣ
(j)
ξ
H, otherwise,

(11.53)

while

Σy(h) =
q∑

j=1

Σ
(j)
y (h) + I(h = 0)R.

The indicator function I(h = 0) is unity if h = 0 and zero otherwise.
To simplify notation let us consider the case when the model does not have any measurement

errors , i.e., when R = 0. Let Σyk ,yl(h) denote element (k, l) of Σy(h). It follows that the
correlation between yk,t and yl,t−h is given by

ρyk,yl(h) =
Σyk,yl(h)

√
Σyk ,yk(0)Σyl,yl(0)

=
q∑

j=1

Σ
(j)
yk ,yl(h)

√
Σyk,yk(0)Σyl ,yl(0)

, (11.54)

where Σyk,yk(0) is the variance of yk,t. Assuming that all conditional variances Σ
(j)
yk ,yk(0) are

positive, Andrle (2010b) notes that the right hand side of (11.54) can be rewritten as

ρyk,yl(h) =
q∑

j=1

√√√√Σ
(j)
yk,yk(0)Σ

(j)
yl ,yl(0)

Σyk,yk(0)Σyl ,yl(0)

Σ
(j)
yk ,yl(h)

√
Σ

(j)
yk,yk(0)Σ

(j)
yl ,yl(0)

=
q∑

j=1

ω
(j)
ykω

(j)
yl ρ

(j)
yk,yl(h).

(11.55)

In other words, the correlation between yk,t and yl,t−h is equal to the sum over all shocks j of

the product of the shares of the standard deviations of yk and yl due to shock j (ω
(j)
yk times ω

(j)
yl )

and the conditional correlation between the variables (ρ
(j)
yk ,yl(h)). The two standard deviation

shares are non-negative (positive if all the conditional variances are positive) and sum to at
most unity over the different shocks (unity when R = 0) and can be interpreted as the weights
needed to obtain the correlations from the conditional correlations.

In case one of the conditional variances is zero for some shock, we let all terms be zero for
that shock in (11.55). Moreover, to deal with non-zero measurement errors we add the correla-
tion Ryk,yl/

√
Σyk ,yk(0)Σyl,yl(0) to the expressions for ρyk,yl(0) that involve sums of conditional

covariances. Finally, the population moments used in the above expressions can be substituted
for simulated sample moments, such as (11.51), to decompose the sample correlations.

11.8. Historical Observed Variable Decomposition

Given the smooth estimates of the economic shocks (11.1) and the measurement errors (5.34)
we can also calculate a historical decomposition of the observed variables. Specifically, we know
that

yt = A′xt +H′ξt|T +wt|T .
The estimated share of yt due to measurement errors is therefore simply wt|T , while the shares
due to the various economic shocks need to be computed from the smoothed state variables
and the state equation. Specifically, we have that

ξt|T = Ftξ0|T +
t−1∑

i=0

FiB0ηt−i|T , (11.56)

where ξ0|T is unobserved and can be set to its expected value (zero) when the observed data
begins in period t = 1, while the smooth estimate of the economic shocks for period 1 is
then η1|T = (B′

0B0)−1B′
0ξ1|T . From (11.56) we can decompose the smooth estimates of the

state variables into terms due to the q economic shocks. Substituting this expression into the
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measurement equation based on smoothed estimates, we obtain

yt = A′xt +H′Ftξ0|T +
t−1∑

i=0

H′FiB0ηt−i|T +wt|T , t = 1, . . . , T. (11.57)

Accordingly, it is straightforward to decompose the observed variables into terms determined by
(i) the deterministic variables, (ii) the initial state estimate (ξ0|T), (iii) the q economic shocks,
and (iv) the measurement errors.

The decomposition in (11.57) can also be generalized into decompositions for all possible
subsamples {t0 + 1, . . . , T}, where t0 = 0,1, . . . T − 1. In the decomposition above the choice is
t0 = 0. The generalization into an arbitrary t0 gives us:

yt = A′xt +H′Ft−t0ξt0|T +
t−t0−1∑

i=0

H′FiB0ηt−i|T +wt|T , t = t0 + 1, . . . , T. (11.58)

This provides a decomposition of the observed variables yt into (i) deterministic variables, (ii)
the estimated history of the state until t0 (ξt0|T), (iii) the q economic shocks from t0 + 1 until t,
and (iv) the measurement error.

11.9. Parameter Scenarios

Parameter scenarios are used to examine the impact that changes in some parameters has on
the behavior of the variables or on the economic shocks. Let θb be the baseline value of the
parameter vector and θa the alternative value. The baseline value can, for example, be the
posterior mode estimate of θ.

Assuming that the model has a unique and convergent solution at both θb and at θa, YADA
provides two approaches for parameter scenario analysis. The first is to calculate smooth es-
timates of the economic shocks under the two parameter vectors. The path for the observed

variables are, in this situation, the same for both parameter vectors.78

The second approach takes the economic shocks and measurement errors based on θb as
given and calculates the implied observed variables from the state-space representation with

the parameter matrices A, H, F and B0 determined by the alternative θa vector.79 This path can
then be compared with the actual data for the observed variables.

11.10. Controllability and Observability

Two properties that are typically of interest when working with state-space models are control-
lability and observability. The first concept stems from control theory where the issue is if the
control variables of the model can be used to manipulate the state variables to particular values.
Formally we may say that a system with internal state ξ is controllable if and only if the system
states can be changed by changing the input (η). Similarly, a system with initial state ξt0 is
observable if and only if this state can be determined from the system output yt that has been
observed through the interval t0 < t < t1. If the initial state cannot be determined, the system
is said to be unobservable.

For time-invariant state-space models it is well known that the system (5.1)-(5.2) is control-
lable if and only if the r × rq matrix

C =
[
B0 FB0 · · · Fr−1B0

]
, (11.59)

has rank r. Similarly, the state-space model is observable if and only if the r × nr matrix

O =
[
H F′H · · ·

(
F′)r−1

H

]
, (11.60)

has rank r; see, e.g., Harvey (1989, p. 115).

78 Alternatively, one may wish to compare smooth estimates of the state variables under the two parameter vectors.

79 One alternative to the second approach is to simulate the model under θa by drawing the economic shocks and

the measurement errors from their assumed distribution a large number of times, compute the implied path for the

observed variables, and then compare, say, the average of these paths to the actual data for the observed variables.
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We generally do not expect DSGE model to be controllable or observable since r is expected
to be substantially larger than n or q. Nevertheless, the ranks of the matrices C and O are
informative about the degree of controllability and observability.

11.11. Linking the State-Space Representation to a VAR

To address the issue if the economic shocks and measurement errors of the state-space repre-
sentation can be uncovered from a VAR representation of the observed variables, Fernández-
Villaverde, Rubio-Ramírez, Sargent, and Watson (2007) provide a simple condition for checking
this.

To cast equations (5.1) and (5.2) into their framework we first rewrite the measurement error
as:

wt = Φωt,

where R = ΦΦ′ while ωt ∼ N(0, I). The matrix Φ is of dimension n×m, with m = rank(R) ≤ n.
Substituting for ξt from the state equation into the measurement equation we get:

yt = A′xt +H′Fξt−1 +H′B0ηt + Φωt

= A′xt +H′Fξt−1 + Dϕt,
(11.61)

where the residual vector ϕt = [η′t ω
′
t]

′ while D = [H′B0 Φ] is of dimension n × (q +m).
The state equation can likewise be expressed as:

ξt = Fξt−1 + Bϕt, (11.62)

where B = [B0 0] is an r × (q +m) matrix.
The state-space representation has a VAR representation when ϕt can be retrieved from the

history of the observed variables. The first condition for this is that D has rank q +m such that
a Moore-Penrose inverse D+ = (D′D)−1D′ exists. A necessary condition for the existence of this
inverse is clearly that n ≥ q +m, i.e., that we have at least as many observed variables as there
are economic shocks and unique measurement errors.

Assuming D+ exists we can write ϕt in (11.61) as a function of yt, xt, and ξt−1. Substituting
the corresponding expression into the state equation and rearranging terms yields

ξt =
(
F − BD+H′F

)
ξt−1 + BD+

(
yt −A′xt

)
. (11.63)

If the matrix G = F −BD+H′F has all eigenvalues inside the unit circle, then the state variables
are uniquely determined by the history of the observed (and the exogenous) variables. The
state vector ξt can therefore be regarded as known, and, moreover, this allows us to express the
measurement equation as an infinite order VAR model. Accordingly, the economic shocks and
the measurement errors are uniquely determined by the history of the observed data (and the
parameters of the DSGE model). The eigenvalue condition is called a “poor man’s invertibility
condition” by Fernández-Villaverde et al. (2007). The problem of uncovering the economic
shocks from a VAR concerns the issue of fundamentalness (when they can be recovered from
a VAR) and non-fundamentalness (when they cannot be recovered from a VAR) of economic
models.

The poor mans’s invertibility condition is only sufficient for fundamentalness and it has been
applied in a number studies; see, e.g., Leeper, Walker, and Yang (2013), Schmitt-Grohé (2010),
and Sims (2012). The sufficiency property means that an economic model can support fun-
damentalness although the invertibility condition fails. An example is provided by Franchi and

Paruolo (2012),80 who also derive both necessary and sufficient conditions for fundamentalness
under the assumption that n = q+ rank[R], i.e., the number of shocks and measurement errors
is equal to the number of observed variables (the square case).

Franchi and Paruolo (2012) provide a formal guide for checking if a state-space model is
invertible or not. In its general form, this guide involves checking properties of the inverse of
I − Gz, where z is a complex number, and can therefore be messy to handle in practise when

80 The example is technically correct, but economically obscure since it states that the change in (growth rate of)

consumption is proportional to the level of labor income.
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the model has multiple unstable eigenvalues of G. However, Franchi and Paruolo state simple
cases when the poor man’s invertibility condition is necessary as well as sufficient. Once such
case which is particularly important concerns the eigenvalues of F. Corollary 5.3 in Franchi
and Paruolo here posits that if all the eigenvalues of F are stable (inside the unit disc), then

the state-space model is invertible if and only if G is stable.81 Many DSGE models satisfy the
requirement that F is stable, thereby justifying the use of the poor man’s invertibility condition
for checking for fundamentalness in the square case.

11.12. Fisher’s Information Matrix

It is well known that when the vector of parameters θ is estimated with maximum likelihood,
then the inverse of Fisher’s information matrix is the asymptotic covariance matrix for the pa-
rameters. If this matrix has full rank when evaluated at the true parameter values, the parame-
ters are said to be locally identified; cf. Rothenberg (1971).

Since DSGE models are typically estimated with Bayesian methods, identification problems
can likewise be viewed through the behavior of the Hessian of the log-posterior distribution.
However, such problems can be dealt with by changing the prior such that the log-posterior has
more curvature. Still, use of prior information to deal with identification problems is unsatisfac-
tory. One way to examine how much information there is in the data about a certain parameter
is to compare the plots of the prior and the posterior distributions. If these distributions are
very similar, then it is unlikely that the data is very informative about this particular parameter.

The comparison between prior and posterior distributions require that we have access to
draws from the posterior. Since drawing from the posterior may be very time consuming, it may
be useful to consider an alternative approach. In this respect, Fisher’s information matrix may
also be useful when considering identification issues from a Bayesian perspective. This approach

has been investigated in a series of articles by Nikolay Iskrev; see Iskrev (2007, 2010).82

Using standard results from matrix differential algebra (see Magnus and Neudecker, 1988) it
has been shown by Klein and Neudecker (2000) that with ỹt = yt−yt|t−1 the second differential
of the log-likelihood function in (5.18) can be written as:

d2 lnL
(
YT ; θ

)
=

1

2

T∑

t=1

tr

{
Σ−1
y,t|t−1

(
dΣy,t|t−1

)
Σ−1
y,t|t−1

(
dΣy,t|t−1

)}
−

T∑

t=1

(
dỹt
)′

Σ−1
y,t|t−1

(
dỹt
)
+

−
T∑

t=1

tr

{
Σ−1
y,t|t−1

(
dΣy,t|t−1

)
Σ−1
y,t|t−1

(
dΣy,t|t−1

)
Σ−1
y,t|t−1

ỹtỹ
′
t

}
+

+ 2
T∑

t=1

tr

{
Σ−1
y,t|t−1

(
dΣy,t|t−1

)
Σ−1
y,t|t−1

(
dỹt
)
ỹ′
t

}
−

T∑

t=1

tr

{
Σ−1
y,t|t−1

(
d2ỹt

)
ỹ′
t

}
.

Taking the expectation of both sides with respect to θ, the Lemma in Klein and Neudecker
implies that the last two terms on the right hand side are zero. Moreover, with E[ỹtỹ

′
t; θ] =

E[Σy,t|t−1; θ], the above simplifies to

Eθ

[
d2 lnL

(
YT ; θ

)]
= −1

2

T∑

t=1

Eθ

[(
dvec

(
Σy,t|t−1

))′[
Σ−1
y,t|t−1

⊗ Σ−1
y,t|t−1

]
dvec

(
Σy,t|t−1

)]
+

−
T∑

t=1

Eθ

[(
dỹt
)′

Σ−1
y,t|t−1

dỹt

]

81 Another example when the poor man’s invertibility condition is both necessary and sufficient is when the model

is controllable and observable; see Franchi and Paruolo (2012, Corollary 5.4). However, we generally do not expect

DSGE models to satisfy these properties.

82 See also Beyer and Farmer (2004), Canova and Sala (2009), Consolo, Favero, and Paccagnini (2009), Komunjer

and Ng (2011), and Bonaldi (2010) for discussions of identifiability issues in DSGE models.
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The matrix Σy,t|t−1 is a differentiable function of the parameters θ such that

dvec
(
Σy,t|t−1

)
=
∂vec

(
Σy,t|t−1

)

∂θ′
dθ.

Similarly, we let

dỹt =
∂ỹt

∂θ′
dθ.

Collecting these results, the Fisher’s information matrix may be expressed as:

−Eθ
[
∂2 lnL

(
YT ; θ

)

∂θ∂θ′

]
=

T∑

t=1

Eθ

[(∂ỹt
∂θ′

)′
Σ−1
y,t|t−1

∂ỹt

∂θ′

]
+

+
1

2

T∑

t=1

Eθ

[(∂vec
(
Σy,t|t−1

)

∂θ′

)′[
Σ−1
y,t|t−1

⊗ Σ−1
y,t|t−1

]∂vec
(
Σy,t|t−1

)

∂θ′

]
.

(11.64)

The partial derivatives of ỹt and Σy,t|t−1 with respect to A,H,R, F,Q (the reduced form pa-
rameters) can be determined analytically. The form depends on how the initial conditions for
the state variables relate to the parameters; see Zadrozny (1989, 1992) for details. The step
from reduced form parameters to θ is explained by Iskrev (2007).

Instead of making use of these analytic results, YADA currently computes numerical deriva-
tives of ỹt and Σy,t|t−1 with respect to θ.

11.13. A Rank Revealing Algorithm

In practise it may be difficult to assess the rank of the information matrix. In most cases we
may expect that the determinant is positive but perhaps small. One approach to disentangling
the possible parameters that are only weakly identified is to compute the correlations based on
the information matrix. If two parameters are highly correlated in absolute terms, it may be
difficult to identify both. However, it should be kept in mind that the information matrix can
be of full rank also when the correlation between some pairs of parameters is close or equal
to unity. Moreover, the matrix can have less than full rank also when all correlation pairs are
less than unity. Hence, the information content in such correlations is of limited value when it
comes the determining the rank of the information matrix.

As pointed out by Andrle (2010a), a natural tool for examining the rank properties of any real
valued matrix is the singular value decomposition; see, e.g., Golub and van Loan (1983). For
symmetric matrices the decomposition simplifies to the eigenvalue decomposition. The deter-
minant of a square matrix is equal to the product of its eigenvalues and, hence, the eigenvectors
of the smallest eigenvalues of the information matrix give the linear combinations of the pa-
rameters that are the most difficult to identify. Provided that an eigenvalue is very small and
its eigenvector has large weights on a pair of parameters, then the correlation between these
two parameters will be large in absolute terms. However, if the eigenvector has large weights
for more than two parameters, then the correlations between pairs of these parameters need
not be large. This suggests that correlations are potentially unreliable for determining weakly
identified parameters, but also that the eigenvectors of the smallest eigenvalues do not suffer
from such a problem.

In fact, Andrle (2010a) has suggested a heuristic procedure, based on Q-R factorization with
column pivoting (Golub and van Loan, 1983, Section 6.4), that sorts the parameters from the
“most” identified to the “least” identified. For a positive definite matrix A, the rank revealing

approach may be applied as follows:83

(1) Compute the singular value decomposition of A = USV ′ (= VSV ′ since A is symmetric)
where U and V are orthogonal (U′U = I and V ′V = I). It is assumed that the singular
values in S are sorted from the largest to the smallest.

83 Note that the algorithm may also be applied when A has reduced rank or when it is not a square matrix; see

Andrle (2010a) for details on how it then needs to be modified.
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(2) Calculate the Q-R factorization with column pivoting on V ′, i.e.,

V ′P = QR,

where P is a permutation matrix, Q is orthogonal (Q′Q = I), and R is upper triangular.
(3) The last column of the permutation matrix P is a vector with unity in position j and

zeros elsewhere, linking column j of A to the smallest singular value. Discard row and
column j of A and return to (1) until A is a scalar.

The first column that is removed from A is the least identified and the last to remain is the most
identified. To keep track of the column numbers from the original m×m matrix A, we use the
vector v = [1,2, . . . ,m] as the column number indicator. Now, element j of v determines the
column number cj of A that is linked to the smallest singular value. In step (3) we therefore
discard element j from v and row and column cj from A before returning to step (1).

As an alternative to performing the Q-R factorization with column pivoting on V ′, one may

calculate the factorization directly on A.84 In that case, the singular value decomposition can
be skipped and only the last two steps need be performed. This latter option is the preferred
approach to parameter ordering in YADA. The singular value decomposition is nevertheless
conducted for the full A matrix since, as discussed above, this may provide useful information
about which parameters can be linked to the large and to the small eigenvalues, respectively.

11.14. Monte Carlo Filtering

The tools we have discussed above share the condition that the underlying value of θ is such that
the DSGE model has a unique and convergent solution; see Section 3 for further details. At the
same time, indeterminacy and no solution are also interesting properties that are worthwhile
to investigate further; see, e.g., the discussions in Burmeister (1980), Clarida, Galí, and Gertler
(2000), Lubik and Schorfheide (2004, 2007b), and Beyer and Farmer (2007). One approach to
analysing the sensitivity of the stability properties of a DSGE model to its parameters, suggested
by Ratto (2008), is to apply Monte Carlo filtering.

The basic of idea of Monte Carlo filtering is to first generate S draws of the parameters from

their prior distribution. We may denote these draws θ(s), where s = 1,2, . . . , S. Second, the
characteristics of the model that we wish to investigate are examined for each such draw. In the

case of stability, we assign a draw θ(s) to the group S if the model has a unique and convergent

solution at θ(s), and to the group S̄ otherwise. This gives us N values of θ that belong to S and

N̄ values that belong to S̄, with N + N̄ = S.
In order to locate the parameters of the DSGE model that mostly drive the model to the target

behavior under S, the empirical marginal distributions FN(θi|S) and FN̄(θi|S̄) can be compared
for each parameter θi. If the two distributions are significantly different, then Ratto suggests
that θi is a key factor in driving the model behavior. In this case, there will be subsets of values

in its predefined range which are more likely to fall under S than under S̄. Similarly, if the two
distributions are not significantly different, then θi is not important. In that case, any value in
its predefined range is either likely to fall into either group or all values in its support imply the

target behavior.85

Provided that N and N̄ are both larger than zero (and sufficiently large), Ratto (2008) sug-
gests to apply to Kolmogorov-Smirnov test when examining if the two distribution are different
or not; see, e.g., Rao (1973, Chapter 6f) for details. For the cumulative distribution functions of
θi, the statistic is

DN,N̄ = sup
θi

∣∣FN(θi|S) − FN̄(θi|S̄)
∣∣ . (11.65)

84 In practise, a factorization based on A seems to yield the same ordering of the columns as a factorization based

on S1/2V ′.
85 An example of this latter case is trivially when the parameter concerns a first order autoregression and its support

is given by (−1,1).
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The asymptotic behavior of the test statistic is given by
√

NN̄

N + N̄
DN,N̄ ⇒ sup

t∈[0,1]
|B(t)| = K, (11.66)

where ⇒ denotes weak convergence, B(t) is a Brownian bridge,86 and K has a Kolmogorov
distribution. The cdf of K is given by

Pr
(
K ≤ x

)
= 1 − 2

∞∑

i=1

(−1)i−1 exp
(
−2i2x2

)
. (11.67)

This means that the test value on the left hand side of (11.66) is simply substituted for x in
(11.67), where the infinite sum is approximated by an finite sum based on the exponential term
being sufficiently close to zero. An approximate p-value for the Kolmogorov-Smirnov test that

the two distributions are equal can therefore be computed from such a truncation.87

When parameters which are important for the target behavior have been located, a graphical
illustration may prove useful. It is well known that certain parameters of the monetary policy
reaction function are candidates for yielding, e.g., a unique convergent solution or indetermi-
nacy. In the case of the An and Schorfheide model in Section 2.1, the parameter ψ1 can produce
such behavior. Scatter plot of pairs of parameters may provide useful information about the re-
gions over which the model has a unique convergent solution, indeterminacy, and when there
is no convergent solution.

11.15. Moments of the Observed Variables

The population autocovariances conditional on a given value of θ (and the selected model) have
already been presented in Section 5.8. In this section we shall discuss how one can compute
the moments of the observed variables conditional only on the model. To this end, let p(θ)
be a proper density function of the DSGE model parameters. From a notational point of view
I have suppressed additional variables from the density, but it should nevertheless be kept in
mind that it could either be the prior or the posterior density of the model parameters.

Recall that the population mean of the observed variables conditional on θ and the exogenous
variables is:

E
[
yt|xt, θ

]
= A′xt = µy|θxt.

The population mean conditional on the exogenous variables (and the model) is therefore given
by

E
[
yt|xt

]
= µyxt =

(∫

θ∈Θ
µy|θp

(
θ
)
dθ

)
xt, (11.68)

where Θ is the domain of the parameters and µy is an n × k matrix. In the event that A is
calibrated, then µy|θ = µy for all θ ∈ Θ.

Turning next to the covariance matrix of yt conditional on θ and the exogenous variables, we
have from equation (5.42) that

E
[(
yt − µy|θxt

)(
yt − µy|θxt

)′|xt, θ
]

= H′ΣξH + R = Σy|θ.

86 Recall that a Brownian bridge, B(t), is defined from a Wiener process, W(t), over the unit interval t ∈ [0,1] such

that

B(t) = W(t) − tW(1),

where W(t) is normally distributed with mean 0, variance t, and have stationary and independent increments.

87 An equivalent formulation of equation (11.67) is

Pr
(
K ≤ x

)
=

√
2π

x

∞∑

i=1

exp
(
−
(
2i− 1

)2
π2/(8x2)

)
.

This expression is better suited when x is small. The mean of the Kolmogorov distribution is µK =
√
π/2 ln(2) ≈

0.868731, while the variance is σ2
K = (π2/12)−µ2

K ≈ 0.2603332. For discussions on computational issues, see, e.g.,

Marsaglia, Tsang, and Wang (2003).
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From the law of iterated expectations and by utilizing the mean expansion

yt − µyxt = yt − µy|θxt +
(
µy|θ − µy

)
xt,

the population covariance matrix for yt conditional only on the exogenous variables can be
shown to satisfy

E
[(
yt − µyxt

)(
yt − µyxt

)′|xt
]

= E
[
E
[(
yt − µyxt

)(
yt − µyxt

)′ |xt, θ
]]

+ E
[(
µy|θ − µy

)
xtx

′
t

(
µy|θ − µy

)′ |xt
]
.

This may be written more compactly as

Σy = E
[
Σy|θ |xt

]
+ C

[
µy|θxt |xt

]
. (11.69)

That is, the covariance matrix of yt (conditional on the exogenous variables) is equal to the
mean of the covariance matrix conditional on the parameters and the covariance matrix of the
mean conditional on the parameters. If µy|θ = µy for all θ ∈ Θ, then the second term is zero.
Similar expressions can be determined for all the autocovariances as well.

To keep notation as simple as possible, I assume that n = 1 and that xt = 1 when examining
higher central moments. Concerning the third central moment, the law of iterated expectations
and the mean expansion can be applied to show that

E
[(
yt − µy

)3
]

= E
[
E
[(
yt − µy|θ

)3 |θ
]]

+ E
[(
µy|θ − µy

)3
]

+ 3C
[
σ2
y|θ, µy|θ

]
. (11.70)

Hence, skewness88 of yt is equal to the mean of skewness of yt conditional on the parame-
ters plus skewness of the mean conditional on the parameters plus three times the covariance

between the conditional variance and the conditional mean.89 It can now be deduced that if
µy|θ = µy for all θ ∈ Θ, then the second and third term on the right hand side of (11.70) are

both zero. In addition, the third term is zero if σ2
y|θ = σ2

y for all θ ∈ Θ, but this case is only

expected to occur in state-space models where the matrices (H,R, F, B0) are fully determined
from calibrated parameters.

For the log-linearized DSGE model with normally distributed structural shocks and mea-
surement errors we know that yt|θ has zero skewness since it is normally distributed. If the
distribution of the conditional mean is skewed, then yt inherits the skewness from the condi-
tional mean but its skewness is also affected by the covariance between the conditional variance
and the conditional mean. Since both these conditional moments may be non-linear functions
of θ we typically do not know the sign of the third term on the right hand side in equation
(11.70).

The fourth central moment of yt can likewise be determined from the law of iterated expec-
tations and the mean expansion. This gives us

E
[(
yt − µy

)4
]

= E
[
E
[(
yt − µy|θ

)4 |θ
]]

+ E
[(
µy|θ − µy

)4
]

+ 4C
[
E
[(
yt − µy|θ

)3 |θ
]
, µy|θ

]
+ 6E

[
σ2
y|θ
(
µy|θ − µy

)2
]
.

(11.71)

Hence, kurtosis90 is equal to the expectation of conditional kurtosis plus kurtosis of the con-
ditional mean plus 4 times the covariance between conditional skewness and the conditional
mean plus 6 times the expected value of the product between the conditional variance and the

88 Skewness is usually defined as the third moment of the standardized random variable (yt − µy)/σy. This means

that skewness is equal to the ratio between the third central moment of the random variable yt and the standard

deviation of yt to the power of three.

89 Since E[σ2
y(µy|θ −µy)] = 0, the third term on the right hand side in equation (11.70) comes from the relationship

E
[
σ2
y|θ
(
µy|θ − µy

)]
= E

[(
σ2
y|θ − σ2

y

)(
µy|θ − µy

)]
.

90 Kurtosis is usually defined as the fourth moment of the standardized random variable (yt − µy)/σy. This means

that kurtosis is actually equal to the fourth central moments divided by the square of the variance.

– 171 –



square of the conditional mean in deviation from the mean. If µy|θ = µy for all θ ∈ Θ, then the
last three terms on the right hand side of (11.71) are zero, and kurtosis of yt is given by the
mean conditional kurtosis. Furthermore, the third term is zero when yt|θ is symmetric so that
conditional skewness is zero.

Since yt|θ is normal for the state-space model with normal measurement errors and struc-

tural shocks, it follows from the properties of the normal distribution91 that conditional kurtosis
of yt is given by

E
[(
yt − µy|θ

)4 |θ
]

= 3σ4
y|θ.

Since the normal distribution is symmetric we also know that the third term in (11.71) is zero.
Hence, kurtosis of yt is determined by the mean of conditional kurtosis of yt|θ, kurtosis of
the conditional mean, and the mean of the product between the conditional variance and the
square of the conditional mean in deviation from the mean.

11.16. Prior and Posterior Predictive Checks: Bayesian Specification Analysis

In order to assess to plausibility of a model, prior (Box, 1980) and posterior (Rubin, 1984, Meng,
1994, and Gelman, Meng, and Stern, 1996a) predictive checks have been suggested when an
explicit alternative model is not available. The checks were first based on the idea that a useful
model should be able to reliably predict features of the observed data. This could be achieved
by assessing how likely the features are by simulating new data with the model and parameter
draws from the prior (or posterior), yielding a distribution for the data feature and compare
the feature using the observed data to this distribution, i.e. a p-value type calculation. The
idea has since Box’s original article been extended from functions of the observables only to
also include the parameters, such as forecast error variances. The functions of interest are
called discrepancies by Gelman et al. (1996a) and features by Faust and Gupta (2012). In the
terminology of Faust and Gupta, functions of the observables only are referred to as descriptive
features, while functions of the observables and the parameters are called structural features.

Geweke (2005, Chapter 8.3) has suggested that prior predictive checks takes place when
the econometrician is considering alternative variants of the prior distribution, the conditional
density of the observables, and (possibly) the conditional density of the vector of interest (a
function of the observables and the parameters). Posterior predictive analysis, on the other
hand, is in Geweke opinion of interest after the econometrician has conditioned on the ob-
served data and is considering changes to the complete model. That is, Geweke considers prior
predictive checks as a tool when creating a complete model, and posterior predictive checks
when improving or modifying a complete model. He also collectively refers to them as Bayesian
specification analysis.

Prior predictive analysis is based on drawing parameters from the prior distribution, simulat-
ing data with the conditional density of the observables, and computing the features function
using the simulated data and for structural features also the parameter draw. This generates a
distribution of the feature, which can be compared with a value for the descriptive feature using
the observed data, and to a distribution for the structural feature when using the observed data
for each parameter draw. Similarly, the posterior predictive analysis uses the posterior draws of

91 From, e.g., (Zellner, 1971, Appendix A) we have that the even central moments of z ∼ N(µ, σ2) can be expressed

as

E
[
(z− µ)2r

]
=

2rσ2r

√
π

Γ(r + 1/2), r = 1,2, . . . .

Since r + 1/2 > 1 it is straightforward to show that the gamma function (see Section 4.2.2) can be expressed as:

Γ(r + 1/2) =
r−1∏

j=0

(r − j − 1/2)Γ(1/2),

where Γ(1/2) =
√
π . Hence, the even central moments of z of can also be written as

E
[
(z − µ)2r

]
= σ2r

r−1∏

j=0

(
2
(
r − j

)
− 1
)
, r = 1,2, . . .

where I have used the fact that
∏r−1

j=0(r − j − 1/2) = (1/2r)
∏r−1

j=0(2(r − j) − 1).
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the parameters instead of the prior draws and is for this reason computationally more expensive
than the prior predictive analysis.

Prior and posterior predictive check are both non-Bayesian in nature since the idea of using
a p-value is inherently not Bayesian. It may be kept in mind that prior and posterior predictive
checks violate the likelihood principle, which states that all relevant experimental information
for making decisions about the parameters after observing the data is contained in the likelihood
function; see, e.g., Zellner (1971, p. 14) or Berger (1985). In addition, posterior predictive
checks uses the data twice since the posterior is first estimated using the data. As Geweke
(2010) shows, this blunts the evidence against the model from such checks. If an alternative
model is readily available, then using standard model comparison tools is preferable. For a
nonstandard defense of posterior predictive checks in the case of DSGE modelling, see Faust
and Gupta (2012).

Among the possible descriptive features, denoted by h(YT), that we may use when examining
DSGE models, sample variances and covariances naturally come to mind. A predictive check of

h(Y(o)
T ), where Y(o)

T denotes the observed data, is conducted by simulating data with the model
for S parameter draws from the prior or the posterior distribution. For each such sample,

the function h(Y(s)
T ) is evaluated for s = 1, . . . , S. This yields an empirical distribution of the

descriptive feature, Fh(c), with the probability that h(YT) ≤ c. When large values of the feature
are considered unlikely, Box (1980) suggested for the prior predictive checks to compute the
p-value

1 − Fh
(
Y(o)
T

)
,

i.e., the probability of observing h(YT) being greater than the realized value in repeated sam-
pling under the assumption that the data are generated by the model and its prior.

In the case of a prior predictive check of a descriptive feature for a DSGE model, Y(s)
T is

obtained by:

(1) Draw the parameter vector θ(s) from p(θ);

(2) Solve the DSGE model and calculate the state-space matrices (A,H,R, F, B0) for θ(s);
(3) Provided that the state variables are stationary, draw initial values ξ1 from N(0,Σξ),

where Σξ is the population covariance matrix of the state variables in equation (5.15),

draw structural shocks η
(s)
t from N(0, Iq), and measurment errors w

(s)
t from N(0, R) for

t=1, . . . , T;

(4) Calculate y
(s)
t recursively from the state-space model in (5.1) and (5.2) for t = 1, . . . , T ;

(5) Compute h(Y(s)
T ) and save it.

Once we have S values of a descriptive feature, the observed value of the feature can be com-
pared with the empirical distribution from the simulated data. For a posterior predictive check

of a descriptive feature, step (1) is replaced with θ(s) being a draw from p(θ|Y(o)
T ). Notice that

this means that Fh(c) depends on the observed data, thus explaining how the observed data
comes in twice for such predictive checks.

Turning to structural features, the object of interest is given by h(YT , θ), i.e. the feature is
not only a function of the observed variables but also of the structural parameters. Examples
of such features include one-step-ahead sample forecast error variances, sample correlation
decompositions, and shock decompositions. In this case we can compare the distribution of
the structural feature for the observed data and the parameter draws to the distribution of the
simulated data and the parameter draws. A prior predictive check of a structural feature for a
DSGE model can be determined from the following:

(i) Draw the parameter vector θ(s) from p(θ);

(ii) Compute h(Y(o)
T , θ(s));

(iii) Simulate Y(s)
T with θ(s), i.e., steps (2)–(4) above;

(iv) Compute h(Y(s)
T , θ(s));

(v) Save the pair {h(Y(o)
T , θ(s)), h(Y(s)

T , θ(s))}.

– 173 –



For a posterior predictive check of a structural feature, step (i) is replaced with θ(s) being a

draw from p(θ|Y(o)
T ).

The S pairs {h(Y(o)
T , θ(s)), h(Y(s)

T , θ(s))} may now be shown in a scatter plot with the values
for the observed data on the horizontal axis and those for the simulated data on the vertical
axis. The share of points above the 45 degree line gives an estimate of the p-value, i.e., the
probability that the structural feature for the simulate data is greater than the feature for the
observed data.

11.16.1. Structural Features: One-Step-Ahead Forecasts

The within-sample one-step-ahead forecast error sample covariance matrix for a given value of
the parameters is calculated as follows. First, the one-step-ahead forecast errors are given by:

ε̃t = yt −A′xt +H′ξt|t−1, t = 1, . . . , T.

The within-sample forecast error covariance matrix is thereafter given by

Σ̃y =
1

T

T∑

t=1

ε̃tε̃
′
t.

11.17. YADA Code

The impulse responses are handled by the function DSGEImpulseResponseFcn, historical fore-
cast error decompositions by DSGEHistDecompFcn, while the variance decompositions are cal-
culated by the function DSGEVarianceDecompFcn for the original data and for the levels by
DSGEVarianceDecompLevelsFcn. Since the variance decompositions require that a Riccati equa-
tion can be solved, the code includes the function RiccatiSolver. The conditional correla-
tions are performed by the functions DSGEConditionalCorrsTheta that can deal with both
population-based and sample-based correlations, while correlation decompositions are carried
out by DSGECorrelationDecompTheta.

The conditional variance decompositions are handled by DSGECondVarianceDecompFcn, while
output on estimates of unobserved variables and observed variable decompositions is provided
by the function CalculateDSGEStateVariables. The levels of the conditional variance de-
compositions are handled by DSGECondLevVarianceDecompFcn, while the levels of the impulse
response functions are taken care of by DSGELevImpulseResponseFcn. Parameter scenarios for
fixed parameter values are handled by the function DSGEParameterScenariosTheta. The func-
tion DSGEtoVARModel checks the “poor man’s invertibility condition” of Fernández-Villaverde
et al. (2007), i.e., if all the eigenvalues of the matrix on lagged states in equation (11.63) lie
inside the unit circle. In addition, it checks if all the eigenvalues of the state variable tran-
sition matrix, F, lie inside the unit circle. When this latter condition is satisfied along with
n = q + rank[R] (the square case), the poor man’s invertibility condition is not only sufficient,
but also necessary for the existence of an infinite order VAR representation of the DSGE model.

Annualizations of the conditional variance decompositions are computed by the function
DSGECondAnnVarianceDecompFcn, while impulse responses for annualized data is calculated di-
rectly from the output of DSGEImpulseResponseFcn. With s being the data frequency, this typi-
cally involves summing s consecutive impulse responses provided that the variable is annualized
by summing s consecutive observations. For response horizons prior to period s−1 all responses
from period 0 until the response horizon are summed. We thereafter return to Fisher’s informa-
tion matrix from Section 11.12. The function used for this purpose is DSGEInformationMatrix

which can estimate the information matrix for any selected value of θ. The observation weight
computations for the forecast, update and smooth projections of the state variables and eco-
nomic shocks are handled by the function DSGEObservationWeightsTheta. The singular value
decomposition and Q-R factorization with column pivoting to determine “identification pat-
terns” from a matrix is taken care of by DSGEIdentificationPatterns. The Monte Carlo fil-
tering checks are performed via the function MonteCarloFiltering. The computations for
performing the prior and posterior predictive checks for the one-step-ahead forecast error co-
variances are handled by DSGEOneStepAheadPredictiveChecks.
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11.17.1. DSGEImpulseResponseFcn

The function DSGEImpulseResponseFcn is used to calculate the responses in the state variables
and the observed variables from the economic shocks. It provides as output the structure
IRStructure using the inputs H, F, B0, and h. The r × n matrix H is given by the measure-
ment equations, while F and B0 are obtained from the DSGE model solution as determined by
the function AiMtoStateSpace. The last input h is a positive integer denoting the maximum
horizon for the impulse responses.

The output structure IRStructure has two fields Ksi and Y. The fields contain the responses
of the state variables and of the observed variables, respectively. These are provided as 3D
matrices. The first dimension is the number of states (r) for the field Ksi and observed variables
(n) for Y, the second dimension is the number of shocks (q), and the third is the number
of responses plus one (h + 1). First instance, IRStructure.Y(:,:,i+1) hold the results for
response horizon i.

11.17.2. DSGELevImpulseResponseFcn

The function DSGELevImpulseResponseFcn is used to calculate the accumulated responses in the
state variables and the levels responses of the observed variables from the economic shocks. It
provides as output the structure IRStructure using the inputs H, F, B0, AccMat, and h. The r×n
matrix H is given by the measurement equations, while F and B0 are obtained from the DSGE
model solution as determined by the function AiMtoStateSpace. The matrix AccMat is an n× n
diagonal 0-1 matrix. It is used to accumulate the responses in the observed variables provided
that they are viewed as being in first differences. The last input h is a positive integer denoting
the maximum horizon for the impulse responses.

The output structure IRStructure has the same dimensions as for the original data function
DSGEImpulseResponseFcn. The fields contain the responses of the state variables (Ksi) and of
the observed variables (Y), respectively. While the responses in the state variables are pure
accumulations of the response function in (11.17), the levels response for the observed vari-
ables are only accumulated for those variables which are viewed as being in first differences.
Specifically, with C being the 0-1 diagonal matrix AccMat, the levels responses for the observed
variables are given by

resp
(
yL
t+h|ηt = ej

)
= C · resp

(
yL
t+h−1

|ηt = ej
)

+H′FhB0ej , h ≥ 1,

where resp(yLt |ηt = ej) = H′B0ej . Observed variables are viewed by YADA as being in first
differences based on the user defined input in the Data Construction File; cf. Section 17.5.

11.17.3. CalculateDSGEStateVariables

The function CalculateDSGEStateVariables provides output on estimates of various unob-
served variables. To achieve this it needs 5 inputs: theta, thetaPositions, ModelParameters,
DSGEModel, and ObsVarDec. The first three inputs are discussed in some detail in connection
with the prior file handling function VerifyPriorData, while the structure DSGEModel is dis-
cussed in connection with the posterior mode estimation function PosteriorModeEstimation;
cf. Section 7.4. The 6th input variable, ObsVarDec, is a boolean variable that determines if the
function should compute the observed variable decompositions or not. This input is optional
and defaults to 0 if not supplied. The last two input variables are related to recursive smooth es-
timation of state variables, state shocks, and measurement errors. The boolean variable RecEst

is unity if recursive estimation should be performed and zero otherwise. The string vector
HeaderStr is shown in the window title of the wait dialog that is displayed during recursive
estimation. Both these input variables are optional and are equal to 0 and an empty string,
respectively, by default.

The only required output from the function is the structure StateVarStructure. In addition,
the function can provide output on status, the mcode output from the DSGE model solving
function that have been used, and kalmanstatus, the status output from the KalmanFilter
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function. The latter two outputs are only taken into account by YADA when initial parameter
estimates are given to CalculateDSGEStateVariables.

The structure StateVarStructure has at most 27 fields. First of all, the fields Y and X hold
the data matrices for the observed variables and the exogenous variables for the actual sample
used by the Kalman filter. Furthermore, the field TrainSample hold a boolean variable which
reports if a training sample was used or not when computing the log-likelihood through the
Kalman filter. Furthermore, the output on the state variable estimates are given through the
fields Ksitt1 (forecast), Ksitt (update), and KsitT (smooth), while the forecasted observed
variables are held in the field Yhat. Next, the field lnLt stores the vector with sequential log-
likelihood values, i.e., the left hand side of equation (5.19).

The smooth estimates of the economic shocks are located in the field etatT. The matrix stored
in this field has the same number of rows as there are shocks with a non-zero impact on at least
one variable. This latter issue is determined by removing zero columns from the estimated B0

matrix. The columns that are non-zero are stored as a vector in the field KeepVar. Update
estimates of the economic shocks are located in etatt. The smooth innovation population
covariance matrices Nt|T in equation (5.25) are located in the field NtMat, an r × r × T matrix.
These covariance matrices are used to compute the average population covariance matrix for

the smoothed economic shocks, i.e., (1/T)
∑T

t=1 B
′
0Nt|TB0. If the model contains measurement

errors, then the smoothed estimates of the non-zero measurement errors are located in the
field wtT, while names of equations for these non-zero measurement errors are stored as a
string matrix in the field wtNames. At the same time, all estimated measurement errors are kept
in a matrix in the field wthT. Similarly, update estimates of the measurement errors are found
in wtt and wtht.

Given that the boolean input ObsVarDec is unity, the historical observed variable decompo-
sitions are calculated. The field XiInit contains a matrix with typical column element given
by H′Ftξ0|T . Similarly, the field etaDecomp holds a 3D matrix with the contributions to the
observed variables of the non-zero economic shocks. For instance, the contribution of shock
i for observed variable j can be obtained for the full sample as etaDecomp(j,:,i), a 1 × T
vector. The historical decompositions for the state variables are similarly handled by the fields
XietaInit and XietaDecomp.

Recursive estimates of the state variables, the state shocks, and the measurement errors are
computed when the boolean variable RecEst is unity. The field recursive is then setup and
defined as a vector (or structure array) such that recursive(t).KsitT holds the t:th recur-
sive values of the smoothed state variables. Similarly, state shocks and measurement errors
are located in recursive(t).etatT and recursive(t).wtT, respectively, for the t:th recursive
smooth estimate.

The structure StateVarStructure also has 5 fields with parameter matrices A, H, and R from
the measurement equation, and F and B0 from the state equation. The last field is given by
MaxEigenvalue, which, as the name suggests, holds the largest eigenvalue (modulus) of the
state transition matrix F.

11.17.4. DSGESimulationSmootherTheta

The function DSGESimulationSmootherTheta calculates the distribution of unobserved vari-
ables conditional on the data and the parameters of the DSGE model. The input variables are
given by: theta, thetaPositions, ModelParameters, VarType, EstStr, DSGEModel, controls,
and CurrINI. The first three inputs are discussed above while (as mentioned above) the struc-
tura DSGEModelis discussed in connection with the posterior mode estimation function; cf. Sec-
tion 7.4. The structures CurrINI and controls are also discussed in some details there, while
additional details are given in Warne (2017).

Since a log-linearized DSGE model (and a state-space model) has three types of unobserved
variables, the input variable VarType is an integer that takes a value that reflects which type
should be studied: it is 1 if the simulation smoother should examine state variables; it is 2 if
economic shocks should be analysed and, finally, it is equal to 3 when the user is interested in
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measurement errors. The input EstStr is a string vector that indicates which takes of parameter
values are considered, i.e., initial values of posterior mode values.

The function provides 2 required output variables and 2 optional. The required output vari-
ables are the structure StateVarStructure and TotalPaths, while the optional outputs are
the same as for the function CalculateDSGEStateVariables. The TotalPaths variable is an
integer that is equal to the number of total paths that were drawn from the conditional distri-
bution of the selected unobservable. Apart from a set of common field names, the structure
StateVarStructure has field names that reflect the chosen value for VarType. The com-
mon fields are Quantiles with the quantile data and DateVector with the numeric dates.
In the event that output should be produced for state variables, the fields KsitT, PtT, and
StateVariableNames are included. When the conditional distribution of the economic shocks
is studied the fields are etatT and ShockNames. Finally, for the measurement errors the fields
are given by wtT, VariableNames, and ErrorIndicator. The common field Quantiles is a vec-
tor structure with common field percent and an additional field that is either KsitT, etatT or
wtT.

11.17.5. DSGEHistDecompFcn

The function DSGEHistDecompFcn calculates the historical forecast error decomposition of the
h-step ahead forecast errors as described in equation (11.16). The inputs of the function are
given by Y, X, A, H, F, B0, Ksitt, KsitT, etatT, wtT, and h. As before, Y and X are the data on the
observed variables and the exogenous variables, respectively, A and H are given by the measure-
ment equation, while F and B0 are obtained from the AiMtoStateSpace function regarding the
state equation. Furthermore, Ksitt and KsitT are the updated and smoothed state variables
that are prepared by the StateSmoother function. The input etatT is the smoothed estimate
of the economic shocks in equation (11.1), wtT is the smoothed estimate of the measurement
error in (5.34), while h is the forecast horizon h.

The function supplies the structure HistDecompStructure as output. This structure has 5
fields: epstth, an n×(T −h) matrix with the forecast errors for the observed variables; KsiErr,
an n × (T − h) matrix with the state projection error in the first term of the right hand side of
equation (11.16); etathT, n× (T −h)×q matrix with the shares of the q economic shocks in the

second term of the equation;92 wthT, an n × (T − h) matrix with the smoothed measurement
errors; and KeepVar, a vector with index values of the columns of B0 that are non-zero.

11.17.6. DSGEConditionalCorrsTheta

The function DSGEConditionalCorrsTheta can calulate either population-based or sample-
based conditional correlations as described in Section 11.7. It takes 10 input variables: theta,
thetaPositions, ModelParameters, NumPaths, EstType, DSGEModel, CurrINI, SimulateData,
FirstPeriod, LastPeriod. The structures thetaPositions, ModelParameters, DSGEModel, and
CurrINI have all been discussed above. The vector theta holds the values for the parame-
ters as usual. The integer NumPaths is equal to the number of simulations and is used only if
sample-based conditional correlation should be calculated. The text string EstType indicates
if posterior mode or initial parameter values are used. The boolean variable SimulateData

is 1 (0) if sample-based (population-based) conditional correlations should be computed. Fi-
nally, the integers FirstPeriod and LastPeriod marks the sample start and end point when
the sample-based approach should be used.

The function provides one required and one optional output. The required output variable is
CondCorr, a structure with fields Mean, Quantiles, and ShockNames. When the field Quantiles

is not empty, then it has length equal to the number of quantiles, and each sub-entry has fields
percent and Mean. The former stores the percentile value of the distribution, while the latter
stores the conditional correlations at that percentile. The optional output variable is status that

92 This means that the part of the h-step ahead forecast error that is due to economic shock j is obtained from

etathT(:,:,j), an n × (T − h) matrix.
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indicates if the solution to the DSGE model is unique or not. The value is equal to the variable
mcode given by either the function AiMSolver, the function KleinSolver, or SimsSolver.

11.17.7. DSGECorrelationDecompTheta

The function DSGECorrelationDecompTheta computes the correlation decompositions for the
observed variables and the state variables. It takes 6 input variables: theta, thetaPositions,
ModelParameters, VarStr, DSGEModel, and CurrINI. All these input variables have been dis-
cussed above except for VarStr. It is a string that supports the values ’Observed Variables’

and ’State Variables’.
The function yields one required and one optional output variable. The requires variable

is CorrDec, a structure with 7 fields. The first field, Y, an n(n + 1)/2 × (2h + 1) × (q + 1)
matrix with the decompositions of the observed variable correlations over the horizons −h
until h into the q shocks and the measurement error. Similarly, the second field, Xi, is an
r(r + 1)/2 × (2h + 1) × q matrix with the correlation decompositions for the state variables.
The third field, AutoCovHorizon, is an integer with the value of h, the autocorrelation horizon.

The ShockNames and the ShockGroupNames fields are string matrices where the rows hold the
names of the shocks and the shock groups, respectively, where the number of rows is q for the
shocks and g for the shock groups, with q ≥ g. The ShockGroups field is a vector of dimension q
with integers that map each shock to a certain shock group, while the ShockGroupColors field
is a g × 3 matrix, where each row gives the color as an RGB triple for a shock group. The RGB
triple holds values between 0 and 1, representing the combination of red, green and blue, and
this scale can be translated into the more common 8-bit scale that is used to represent colors
with integer values between 0 and 255.

The optional output variable is mcode, determined by either the function AiMSolver, the
function KleinSolver, or the function SimsSolver. It is only used when theta is given by the
initial parameter values.

11.17.8. DSGEParameterScenariosTheta

The function DSGEParameterScenariosTheta calculates the parameter scenario for two values
of the parameter vector, the baseline value and the alternative value. It takes 10 input vari-
ables: DSGEModel, theta, thetaScenario, thetaPositions, ModelParameters, FirstPeriod,
LastPeriod, BreakPeriod, CopyFilesToTmpDir, and finally CurrINI. The structures DSGEModel,
ModelParameters, thetaPositions and CurrINI have all been discussed above. The vector
theta holds the baseline values of the parameters, while thetaScenario holds the alternative
(scenario) values of the parameters. The integers FirstPeriod and LastPeriod simply indi-
cate the first and the last observation in the estimation sample (not taking a possible training
sample for the state variables into account). The integer BreakPeriod indicates the position in
the sample (taking the training sample into account) where the parameters change, while the
boolean CopyFilesToTmpDir indicates if certain files should be copied to the tmp directory of
YADA or not.

The function provides 8 required output variables. These are: Status, a boolean that indi-
cates if all calculations were completed successfully or not. Next, the function gives the actual
path for the observed variables in the matrix Y, as well as the matrix YScenario, holding the
alternative paths. As mentioned in Section 11.9, these paths are based on feeding the smooth
estimates of the economic shocks (and measurement errors) based on the baseline parameters
into the state-space model for the alternative parameters. Next, the function gives two matrices
with smooth estimates of the economic shocks: OriginalShocks and ScenarioShocks. The
former holds the values of the economic shocks under the baseline parameter values, while the
latter gives the values of the economic shocks under the alternative parameter values. Similarly,
two matrices with state variable estimates are provided: OriginalStates and ScenarioStates,
where the former holds the smooth estimates of the state variables for the baseline parameter
values, while the latter matrix holds the implied state variables for the alternative parameter
values. That is, when the state equation is applied to the combination of the smoothly esti-
mated economic shocks under the baseline parameter values along and the F and B0 matrices
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for the alternative parameter values. Finally, the function provides a vector with positive inte-
gers, KeepShocks, signalling which of the economic shocks have a non-zero influence on the
variables of the DSGE model.

11.17.9. DSGEtoVARModel

The function DSGEtoVARModel is used to check if the state-space representation of the DSGE
model satisfies the “poor man’s invertibility condition” of Fernández-Villaverde et al. (2007).
The function takes 4 inputs: H, R, F, and B0. These are, as before, the matrices H and R from
the measurement equation, and the matrices F and B0 of the state equations; see, e.g., the
details on DSGEImpulseResponseFcn.

As output the function provides status, EigenValues, and Fstatus. The integer status

is unity if the eigenvalues of the G matrix in equation (11.63) are less than unity in absolute
terms, and 0 if some eigenvalues is on or outside the unit circle. In the event that the number
of economic shocks and unique measurement errors exceeds the number of observed variables
(n < q + rank[R]) status is equal to −1, while it is equal to −2 when the opposite holds
(n > q + rank[R]). The vector EigenValues provides the modulus of the eigenvalues from the
invertibility condition when status is non-negative. Finally, the boolean variable Fstatus is
unity if all eigenvalues of the F matrix of the state-space model are less than unity in absolute
term, and zero otherwise. Note than when Fstatus is unity and the number of observed vari-
ables is equal to the number of sources of noise (n = q + rank[R]), then status provides both
a necessary and sufficient statement about if the DSGE model can be rewritten as an infinite
order VAR model or not.

11.17.10. DSGEInformationMatrix

The function DSGEInformationMatrix is used to estimate Fisher’s information matrix stated
in equation (11.64). To achieve this 6 input variables are required: theta, thetaPositions,
ModelParameters, ParameterNames, DSGEModel, and CurrINI. The first 3 variables are identical
to the input variables with the same names in the CalculateDSGEStateVariables function.
The 4th input is a string matrix with the names of the estimated parameters. The last two input
variables are structures that have been mentioned above; see also Section 7.4.

The function provides the output variable InformationMatrix which is an estimate of the
right hand side in (11.64) with the partial derivatives ∂ỹt/∂θ

′ and ∂vec(Σy,t|t−1)/∂θ′ replaced
by numerical partials. By default, each parameter change is equal to 0.1 percent of its given
value. If the model cannot be solved at the new value of θ, YADA tries a parameter change of
0.01 percent. Should YADA also be unsuccessful at the second new value of θ, estimation of the
information matrix is aborted.

11.17.11. DSGEIdentificationPatterns

The function DSGEIdentificationPatterns computes the eigenvectors and eigenvalues of a
square (symmetric) matrix and attempts to order the columns of the input matrix through Q-R
factorization with column pivoting; see Section 11.12. The function takes one input variable,
the matrix InformationMatrix, which is typically positive semidefinite.

Three output variables are determined from the input: EigenVectorMatrix, EigenValues,
and ParameterOrdering. The first two variables are taken from the singular value decompo-
sition of InformationMatrix, where the first variable is given by V in USV ′ = A (where A is
given by InformationMatrix) and the second is equal to the diagonal of S. The third variable
is a matrix with two columns. The first column contains the column ordering based on the
Q-R factorization with column pivoting of V ′, while the second column contains the ordering
based on the same algorithm applied directly to InformationMatrix. When printing output on
parameter ordering, YADA currently only writes the ordering based on the InformationMatrix.

11.17.12. MonteCarloFiltering

The function MonteCarloFiltering is used to check the DSGE model solution property for a
given set of draws from the prior distribution. The 6 input variables are given by: thetaDraws,
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thetaPositions, ModelParameters, AIMData, DSGEModel, and CurrINI. The last five input vari-
ables have been discussed above, while the first input variable is a matrix of dimension p × nd
where p is the dimension of θ, the vector of parameters to estimate, and nd is the number of
draws from the prior distribution of θ.

As output the function provides the nd-dimensional vector SolutionCode, where a unit value
indicates a unique and convergent solution of the model, a value of 2 that there is indetermi-
nacy, and a value of 0 that there is no convergent solution.

11.17.13. DSGEOneStepAheadPredictiveChecks

The function DSGEOneStepAheadPredictiveChecks is used to perform the computations needed
for the prior and posterior predictive checks of the one-step-ahead forecast error covariances
of the DSGE model. The 10 input variables are: theta, thetaPostSample, thetaPositions,
ModelParameters, SelectedParameters, IsPosterior, TotalDraws, CurrChain, DSGEModel,
and CurrINI. The theta input is like above fixed values for the original vector of estimated pa-
rameter. The matrix thetaPostSample with NumDraws rows and NumParam columns contains the
parameter draws from the prior or the posterior distribution. The variables thetaPositions,
ModelParameters, TotalDraws, DSGEModel, and CurrINI have all been discussed above. the
vector SelectedParameters contains the entries in the theta vector that can change from one
parameter draw to the next. The boolean variable IsPosterior is one if the parameter draws
are taken from the posterior distribution and zero if they are taken from the prior. The input
variable CurrChain is an integer that indicates the MCMC chain number for posterior draws
and is zero otheriwse.

The only output variable provided by the function is called DoneCalc, which is a boolean that
takes the value 1 if the calculations have been performed and 0 otherwise.

11.17.14. DSGEObservationWeightsTheta

The function DSGEObservationWeightsTheta is used to estimate the observation weights and
the associated decompositions that were discussed in Section 5.9 for the state variables and
in Section 11.1 for the economic shocks. The computations require 6 input variables: theta,
thetaPositions, ModelParameters, VarType, DSGEModel, and CurrINI. The first 3 variables
are identical to the input variables with the same names in the CalculateDSGEStateVariables

function. The 4th variable is an integer which indicates the type of output to prepare. The
supported values are: (1) decompositions for state variables; (2) decompositions for economic
shocks; (3) weights for state variables; and (4) weights for economic shocks. The last two input
variables are structures that have been mentioned above; see also Section 7.4.

The function provides the output variable StateDecomp, a structure whose fields depend on
the value for VarType. In addition, the function can provide output on status, the mcode output
from the DSGE model solving function, and kalmanstatus, the status output from the Kalman
filter.

11.17.15. DSGECondVarianceDecompFcn

The function DSGECondVarianceDecompFcn computes the conditional forecast error variance
decomposition in (11.24). The function needs 4 inputs: H, F, B0, and h. These are exactly the
same as those needed by DSGEImpulseResponseFcn.

As output the function provides the 3D matrix FEVDs. This matrix has dimension n×q×(h+1),
with n being the number of observed variables, q the number of economic shocks, and h the
forecast horizon. The last third dimensional n × q matrix is the long-run conditional variance
decomposition.

11.17.16. DSGECondLevVarianceDecompFcn

The function DSGECondLevVarianceDecompFcn computes the conditional forecast error variance
decomposition in (11.24), but where Ri is partly an accumulation of Ri−1. Specifically, let
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C denote a diagonal 0-1 matrix, where a diagonal element is 1 if the corresponding variable
should be accumulated and 0 otherwise. The Ri matrices are here calculated according to

Ri = CRi−1 +H′FiB0, i = 1,2, . . . ,

while R0 = H′B0. This allows YADA to compute levels effects of observed variables that only
appear in first differences in the yt vector, e.g., GDP growth. At the same time, variables
that already appear in levels, e.g., the nominal interest rate, are not accumulated. The func-
tion needs 5 inputs: H, F, B0, AccMat, and h. These are identical to the inputs accepted by
DSGELevImpulseResponseFcn.

As output the function provides the 3D matrix FEVDs. This matrix has dimension n×q×(h+1),
with n being the number of observed variables, q the number of economic shocks, and h the
forecast horizon. As above, the last third dimensional n × q matrix is the long-run conditional
variance decomposition for the levels.

11.17.17. DSGECondAnnVarianceDecompFcn

The function DSGECondAnnVarianceDecompFcn calculates the conditional variance decomposi-
tion in (11.24), but where the Ri matrices need to take annualization information into account.
In particular, let N denote a diagonal 0-1 matrix, while s is the frequency of the data, e.g., s = 4
(s = 12) for quarterly (monthly) data. The Ri matrices are now given by:

Ri = N

(
min{i,s}−1∑

j=1

H′Fi−jB0

)
+H′FiB0, i = 0,1,2, . . . .

A diagonal element of N is unity if the corresponding observed variable should be annualized
by adding the current and previous s− 1 observations, and zero otherwise.

The function needs 6 inputs: H, F, B0, AccMat, h, and AccHorizon. The first five are identical
to the inputs accepted by DSGECondLevVarianceDecompFcn, with the exception of AccMat which
is now given by the matrix A from the equation above. The final input is AccHorizon which
corresponds to the integer s above.

As output the function provides the 3D matrix FEVDs. This matrix has dimension n × q × h,
with n being the number of observed variables, q the number of economic shocks, and h the
forecast horizon.

11.17.18. DSGEVarianceDecompFcn & DSGEVarianceDecompLevelsFcn

The function DSGEVarianceDecompFcn computes all the forecast error variance decompositions
for the original variables, while DSGEVarianceDecompLevelsFcn takes care of the levels. Both
functions accept the same input variables and return the same output variables.

They require the 9 input variables, H, F, B0, R, h, DAMaxIter, DAConvValue, RicMaxIter,
and RicConvValue. The first three and the fifth inputs are the same as those required by
DSGEImpulseResponseFcn, while the input R is simply the covariance matrix of the measure-
ment errors. The last four inputs concern the maximum number of iterations (DAMaxIter,
RicMaxIter) and the tolerance level (DAConvValue, RicConvValue) when calling the functions
DoublingAlgorithmLyapunov and RiccatiSolver, respectively. The values for these inputs can
be determined by the user on the Settings tab for the doubling algorithm and on the Miscella-
neous tab for the Riccati solver.

As output the functions give FEVDs, LRVD, status, RiccatiResults, and UniquenessCheck.
Provided that all potential calls to RiccatiSolver gave valid results, the matrix FEVDs is n×(n+
2)×h, while LRVD is n× (n+ 1). The first 3D matrix has the n× (n+ 2) variance decomposition
matrix for horizon i in FEVDs(:,:,i). The first column contain the shares due to state variable
uncertainty, the second column the shares due to the n potential measurement errors, while the
remaining q columns have the shares due to the economic shocks. The matrix LRVD is structured
in the same way, except that there is no state variable uncertainty.

The status variable is obtained from the same named output variable of the RiccatiSolver

function, while RiccatiResults is a 1×2 vector with information about from the Riccati solver
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for the overall forecast error variance calculation. The first value gives the number of iterations
used by the algorithm, while the second gives the value of the convergence measure. Finally,
the UniquenessCheck scalar records the largest eigenvalue of L, where K is the asymptote of
the Kalman gain matrix for the overall forecast error variance calculation.

11.17.19. RiccatiSolver

The function RiccatiSolver tries to solve the Riccati equation (11.33) iteratively and through
the use of the Matlab function dare from the Control System Toolbox. It requires 7 inputs. They
are F, H, Q, R, P1, MaxIter, and ConvValue. As before F is the state transition matrix, H the
mapping from the state variables to the observed, Q is the covariance matrix of the state shocks,
and R the covariance matrix of the measurement errors. The matrix P1 is the initial value for
the covariance matrix P1. YADA always sets this value equal to the covariance matrix of the
state variables, given the assumptions made about the shocks. Finally, MaxIter is the maximum
number of iterations that can be used when attempting to solve the Riccati equation, while
ConvValue is the tolerance level. As in the case of the function DoublingAlgorithmLyapunov,
the convergence criterion is given by the Matlab norm function applied to the change in P1,
unless the call to dare indicates a solution of the Riccati equation. The details of the algorithm
are given in Sections 11.5 and 11.6.

The Riccati solver function gives three required output variables P1, status, and NumIter, as
well as one optional variable, TestValue. The first required variable is the solution candidate
for P1. The solution is considered as valid by YADA if the iterations have converged within the
maximum number of iterations. If so, the variable status is assigned the value 0, otherwise it
is 1 unless infinite values or NaN’s were located. This last case results in a value of 2 for status.
The third output NumIter is simply the number of iterations used, while the fourth (optional)
variable gives the value of the convergence criterion for the last iteration.
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12. A Bayesian Approach to Forecasting with DSGE Models

12.1. Unconditional Forecasting with a State-Space Model

To analyse the predictions of a set of future observations yT+1, . . . , yT+h conditional on the
data that can be observed at time T and a path for future values of the exogenous vari-
ables, we need to determine its predictive distribution. Letting this distribution be denoted
by p(yT+1, . . . , yT+h|xT+1, . . . , xT+h,YT), we note that it can be described in terms of the dis-
tribution for the future observations conditional on the data and the parameters and the full
posterior distribution. That is,

p
(
yT+1, . . . , yT+h|xT+1, . . . , xT+h,YT

)
=

∫

θ∈Θ
p
(
yT+1, . . . , yT+h|xT+1, . . . , xT+h,YT ; θ

)

× p
(
θ|YT

)
dθ,

(12.1)

where Θ is the support of θ and where, for convenience, we have neglected to include an index
for the model in the above expressions.

From a Bayesian perspective, it may be noticed that for a given model there is no uncertainty
about the predictive density and, thus, there is no uncertainty about a point or a density forecast
which is determined from it. This can be seen in equation (12.1) where posterior parameter
uncertainty is integrated out and what remains is a deterministic function of the data and the
model. In practise, numerical methods typically need to be applied, but the induced simulation

uncertainty can be controlled by the econometrician.93

The problem of numerically determining the predictive distribution is examined in the con-
text of a cointegrated VAR by Villani (2001). Although the full predictive distribution cannot be
obtained analytically, a procedure suggested by Thompson and Miller (1986) may be applied.

Their procedure is based on a double simulation scheme, where S draws of θ from its full pos-
terior are first obtained. In the second stage, prediction paths are simulated for xT+1, . . . , xT+h

conditional on the data and θ. From the conditional predictive distribution we have that

p
(
yT+1, . . . , yT+h|xT+1, . . . , xT+h,YT ; θ

)
=

h∏

i=1

p
(
yT+i|xT+i,YT+i−1; θ

)
. (12.2)

The right hand side of equation (12.2) is obtained by the usual conditioning formula and by
noting that yT+i conditional on xT+i,YT+i−1 and the parameters is independent of xt+j for all
j > i. Moreover, the density for this conditional expression is for the state-space model given
by a multivariate normal with mean yT+i|T+i−1 and covariance (H′PT+i|T+i−1H + R).

The approach suggested by Thompson and Miller (1986) may be implemented for the state-
space model as follows. For a given draw of θ from the posterior distribution, the DSGE model is
solved and the matrices A, H, R, F, and Q are calculated. A value for yT+1 is now generated by
drawing from the normal distribution with mean yT+1|T and covariance matrix (H′PT+1|TH+R)
using the expressions in Section 5.

For period T + 2 we treat the draw yT+1 as given. This allows us to compute yT+2|T+1 and

(H′PT+2|T+1H+R) and draw a value of yT+2 from the multivariate normal using these values as
the mean and the covariance. Proceeding in the same way until we have drawn yT+h we have
obtained one possible future path for yT+1, . . . , yT+h conditional on xT+1, . . . , xT+h, YT and the
given draw θ from the posterior distribution.

We may now continue and draw a total of P paths for yT+1, . . . , yT+h conditional on this
information. Once all these paths have been drawn, we pick a new value of θ from its posterior
and recalculate everything until a total of PS draws from the density in (12.2) have been drawn.

93 This may be contrasted with a frequentist approach to forecasting where a point or a density forecast is conditioned

on the unknown parameters of the model, i.e., it is based on the first density term on the right hand side of (12.1).

Once the unknown θ is replaced with a point estimate, the resulting point or density forecast is subject to the

estimation uncertainty inherent to the selected estimator and sample period and which cannot be influenced by the

econometrician. At the same time, the “true” predictive density, based on the “true” values of the parameters, is

deterministic but remains unknown; see Geweke and Whiteman (2006) for discussions on Bayesian forecasting.
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Alternatively, and as suggested by Adolfson, Lindé, and Villani (2007d), we can directly
utilize the state-space form. Specifically, for a given draw of θ from its posterior distribution,
the period T state vector can be drawn from N(ξT |T , PT |T), where ξT |T and PT |T are obtained
from the final step of the Kalman filter computations; cf. Section 5. Next, a sequence of future
states ξT+1, . . . , ξT+h can be simulated from the state equation (5.2) given draws of the state
shocks vT+1, . . . , vT+h. The latter are drawn from the normal distribution with mean zero and
covariance matrix Q = B0B

′
0. Next, vectors of measurement errors wT+1, . . . , wT+h are drawn

from a normal distribution with mean zero and covariance matrix R. Adding the sequence
of state variables and the measurement errors a path for yT+1, . . . , yT+h is obtained via the
measurement equation (5.1). For the given value of θ, we can now generate P paths of the
observed variables and by repeating this for S draws from the posterior distribution of θ and
total of PS paths from the predictive density of yT+1, . . . , yT+h may be obtained.

The Adolfson, Lindé, and Villani (2007d) approach is faster than the first approach since
the underlying computations are more direct. For this reason, the Adolfson, Lindé, and Villani
approach has been implemented in YADA. Moreover, this procedure highlights the fact that the
uncertainty in the forecasts stems from four sources: parameter uncertainty (θ), uncertainty
about the current state (ξT), uncertainty about future shocks (v), and measurement errors (w).

Based on the law of iterated expectations the forecast uncertainty for yT+i can be decomposed
(“Rao-Blackwellization”) as follows:

C
(
yT+i|YT

)
= ET

[
C
(
yT+i|YT ; θ

)]
+ CT

[
E
(
yT+i|YT ; θ

)]
, (12.3)

where ET and CT denote the expectation and covariance with respect to the posterior of θ at
time T and where, for notational simplicity, the sequence of exogenous variables xT+1, . . . , xT+h

has been suppressed from the expressions. Adolfson, Lindé, and Villani (2007d) show that the
first term on the right hand side of (12.3) is given by

ET
[
C
(
yT+i|YT ; θ

)]
= ET

[
H′FiPT |T

(
Fi
)′
H
]

+ ET

[
H′
(
i−1∑

j=0

FjQ
(
F′)j

)
H

]
+ ET

[
R
]
, (12.4)

providing the uncertainties regarding the current state, the future shocks, and the measurement
errors. Similarly, for the second term in (12.3) we have that

CT
[
E
(
yT+i|YT ; θ

)]
= CT

[
A′xT+i +H′FiξT |T

]
, (12.5)

which thus reflects the influence of parameter uncertainty on forecast uncertainty.
To simplify the expression for the shock uncertainty term, consider the difference equation

Σ̄(i)
ξ

= Q + FΣ̄(i−1)
ξ

F′, i = 1, . . . , h,

where the r × r matrix Σ̄(i)
ξ

is initialized at Σ̄(0)
ξ

= 0. It is now straightforward to show that

Σ̄(i)
ξ

=
i−1∑

j=0

FjQ
(
F′)j .

This expression allows for fast computation of the shock uncertainty term since loops over j are
not required.

It is interesting to note that not all terms in equation (12.3) necessarily increase as the forecast
horizon increases. For example, the uncertainty due to the state at time T is positive semidef-
inite at i = 1 when some state variable are unobserved and have an impact on the observed
variables; cf. first term on the right hand side of (12.4). As i → ∞, the state uncertainty term
converges to zero when all eigenvalues of F are inside the unit circle. Hence, there exists some
finite forecast horizon i beyond which the state uncertainty factor is decreasing. Similarly, the
parameter uncertainty term may also have this property; cf. equation (12.5). For example, if
all elements of A are known, then parameter uncertainty is entirely due to variation in FiξT |T
across different parameter draws from the posterior, and the uncertainty of this term will de-
crease beyond some forecast horizon i when all eigenvalue of F are inside the unit circle. In
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fact, the only term that becomes larger and larger for finite forecast horizons is the shock uncer-
tainty term (second term on the right hand side of equation 12.4) and, hence, we expect this
term to dominate the forecast error covariance matrix of the observed variables at and beyond
some finite forecast horizon. Moreover, the sum of the state, shock, and measurement error un-
certainty terms on the right hand side of equation (12.4) are increasing as the forecast horizon
increases and we therefore expect the overall forecast error uncertainty in (12.3) to increase
with the horizon as well, at least beyond some finite horizon when the share due to parameter

uncertainty is sufficiently small.94

12.2. Conditional Forecasting with a State-Space Model

Conditional forecasting concerns forecasts of endogenous variables conditional on a certain
path and length of path for some other endogenous variables; see, e.g., Waggoner and Zha
(1999). While use of such conditioning assumptions may at first seem to be of limited interest,
one important forecasting situation that should be kept in mind is when real-time data vintages95

are used by the forecaster. The values for all observed variables for period T , the last “historical”
time period, have often not been released by the statistical authority yet and are therefore
missing from the relevant data vintage, i.e., the data set is unbalanced. Accordingly, some of
the time T values need to be forecasted and the forecasts of these variables need to take into
account that values for other variables are available for the same time period.

In this section I will discuss conditional forecasting as it has been implemented in YADA for
a DSGE model. Specifically, it is assumed that the conditioning information satisfies hard con-
ditions, i.e., a particular path, rather than soft conditions (a range for the path). Furthermore,
YADA covers three ways of handling the need to control the shock processes such that the con-
ditioning information is satisfied. First, the user can select which economic shocks should be
controlled directly. Second, the Waggoner and Zha (1999) approach is supported. In this case,
the economic shocks are drawn from a distribution that ensures that the conditioning informa-
tion is met; see also Robertson, Tallman, and Whiteman (2005). Finally, a mixed case is also
supported where a subset of the shocks are drawn from a distribution which is consistent with
the conditioning assumptions, while another subset of shocks are standard normal. The second
and third methods are only available in the version of YADA that is exclusive to the Modelling
Unit at Sveriges Riksbank and the NAWM team within the Directorate General Research of the
ECB.

Let K1 and K2j be known n× qm matrices with qm ≤ min{n, q} such that rank(K1) = qm and
j = 1, . . . , g − 1. Furthermore, consider the following relation:

zT+i = K′
1yT+i +

i−1∑

j=1

K′
2jyT+i−j + uT , i = 1, . . . , g. (12.6)

The specification in equation (12.6) is general enough to satisfy our purposes. In the special
case where K2j = 0 and uT = 0 the vector zT+i is determined directly from yT+i, e.g., one
particular observed variable. Although such a specification covers many interesting cases it does
not allow us to handle the case when y includes the real exchange rate and the first differences
of the domestic and foreign prices, but where z is the nominal exchange rate. Let pt and p∗t
denote the domestic and foreign prices, respectively, while st denotes the nominal exchange
rate. We may then let K1 be defined such that K′

1yT+i = (sT+i + p∗T+i − pT+i) + ∆pT+i − ∆p∗T+i,

whereas K2j = K2 for all j and K′
2yT+i−j = ∆pT+i−j − ∆p∗

T+i−j and uT = pT − p∗T . Another

interesting case which requires K2j to vary with j is when the conditioning assumptions involve
annual inflation and the observed variables have quarterly inflation.

94 For more detailed discussion on forecasting with DSGE models in practise, see Adolfson et al. (2007d), Christoffel,

Coenen, and Warne (2011), and Del Negro and Schorfheide (2013).

95 See, for instance, Croushore and Stark (2001) and Croushore (2011a,b) for further details on forecasting with

real-time data vintages.
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12.2.1. Direct Control of the Shocks

To keep the values in zT+i fixed over the given horizon, the first method we consider requires
that a subset of the economic shocks are adjusted to take on certain values. The selection of
shocks is defined by the user while the values are calculated by taking equation (12.6) into
account. The selection of economic shocks is determined by the q× qm matrix M where q > qm
and rank(M) = qm. Let M⊥ be the q × (q − qm) orthogonal matrix, i.e., M′

⊥M = 0. It now
follows that N = [M⊥ M] is a full rank q × q matrix while

N′ηt =

[
M′

⊥
M′

]
ηt =

[
η

(q−qm)
t

η
(qm)
t

]
. (12.7)

The shocks η
(qm)
t will be adjusted over the time interval t = T+1, . . . , T+g to ensure that (12.6)

is met for all forecast paths of the observed variables over this time interval.

Let M̄ = M(M′M)−1 while M̄⊥ = M⊥(M′
⊥M⊥)−1.96 We can now express the state equation

(5.2) as

ξt = Fξt−1 + B0M̄⊥η
(q−qm)
t + B0M̄η

(qm)
t . (12.8)

Turning first to period T + 1 we know that if we substitute for yT+1 using the measurement
equation (5.1) and the rewritten state equation (12.8), the conditioning on the vector zT+1 in
(12.6) implies that:

zT+1 = K′
1A

′xT+1 +K′
1wT+1 +K′

1H
′FξT +K′

1H
′B0M̄⊥η

(q−qm)
T+1 +K′

1H
′B0M̄η

(qm)
T+1 + uT . (12.9)

Provided that the qm × qm matrix K′
1H

′B0M̄ has full rank, the economic shocks η
(qm)
T+1 can be

uniquely specified such that a fixed value for zT+1 is obtained.

With η
(qm)
T+1 being computed such that (12.9) holds, it follows from the state equation (12.8)

that the state vector at T + 1 conditional on the path for zT+i is determined by

ξ
(qm)
T+1 = FξT + B0M̄⊥η

(q−qm)
T+1 + B0M̄η

(qm)
T+1 ,

while the measurement equation implies that yT+1 is given by:

y
(qm)
T+1 = A′xT+1 +H′ξ(qm)

T+1 +wT+1.

We may now continue with period T + 2 where the shocks η
(qm)
T+2 can, for given parameter

values, be determined from zT+2, xT+2, wT+2, ξ
(qm)
T+1 , η

(q−qm)
T+2 , y

(qm)
T+1 , and uT . In fact, it is now

straightforward to show that the values for the economic shocks which guarantee that the
conditioning path zT+1, . . . , zT+g is always met are:

η
(qm)
T+i =

(
K′

1H
′B0M̄

)−1
[
zT+i −K′

1A
′xT+i −K′

1wT+i −K′
1H

′Fξ(qm)
T+i−1

−K′
1H

′B0M̄⊥η
(q−qm)
T+i −

i−1∑

j=1

K′
2jy

(qm)
T+i−j − uT

]
, i = 1, . . . , g,

(12.10)

while the states and the observed variables evolve according to:

ξ
(qm)
T+i = Fξ

(qm)
T+i−1

+ B0M̄⊥η
(q−qm)
T+i + B0M̄η

(qm)
T+i , i = 1, . . . , g, (12.11)

and
y

(qm)
T+i = A′xT+i +H′ξ(qm)

T+i +wT+i, i = 1, . . . , g, (12.12)

while ξ
(qm)
T = ξT .

For i > g there are not any direct restrictions on the possible paths for the observed variables
other than that the state vector at T + g needs to be taken into account.

The procedure described here makes it straightforward to calculate conditional predictive
distributions. For a given draw of θ from its posterior distribution, the period T state vector ξT

96 In many situations we will have that M̄ = M since M is typically a 0-1 matrix with only one unit element per

column. Similarly, we can always select M⊥ such that M̄⊥ = M⊥.
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is drawn from N(ξ(z)
T |T+g

, P
(z)
T |T+g

). The determination of the mean and the covariance matrix of

the state vector that utilizes the conditioning assumptions is discussed in Section 12.2.4. The

default behavior in YADA is to set ξ
(z)
T |T+g

= ξT |T and P
(z)
T |T+g

= PT |T and, hence, to ignore the

conditioning assumptions. The preferred choice of initial state distribution can be selected on
the Miscellaneous tab.

Next, the economic shocks η
(q−qm)
T+i are drawn from N(0,M′

⊥M⊥) and wT+i from N(0, R).

Based on the conditioning assumptions, the shocks η
(qm)
T+i are calculated from (12.10), the state

vector from (12.11), and the observed variables from (12.12) in a sequential manner until

i = g + 1, when the economic shocks η
(qm)
T+i are drawn from N(0,M′M) until i = h. This

provides one path for yT+1, . . . , yT+h. Given the value of θ we may next repeat this procedure
yielding P paths. By considering S draws of θ we can calculate a total of PS sample paths for
the observed variables that take the conditioning into account.

To evaluate the forecast error covariances let us first combine the measurement and the state
equation such that yT+i is expressed as a function of the parameters, xT+i, ξT , wT+i, and the
sequence of economic shocks ηT+i, . . . , ηT+1. This relationship is:

yT+i = A′xT+i +H′FiξT +H′
i−1∑

j=0

FjB0ηT+i−j +wT+i, i = 1, . . . , h. (12.13)

For periods T + 1 to T + g we can stack the equations as



yT+g

yT+g−1
...

yT+1




=




A′xT+g

A′xT+g−1
...

A′xT+1




+




H′Fg

H′Fg−1

...

H′F



ξT +




wT+g

wT+g−1
...

wT+1




+

+




H′B0 H′FB0 · · · H′Fg−1B0

0 H′B0 H′Fg−2B0
...

. . .
...

0 0 H′B0







ηT+g

ηT+g−1
...

ηT+1



,

or
YT+g = XT+g + GξT +WT+g + DNT+g . (12.14)

The conditioning relations in equation (12.6) can also be stacked for the time periods T + 1
until T + g. Here we find that




zT+g

zT+g−1
...

zT+1




=




K′
1 K′

21 · · · K′
2g−1

0 K′
1 K′

2g−2
...

. . .

0 0 K′
1







yT+g

yT+g−1
...

yT+1




+




uT

uT
...

uT



,

or
ZT+g = K′YT+g + UT . (12.15)

Let us now substitute for YT+g from (12.14) into the conditioning assumptions (12.15). More-
over, define the stacked decomposition of the structural shocks

NT+g =
(
Ig ⊗ M̄⊥

)
N

(q−qm)
T+g +

(
Ig ⊗ M̄

)
N

(qm)
T+g ,

where N
(qm)
T+g = [η

(qm)′
T+g · · · η(qm)′

T+1 ]′ and N
(q−qm)
T+g is defined similarly. Rearranging terms we obtain

K′D
(
Ig ⊗ M̄

)
N

(qm)
T+g = ZT+g −K′XT+g −K′GξT −K′WT+g − UT −K′D

(
Ig ⊗ M̄⊥

)
N

(q−qm)
T+g .
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Provided that the qmg × qmg matrix K′D(Ig ⊗ M̄) is invertible, this gives us a stacked version
of equation (12.10). In fact, the matrix in question is invertible when the qm × qm dimensional
matrix K′

1H
′B0M̄ has full rank which, consistent with the discussion above, guarantees that a

unique solution for N
(qm)
T+g exists. Collecting these results, the stacked vector of shocks is given

by

NT+g = µN,T+g +
(
Iqg −

(
Ig ⊗ M̄

) [
K′D

(
Ig ⊗ M̄

)]−1
K′D

) (
Ig ⊗ M̄⊥

)
N

(q−qm)
T+g , (12.16)

where

µN,T+g =
(
Ig ⊗ M̄

) [
K′D

(
Ig ⊗ M̄

)]−1
kT+g ,

kT+g = ZT+g − UT −K′(XT+g + GξT +WT+g

)
.

With this in mind, it is straightforward to show that conditional on YT , ZT+g and θ the mean
of the stacked shock vector NT+g is

µ̃N,T+g =
(
Ig ⊗ M̄

) [
K′D

(
Ig ⊗ M̄

)]−1
(
ZT+g −K′(XT+g + Gξ

(z)
T |T+g

)
− UT

)
. (12.17)

It follows that the conditional forecast of YT+g can be written as

E
[
YT+g |YT , ZT+g ; θ

]
= XT+g + Gξ

(z)
T |T+g

+Dµ̃N,T+g . (12.18)

Hence, premultiplication of both sides by K′ we find that the conditioning assumptions are
satisfied by the conditional mean predictions. Notice that the expectation is here also taken with
respect to M, i.e., the selection of shocks used the ensure that the conditioning assumptions
are satisfied. For notational convenience, however, it has been left out of the conditioning
information.

Furthermore, it can also be shown that the covariance matrix of the observed variable for
fixed θ is given by

C
(
YT+g |YT , ZT+g ; θ

)
= D̃GP

(z)
T |T+g

G′D̃′ + D̃
(
Ig ⊗ R

)
D̃′ + D̃D

(
Ig ⊗ M̄⊥M

′
⊥
)
D′D̃′, (12.19)

where

D̃ = Ing − D
(
Ig ⊗ M̄

) [
K′D

(
Ig ⊗ M̄

)]−1
K′.

Premultiplication of the covariance matrix in (12.19) by K′ or postmultiplication by K we find
that the resulting expression is zero. Hence, the uncertainty about the conditioning assumption
is zero. Moreover, the first term of the right hand side of (12.19) gives the share of the forecast
error covariances for fixed θ due to state variable uncertainty, the second term yielding the
measurement error share, while the third provides the shock uncertainty share.

For forecast horizons i beyond the conditioning horizon g we have that

yT+i = A′xT+i+H
′FiξT +

i−g−1∑

j=0

H′FjB0ηT+i−j+H′Fi−g B̄NT+g+wT+i, i = g+1, . . . , h, (12.20)

where B̄ is an r × gq matrix given by

B̄ =
[
B0 FB0 · · · Fg−1B0

]
.

It therefore follows that

E
[
yT+i|YT , ZT+g ; θ

]
= A′xT+i +H′Fiξ(z)

T |T+g
+H′Fi−g B̄µ̃N,T+g , (12.21)
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for i = g + 1, . . . , h. Moreover, the forecast error covariance matrix for these horizons can be
shown to be given by

C
(
yT+i|YT , ZT+g ; θ

)
= H′Fi−gG̃P (z)

T |T+g
G̃′(F′)i−gH +H′Fi−gK̃

(
Ig ⊗ R

)
K̃′(F′)i−gH+

+ R+
i−g−1∑

j=0

H′FjB0B
′
0

(
F′)jH+

+H′Fi−g B̄Ñ
(
Ig ⊗ M̄⊥M

′
⊥
)
Ñ′B̄′(F′)i−gH,

(12.22)

for i = g + 1, . . . , h, and where

K̃ = B̄
(
Ig ⊗ M̄

) [
K′D

(
Ig ⊗ M̄

)]−1
K′,

G̃ = Fg − K̃G,

Ñ = Iqg −
(
Ig ⊗ M̄

) [
K′D

(
Ig ⊗ M̄

)]−1
K′D.

(12.23)

The first term on the right hand side of (12.22) represents state uncertainty for fixed parameters,
the second and third give the measurement error uncertainty, while the last two provide a
measure of shock uncertainty. Moreover, it is worth pointing out that when all the eigenvalues
of F are less than unity in absolute terms the first, second, and fifth terms on the right hand
side converge to zero as i → ∞ so that the forecast error covariance matrix approaches the
covariance matrix of the observed variables for fixed parameters.

As in equation (12.3) we now find that the forecast error covariance matrix for the observed
variables can be decomposed as

C
(
yT+i|YT , ZT+g

)
= ET

[
C
(
yT+i|YT , ZT+g ; θ

)]
+ CT

[
E
(
yT+i|YT , ZT+g ; θ

)]
, (12.24)

for i = 1, . . . , h, and where ET and CT denote the expectation and covariance with respect to

the posterior of θ at time T .97 The first term on the right hand side gives us a decomposition of
the forecast uncertainty into state, measurement error, and shock uncertainty, while the second
term provides a measure of parameter uncertainty.

12.2.2. Control of the Distribution of the Shocks

The second method for ensuring that the conditioning assumption in equation (12.6) is satisfied
relies on selecting appropriate first and second moments for the distribution of the economic
shocks. The approach, suggested by Waggoner and Zha (1999) for Bayesian VAR models, is
based on the observation that the conditioning assumption imposes linear restrictions on the
shocks. The mean of the shocks can be selected such that the restrictions are satisfied on aver-
age, while the deviation of the shocks from their mean should be orthogonal to the restrictions.

To see how this idea can be used in the state-space framework, let us substitute for YT+g from
(12.14) into (12.15) and rearrange terms. This gives us the following qmg equations that the
distribution of the shocks must satisfy if the conditioning assumptions are to hold:

K′DNT+g = kT+g , (12.25)

where kT+g = ZT+g − UT − K′(XT+g + GξT + WT+g). As in Waggoner and Zha (1999), the
distribution of the economic shocks NT+g conditional on the restriction (12.25) is normal with
mean µN,T+g and idempotent covariance matrix ΣN,T+g , where the state-space model gives us

µN,T+g = D′K
(
K′DD′K

)−1
kT+g ,

ΣN,T+g = Iqg − D′K
(
K′DD′K

)−1
K′D.

(12.26)

Notice that the common inverse in these expressions exists when the qm × q matrix K′
1H

′B0

has rank qm. This is similar to the requirement in (12.9) that the qm × qm matrix K′
1H

′B0M̄ is
invertible.

97 This posterior distribution provides an approximation since it does not incorporate the conditioning assumptions

in ZT+g , but for convenience this fact is here overlooked.
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The Waggoner and Zha approach to conditional forecasting with a DSGE model may now
proceed as follows. For a given draw of θ from its posterior distribution, the period T state

vector ξT is drawn from N(ξ(z)
T |T+g

, P
(z)
T |T+g

). Next, the measurement errors wT+i are drawn from

N(0, R) for i = 1, . . . , h. The economic shocks ηT+i can now be drawn from N(µN,T+g ,ΣN,T+g)
for i = 1, . . . , g and from N(0, Iq) for i = g + 1, . . . , h. Given the drawn economic shocks, the
state vector ξT+i can be simulated for i = 1, . . . , h using the state equation (5.2). With paths
for the state vector and the measurement errors we can next calculate a path for the observed
variables yT+1, . . . , yT+h via the measurement equation (5.1). Repeating these steps P times for
each one of the S different draws of θ from its posterior distribution, gives us PS paths of the
observed variables that satisfy the conditioning assumptions and that make up the conditional
predictive distribution of yT+1, . . . , yT+h.

For each given value of θ the mean prediction for the observed variables is given by:

E
[
yT+i|YT , ZT+g ; θ

]
= A′xT+i +H′ξ(∗)

T+i|T , i = 1, . . . , h.

The value for the state vector ξ
(∗)
T+i|T evolves according to:

ξ
(∗)
T+i|T =




Fξ

(∗)
T+i−1|T + B0µ̄T+i if i = 1, . . . , g,

Fξ
(∗)
T+i−1|T otherwise,

where ξ
(∗)
T |T = ξ

(z)
T |T+g

. The vector µ̄T+i is determined from µN,T+g by setting kT+g = k̄T+g . The

latter value is obtained by setting WT+g and ξT equal to their means conditional on the sample

data and the parameters, i.e., to zero and ξ
(z)
T |T+g

, respectively. This gives us

µ̄N,T+g = D′K
(
K′DD′K

)−1
k̄T+g =



µ̄T+g

...

µ̄T+1


 .

In order to determine the population moments of the predictive distribution as well as the
decomposition of the forecast error variances into state, shock, measurement error, and param-
eter uncertainty we can start from equation (12.14) and make use of the moments in equation
(12.26). This means that we can express the stacked system as

YT+g = XT+g + GξT +WT+g + DµN,T+g + DΣ1/2
N,T+gγT+g ,

where γT+g = N(0, Ig(q−qm)) and independent of WT+g and ξT , while Σ1/2
N,T+g is treated as a

qg × (q − qm)g matrix that satisfies ΣN,T+g = Σ1/2
N,T+gΣ

1/2′
N,T+g . It follows that

E
[
YT+g |YT , ZT+g ; θ

]
= XT+g + Gξ

(z)
T |T+g

+Dµ̄N,T+g . (12.27)

Premultiplying both sides of this equation by K′ we find that the conditioning assumptions are
satisfied by the conditional mean predictions.

The covariance matrix of the forecast errors over the conditioning horizon can now be shown
to be given by

C
(
YT+g |YT , ZT+g ; θ

)
= D̄GP

(z)
T |T+g

G′D̄′ + D̄
(
Ig ⊗ R

)
D̄′ + DΣN,T+gD

′, (12.28)

where

D̄ = Ing − DD′K
(
K′DD′K

)−1
K′.

The first term represents state variable uncertainty for fixed parameters, the second term gives
the measurement error uncertainty, and the third provides the shock uncertainty for fixed pa-
rameters. Notice also that premultiplication of the right hand side of (12.28) by K′ and post-
multiplication by K gives a zero covariance matrix.
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For forecast horizons i beyond the conditioning horizon g it is straightforward to show via
equation (12.20) that

E
[
yT+i|YT , ZT+g ; θ

]
= A′xT+i +H′Fiξ(z)

T |T+g
+H′Fi−g B̄µ̄N,T+g , i = g + 1, . . . , h. (12.29)

Furthermore, the forecast error covariance matrix for fixed parameters is given by

C
(
yT+i|YT , ZT+g ; θ

)
= H′Fi−gḠP (z)

T |T+g
Ḡ′(F′)i−gH +H′Fi−gK̄

(
Ig ⊗ R

)
K̄′(F′)i−gH+

+ R+
i−g−1∑

j=0

H′FjB0B
′
0

(
F′)jH +H′Fi−g B̄ΣN,T+g B̄

′(F′)i−gH,
(12.30)

for i = g + 1, . . . , h, and where

K̄ = B̄D′K
(
K′DD′K

)−1
K′,

Ḡ = Fg − K̄G.

The first term on the right hand side of (12.30) represents state variable uncertainty for fixed
parameters, the second and third give the measurement error uncertainty, while the last two
provide a measure of shock uncertainty. Moreover, it is worth pointing out that when all eigen-
values of F are inside the unit circle, then the first, second, and fifth terms on the right hand side
converge to zero as i → ∞ so that the forecast error covariance matrix approaches the covari-
ance matrix of the observed variables for fixed parameters. In addition, the full decomposition
into state variable, measurement error, shock, and parameter uncertainty can be performed as
in equation (12.24) using the results in equations (12.27)–(12.30) as input.

12.2.3. Control of the Distribution of a Subset of the Shocks

To guarantee that the conditioning assumptions in equation (12.6) are met, a third approach
builds on a mixture of the two previous methods. That is, a subset of the shocks are used to
control the distribution of the shocks needed for the assumptions to be met, while the remaining
shocks are free, i.e., have their usual normal distribution. In case the subset of shocks used to
control the distribution is equal to the full set of shocks, then the mixed method is identical
to the method in Section 12.2.2. At the other extreme, if this subset has the same dimension
as the number of conditioning assumptions then the mixed case is equal to the method in
Section 12.2.1. Hence, provided that the number of conditioning assumptions is less than the
number of shocks minus one (qm < q − 1) the third method is different from the other two if

qr = q − 1.98

Recall that qm ≤ min{q, n} and assume now that qm ≤ qr ≤ q shocks are normally dis-
tributed with a particular mean and covariance matrix which guarantees that the conditioning
assumptions are satisfied, while q − qr shocks are zero mean normal. Let M be a q × qr matrix

with rank qr such that η
(qr)
t = M′ηt. That is, M gives qr linear combinations of the shocks that

will be used to ensure that the conditioning assumptions are satisfied. Typically, this means
that qr specific shocks among the q available shocks are selected for that purpose. Similarly,

let η
(q−qr)
t be the remaining shocks which are determined as M′

⊥ηt, where M⊥ is a q × (q − qr)
matrix with rank q − qr . Moreover, M′

⊥M = 0, while

ηt = M̄η
(qr)
t + M̄⊥η

(q−qr)
t ,

where M̄ = M(M′M)−1 and M̄⊥ = M⊥(M′
⊥M⊥)−1. We shall also assume that qr > qm so that

the shocks here are different from those in Section 12.2.1, while η
(q−qr)
t ∼ N(0,M′

⊥M⊥) are the
q − qr “free” shocks.

98 The third method can also be different from the direct control of the shocks method if each shock is mapped to

a specific conditioning assumption under the direct control case and the number of conditioning assumptions, qm,

varies of the prediction sample. This means that qr can remain fixed, while qm is actually time varying. Furthermore,

this remains true when qr = maxi={1,...,g} qm,T+i.

– 191 –



The stacked vector with shocks NT+g can therefore be expressed as

NT+g =
(
Ig ⊗ M̄

)
N

(qr)
T+g +

(
Ig ⊗ M̄⊥

)
N

(q−qr)
T+g , (12.31)

where N
(qr)
T+g = [η

(qr)′
T+g · · · η(qr)′

T+1 ]′ and N
(q−qr)
T+g is defined analogously using the η

(q−qr )
T+i shocks.

The qmg restrictions on the N
(qr)
T+g vector are now given by

K′D
(
Ig ⊗ M̄

)
N

(qr)
T+g = k

(qr)
T+g , (12.32)

where

k
(qr)
T+g = ZT+g − UT −K′

(
XT+g + GξT +WT+g + D

(
Ig ⊗ M̄⊥

)
N

(q−qr)
T+g

)
.

This may be compared with the restrictions in equation (12.25) under the pure Waggoner and
Zha approach. If qr = q, then M = Iq and M⊥ is empty so that the expressions in (12.32) and
(12.25) are equivalent.

To satisfy the restrictions in (12.32), the qrg shocks in N
(qr)
T+g conditional on the (q − qr)g

shocks N
(q−qr)
T+g are normally distributed with mean and idempotent covariance matrix given by

µ
(qr)
N,T+g =

(
Ig ⊗ M̄′)D′K

(
K′D

(
Ig ⊗ M̄M̄′)D′K

)−1
k

(qr)
T+g ,

Σ
(qr)
N,T+g = Iqrg −

(
Ig ⊗ M̄′)D′K

(
K′D

(
Ig ⊗ M̄M̄′)D′K

)−1
K′D

(
Ig ⊗ M̄

)
.

(12.33)

Notice that the common inverse in these expressions exists when the qm × qr matrix K′
1H

′B0M
has rank qm. This is similar to the requirement in (12.9) that the corresponding matrix has full
rank qm.

The mixed approach to conditional forecasting with a DSGE model can now be implemented
as follows. For a given draw of θ from its posterior distribution, the period T state vector

ξT is drawn from N(ξ(z)
T |T+g

, P
(z)
T |T+g

). The measurement errors wT+i are drawn from N(0, R)

for i = 1, . . . , h. The economic shocks N
(q−qr)
T+g are drawn from N(0, [Ig ⊗ M′

⊥M⊥]), while

N
(qr)
T+g is drawn from N(µ

(qr)
N,T+g ,Σ

(qr)
N,T+g). Finally, if g < h, then ηT+i is drawn from N(), Iq) for

i = g + 1, . . . , h. Given these draws a path for the observed variables is simulated through the
state-space representation. Repeating these steps P times for each one of the S draws of θ from
its posterior distribution gives us PS paths for the observed variables that satisfy the condi-
tioning assumptions and that make up a sample from the conditional predictive distribution of
yT+1, . . . , yT+h.

The determination of the mean and covariances of the predictive distribution of the observed
variables for T + 1, . . . , T +h conditional on (12.32) can proceed as in Section 12.2.2. First, the
stacked system can be expressed as

YT+g = XT+g + GξT +WT+g + D
(
Ig ⊗ M̄⊥

)
N

(q−qr)
T+g

+D
(
Ig ⊗ M̄

)
µ

(qr)
N,T+g + D

(
Ig ⊗ M̄

)
Σ

(qr)1/2
N,T+g γ

(qr)
T+g ,

where Σ
(qr)1/2

N,T+g is a qrg × (qr − qm)g matrix that satisfies Σ
(qr)1/2

N,T+g Σ
(qr)1/2′
N,T+g = Σ

(qr)
N,T+g , while γ

(qr)
T+g is

N(0, Ig(qr−qm)) and independent of WT+g , ξT , and N
(q−qr)
T+g . We therefore find that

E
[
YT+g |YT , ZT+g ; θ

]
= XT+g + Gξ

(z)
T |T+g

+ D
(
Ig ⊗ M̄

)
µ̄

(qr)
N,T+g , (12.34)

where

µ̄
(qr)
N,T+g =

(
Ig ⊗ M̄′)D′K

(
K′D

(
Ig ⊗ M̄M̄′)D′K

)−1
k̄

(qr)
T+g ,

k̄
(qr)
T+g = ZT+g − UT −K′

(
XT+g + Gξ

(z)
T |T+g

)
.

Premultiplication of both sides of equation (12.34) by K′ we find that the conditioning assump-
tions are satisfied by the conditional mean predictions.
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The covariance matrix of the forecast errors over the conditioning horizon can after some
algebra be shown to be equal to

C
(
YT+g |YT , ZT+g ; θ

)
= D̄GP

(z)
T |T+g

G′D̄′ + D̄
(
Ig ⊗ R

)
D̄′ + D̄D

(
Ig ⊗ M̄⊥M

′
⊥
)
D′D̄′

+ D
(
Ig ⊗ M̄

)
Σ

(qr)
N,T+g

(
Ig ⊗ M̄′)D′,

(12.35)

where

D̄ = Ing − D
(
Ig ⊗ M̄M̄′)D′K

(
K′D

(
Ig ⊗ M̄M̄′)D′K

)−1
K′.

The first term on the right hand side of (12.35) represents state variable uncertainty for a
fixed value of θ, the second measurement error uncertainty, while the last two terms provide
the shock uncertainty share. Notice that premultiplication of the covariance matrix by K′ or
postmultiplication by K yields a zero matrix.

The above expressions have been derived under the assumptions that qm < qr < q. However,

they are also valid when qr = qm or qr = q. In the former case we find that Σ
(qm)
N,T+g = 0 in

equation (12.33), since K′D(Ig ⊗ M̄) is now a qmg × qmg invertible matrix. Moreover, this

implies that the µ̄
(qm)
N,T+g term in equation (12.34) is equal to µ̃N,T+g in (12.17) and, hence, that

the conditional mean in (12.34) is equal to the conditional mean in (12.18). Furthermore, D̄ in

equation (12.35) is equal to D̃ in equation (12.19) so that the covariance matrices in these two
equations are equal. In other words, with qr = qm we find that the conditioning approach with
a distribution for a subset of the shocks corresponds to direct control of the shocks. Similarly,
with qr = q we have that M = Iq and it therefore follows that the control of the distribution
for a subset of the shocks method is identical to the control of the distribution of the shocks
approach in Section 12.2.2. From this prespective we may therefore regard the distribution for
a subset of the shocks conditioning approach as a generalization of the previously two discussed
conditioning methods.

For forecast horizons i beyond the conditioning horizon g it can be shown via equation
(12.20) that

E
[
yT+i|YT , ZT+g ; θ

]
= A′xT+i +H′Fiξ(z)

T |T+g
+H′Fi−g B̄

(
Ig ⊗ M̄

)
µ̄

(qr)
N,T+g , i = g + 1, . . . , h.

(12.36)
Provided that all the eigenvalues of F are inside the unit circle, it follows that the conditional
mean forecast converges to the steady state values as i → ∞. Furthermore, the forecast error
covariance matrix for a fixed value of θ is

C
[
yT+i|YT , ZT+g ; θ

]
= H′Fi−gḠP (z)

T |T+g
Ḡ′(F′)i−gH +H′Fi−gK̄

(
Ig ⊗ R

)
K̄′(F′)i−gH

+ R +H′Fi−g B̄
(
Ig ⊗ M̄

)
Σ

(qr)
N,T+g

(
Ig ⊗ M̄′)B̄′(F′)i−gH

+H′Fi−g B̄N̄
(
Ig ⊗ M̄⊥M

′
⊥
)
N̄′B̄′(F′)i−gH

+
i−g−1∑

j=0

H′FjB0B
′
0

(
F′)jH,

(12.37)

for i = g + 1, . . . , h, and where

K̄ = B̄
(
Ig ⊗ M̄M̄′)D′K

(
K′D

(
Ig ⊗ M̄M̄′)D′K

)−1
K′,

Ḡ = Fg − K̄G,

N̄ = Iqg −
(
Ig ⊗ M̄M̄′)D′K

(
K′D

(
Ig ⊗ M̄M̄′)D′K

)−1
K′D.

The first term on the right hand side of (12.37) represents state variable uncertainty for fixed θ,
the second and third terms give the measurement error uncertainty share, while the last three
terms provide a measure of shock uncertainty. Notice also that when all the eigenvalues of F
are inside the unit circle, then the first, second, fourth, and fifth terms on the right hand side
converge to zero as i→ ∞ and, hence, that the forecast error covariance matrix of the observed
variables for fixed θ approaches the coveriance matrix of these variables. As above, a full
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Figure 7. Some forecast options on the Miscellaneous tab in YADA.

decomposition of the forecast uncertainty into state variable, measurement error, shock, and
parameter uncertainty can be performed as in equation (12.24) using the results in equations
(12.34)–(12.37) as input.

12.2.4. Smooth Estimation of the State Variables using the Conditioning Assumptions

The procedures discussed above require that we have access to the mean and the covariance
matrix for the state vector at time T . As mentioned in Section 12.2.1 the default behavior in
YADA is to set ξ

(z)
T |T+g

= ξT |T and P
(z)
T |T+g

= PT |T , i.e., to ignore the conditioning assumptions

when estimating the mean and covariance matrix for the distribution of ξT using the data.
Below I shall discuss how these moments can be estimated such that the conditioning assump-
tions are taken into account. At this stage it may be noted that the method for estimating the
state variables using the conditioning assumptions can be simplified substantially when these
assumptions at time t are linear combinations of the observed variables at time t, i.e., when
K2j = 0 for all j and uT = 0 in equation (12.6). For such conditioning assumptions we may
directly apply the Kalman filtering and smoothing routines for missing observations; see Harvey
(1989, Chapter 3.4.7) and (Durbin and Koopman, 2012, Chapters 2.7 and 4.10).

The selection of method for representing the mean vector and covariance matrix of the state
variables at time T is handled on the Miscellaneous tab in YADA, where check marking the
option “Use conditioning data for state distribution” means that the approach described below
is used rather than the quick and dirty default method; cf. Figure 7. Notice that this option is
only available in the version of YADA that is exclusive to the Econometric Modelling Division
within the Directorate General Research of the ECB.

The relationship between the conditioning assumptions and the observed variables in (12.6)
suggests an autoregressive relationship of maximum order g. Provided that T ≥ g, this equation
can be rewritten as follows by allowing the initial condition to be time varying

zt = K′
1yt +

g−1∑

j=1

K′
2jyt−j + ut−g , t = T + 1, . . . , T + g. (12.38)

– 194 –



This can be expressed more compactly as

zt =
[
K′

1 K′
21 · · · K′

2g−1

]




yt

yt−1
...

yt−g+1




+ ut−g

= K∗′Yt + ut−g .

(12.39)

In order to derive a state-space representation for zt we begin by rewriting the measurement
equation for the observed variables as:

yt = A′xt +
[
H′ In

] [
ξt

wt

]

= A′xt +H∗′ξ∗t .

(12.40)

Hence, we are now treating the measurement errors as state variables. This implies that the
state equation is given by [

ξt

wt

]
=

[
F 0

0 0

][
ξt−1

wt−1

]
+

[
B0ηt

wt

]
,

or
ξ∗t = F∗ξ∗t−1 + v∗t . (12.41)

The state shocks v∗t have dimension r + n and are normally distributed with zero mean and
covariance matrix

Q∗ =

[
B0B

′
0 0

0 R

]
.

The next step is to stack both the measurement and state equation such that we can substitute
for Yt in (12.39). For the measurement equation we obtain




yt

yt−1
...

yt−g+1




=




A′xt

A′xt−1
...

A′xt−g+1




+




H∗′ 0 · · · 0

0 H∗′ 0
...

. . .

0 0 H∗′







ξ∗t
ξ∗
t−1
...

ξ∗
t−g+1



,

or more compactly

Yt = Xt +
[
Ig ⊗H∗′]Ξ∗

t , t = T + 1, . . . , T + g. (12.42)

Substituting for Yt in (12.39) we get the following measurement equation for zt

zt =
[
K∗′ Iqm

] [
Xt

ut−g

]
+K∗′[Ig ⊗H∗′]Ξ∗

t

= Ã′X∗
t + H̃′Ξ∗

t , t = T + 1, . . . , T + g.

(12.43)

For the state equation we need to make sure that the shocks to the stacked state equation are
serially uncorrelated. The simplest way to achieve the stacking under this requirement is




ξ∗t
ξ∗
t−1

ξ∗
t−2
...

ξ∗
t−g+1




=




F∗ 0 · · · 0 0

Ir+n 0 · · · 0 0

0 Ir+n 0 0
...

. . .
...

0 0 Ir+n 0







ξ∗
t−1

ξ∗
t−2

ξ∗
t−3
...

ξ∗
t−g




+




v∗t
0

0
...

0



,
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or, with the compact expression,

Ξ∗
t = F̃Ξ∗

t−1 + V ∗
t , t = T + 1, . . . , T + g. (12.44)

It remains to define proper initial conditions for the state vector Ξ∗
T+1|T and the conditional

covariance matrix P̃T+1|T of the stacked state system. First of all, we note that Ξ∗
T+1|T = F̃Ξ∗

T |T ,

while P̃T+1|T = F̃P̃T |T F̃′ + Q̃, where Q̃ has dimension g(r + n) and is equal to

Q̃ =

[
Q∗ 0

0 0

]
.

Second, to utilize the information YT optimally we let

Ξ∗
T |T =




ξ∗
T |T

ξ∗
T−1|T

...

ξ∗
T−g+1|T



, where ξ∗

T−i|T =

[
ξT−i|T
wT−i|T

]
, i = 0,1, . . . , g − 1.

That is, we use the within-sample smooth estimates of the state vector and the measurement
errors. For the conditional covariance matrix we likewise use smooth estimates for initialization.
In this case, the block diagonal elements of P̃T |T are given by

P∗
T−i|T =

[
PT−i|T 0

0 R

]
, i = 0,1, . . . , g − 1.

The off-diagonal elements of P̃T |T for row and column block (i, j) are set equal to (F∗)j−iP∗
T−j+i|T

if g − 1 ≥ j > i ≥ 0, and to P∗′
T−i+j |T(F∗′)i−j if g − 1 ≥ i > j ≥ 0.

With the initial conditions as well as the measurement and state equation for the conditioning

system z in (12.43) and (12.44) we can apply the Kalman filter to obtain (Ξ∗
t|t−1

, P̃t|t−1) for

t = T + 1, . . . , T + g. To speed up the computation, the smoother need only be applied to

generate (Ξ∗
t|T+g

, P̃t|T+g) for t = T + g − 1, T + g. This means that ξ
(z)
T |T+g

is obtained from

element (g − 1)(r + n) + 1 until (g − 1)(r + n) + r of Ξ∗
T+g−1|T+g

, while P
(z)
T |T+g

is given the rows

and columns of P̃T |T+g based on the same range numbers.

12.3. Modesty Statistics for the State-Space Model

Conditional forecasting experiments may be subject to the well known Lucas (1976) critique.
Leeper and Zha (2003) introduced the concept of modest policy interventions along with a
simple metric for evaluating how unusual a conditional forecast is relative to the unconditional
forecast. Their idea has been further developed by Adolfson et al. (2005). I shall present three
modesty statistics, two univariate and one multivariate, for the case when fixed shock values
are used to ensure that the conditioning assumptions are satisfied. Similarly, two univariate and
one multivariate modesty statistic are provided for the case when the Waggoner and Zha shock
distribution or the control of the distribution of a subset of the shocks is applied.

The general idea behind the modesty statistics is to compare the conditional and the un-
conditional forecast. The forecasts are subject to uncertainty concerning which shocks will hit
the economy during the prediction period. For the conditional forecasts some shocks have to
take on certain values over the conditioning period to ensure that forecasts are consistent with
the conditioning information. If these restricted shocks behave as if they are drawn from their
distributions, then the conditioning information is regarded as modest. But if the behavior of
the shocks over the conditioning period is different from the assumed, then the agents in the
economy may be able to detect this change. In this case, the conditioning information need no
longer be modest and might even be subject to the famous Lucas (1976) critique.
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12.3.1. Modesty Analysis: Direct Control of the Shocks

Within the context of the state-space representation of the DSGE model, the univariate statistic

suggested by Leeper and Zha (2003) is based on setting η
(q−qm)
T+i = 0 andwT+i = 0 for i = 1, . . . , g

in equations (12.10)–(12.12). The alternative univariate statistic suggested by Adolfson et al.
(2005) does not force these shocks to be zero over the conditioning horizon.

For both approaches the difference between the conditional and the unconditional forecasts
at T + g for a given θ is:

ΦT,g(η̄) = yT+g(η̄; θ) − E
[
yT+g |YT ; θ

]

= H′Fg
(
ξT − ξT |T

)
+H′

g−1∑

j=0

FjB0

(
M̄η

(qm)
T+g−j + M̄⊥η

(q−qm)
T+g−j

)
+wT+g ,

(12.45)

where η̄ = {η(qm)
t , η

(q−qm)
t }T+g

t=T+1. Under the Leeper and Zha approach the measurement errors

and the other shocks {η(q−qm)
t }T+g

t=T+1 are set to zero, while under the Adolfson et al. approach
these shocks and errors are drawn from their distributions.

For the latter approach we have that the forecast error variance at T + g is

ΩT+g = H′PT+g|TH + R, (12.46)

where as already shown in equation (5.38)

PT+i|T = FPT+i−1|TF
′ + B0B

′
0, i = 1, . . . , g.

Under the hypothesis that ξT is can be observed at T , the matrix PT |T = 0. This assumption is
used by Adolfson et al. (2005) and is also imposed in YADA.

The assumption that the state vector in T can be observed at T in the modesty analysis is
imposed to make sure that it is consistent with the assumptions underlying the DSGE model.
That is, the agents know the structure of the model, all parameters, and all past and present
shocks. Hence, there cannot be any state uncertainty when evaluating the current state. This
also has an implication for equation (12.45) where we set ξT = ξT |T .

The multivariate modesty statistic can now be defined as:

MT,g(η̄) = ΦT,g(η̄)′Ω−1
T+gΦT,g(η̄). (12.47)

Under the hypothesis that the conditioning shocks are modest, i.e., {η(qm)
t }T+g

t=T+1 can be viewed

as being drawn from a multivariate standard normal distribution, this statistic is χ2(n). Instead
of using the chi-square as a reference distribution for the multivariate modesty statistic, one may

calculate the statistic in (12.47) using the shocks η = {ηt}T+g
t=T+1 in (12.47) that are drawn from

the Nq(0, Iq) distribution and thereafter compute the tail probability Pr[MT,g(η) ≥ MT,g(η̄)] to
determine if the conditioning information is modest.

One univariate statistic suggested by Adolfson et al. is the following

M(i)
T,g(η̄) =

Φ(i)
T,g(η̄)
√

Ω(i,i)
T+g

, i = 1, . . . , n, (12.48)

where ΦT,g(η̄) is calculated with the other shocks and the measurement errors drawn from a
normal distribution. This statistic has a standard normal distribution under the assumption of
modest conditioning shocks.

For the alternative Leeper-Zha related statistic we let ΦT,g(η̄) be computed for zero measure-
ment errors and other shocks, while

ΩT+g = H′PT+g|TH,

PT+i|T = FPT+i−1|TF
′ + B0M̄M′B′

0.

The alternative Φ(i)
T,g(η̄) and Ω(i,i)

T+g values may now be used in equation (12.48).
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12.3.2. Modesty Analysis: Control of the Distribution of the Shocks

The difference between the conditional and unconditional mean forecasts at T + g for a given θ
is:

ΦT,g(NT+g) = yT+g(NT+g ; θ) − E
[
yT+g |YT ; θ

]

= H′Fg
(
ξT − ξT |T

)
+H′

g−1∑

j=0

FjB0ηT+g−j +wT+g ,
(12.49)

where NT+g is drawn from the N(µN,T+g ,ΣN,T+g) distribution. The forecast error variance at
T+g is, as above, given by ΩT+g in equation (12.46). This means that the multivariate modesty
statistic for the Waggoner and Zha drawn shocks is

MT,g(NT+g) = ΦT,g(NT+g)
′Ω−1

T+gΦT,g(NT+g). (12.50)

Like in the case with fixed shock values, this statistic can be compared to a reference statistic
for determining the tail probability Pr[MT,g(η) ≥ MT,g(NT+g)]. The reference statistic MT,g(η)
is calculated exactly as in the previous section, with ηT+i drawn from N(0, Iq). Similarly, uni-

variate modesty statistics are obtained like in (12.48), but with Φ(i)
T,g(η̄) replaced by Φ(i)

T,g(NT+g).

To compute modesty statistic in the Leeper-Zha fashion, we use µ̄T+i from i = 1, . . . , g for
the shock values. Specifically, the conditional forecast is calculated with these shock values,
i.e., based on zero measurement errors and the state vector at T given by ξT |T . The covariance
matrix that is used is now:

ΩT+g = H′PT+g|TH,

PT+i|T = FPT+i−1|TF
′ + B0ᾱα

′B′
0,

where α = B′
0HK1 and ᾱ = α(α′α)−1. The q × q matrix ᾱα′ is idempotent and has rank qm

and serves a similar purpose as the matrix M̄M′ in the fixed shock values case. That is, it can
be regarded as the covariance matrix of the non-zero structural shocks under the Leeper-Zha

approach and the null hypothesis that the shocks are modest.99

12.3.3. Modesty Analysis: Control of the Distribution of a Subset of the Shocks

For the conditioning approach discussed in Section 12.2.3, the modesty analysis is nearly iden-
tical to the analysis discussed for the Waggoner-Zha distribution shocks above. The only dif-
ference concerns the computation of the covariances used for the univariate modesty statistics
under the Leeper-Zha case. Specifically, since the q − qr free shocks are set equal to zero, the
state covariance matrix PT+i|T used for the tests is now given by

PT+i|T = FPT+i−1|TF
′ + B0M̄M′B′

0HK1

(
K′

1H
′B0M̄M′B′

0HK1

)−1
K′

1H
′B0M̄M′B′

0.

That is, we let α = M̄M′B′
0HK1. In all other respects, the formulas from Section 12.3.2 remain

unaltered.
It is worth pointing out that for qr = q the state covariance matrix for the Leeper-Zha case

is identical to the one used under the Waggoner and Zha approach since M = Iq. Similarly, if
qr = qm it is equal to the state covariance matrix under the direct control of the shocks method,
i.e., the second term on the right hand side simplifies to B0M̄M′B′

0.

12.4. Conditional Forecasting with State Variable Assumptions

As an extension to forecasting conditional on assumptions for the observed variables only we
may also consider assumptions for the state variables. Such restrictions can be expressed as:

ζT+i = K′
3ξT+i, i = 1, . . . , g. (12.51)

99 The α matrix is obtained from the block diagonal of the matrix D′K and α may therefore be interpreted as

representing the constrained structural shocks. See also the expressions for µN,T+g under the two approaches.
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The dimension of the assumptions in ζT+i is qz where K3 is a qz × r matrix with rank(K3) = qz.
The state variable assumptions not only allows for having a fixed path for a serially correlated
state variable, but also for the state shocks in η.

Combining the state variable assumptions in (12.51) with the assumptions for the observed
variables in equation (12.6) we have

[
zT+i

ζT+i

]
=

[
K′

1 0

0 K′
3

][
yT+i

ξT+i

]
+

i−1∑

j=1


K

′
2j 0

0 0



[
yT+i−j

ξT+i−j

]
+

[
uT

0

]
, i = 1, . . . , g,

or more compactly

z∗T+i = K∗′
1 y

∗
T+i +

i−1∑

j=1

K∗
2jy

∗
T+i−j + u∗T . (12.52)

The vector z∗T+i is qm + qz dimensional and a necessary condition for forecasting with these

joint conditioning assumptions is that qm + qz ≤ min{q, n + r}, qm ≤ n, and qz ≤ r. These
assumptions constitute the most general hard conditioning assumptions that we may consider
for the state-space model.

To use the tools we have discussed in Sections 12.2 and 12.3 we need to express the state-
space representation for y∗

t instead of yt. This can be achieved through a simple stacking of the
measurement equation as:

[
yt

ξt

]
=

[
A′

0

]
xt +

[
H′

Ir

]
ξt +

[
wt

0

]
,

or
y∗
t = A∗′xt +H∗′ξt +w∗

t .

There is no need to rewrite the state equation. With these redefinitions of the matrices with
parameters on exogenous and state variables and of the measurement errors, we may directly
apply the methods for forecasting based on conditioning assumptions for observed variables
and the modesty analysis to conditioning assumptions that also involve state variables.

It may be noted that equation (12.52) allows for qm = 0 so that only conditioning assumptions
for the state variables are considered. This makes it possible to simplify some of the expressions
since K∗

2j = 0 and u∗T = 0.

12.5. Prediction Events and Risk Analysis

Once we have draws from a predictive distribution it may be interesting to compute the proba-
bility that a certain event occurs. Moreover, given that the event occurs it may also be relevant
to consider how large the event is on average and, more generally, which properties the con-
ditional distribution has. Once we start to combine information about the size of the event as
well as its probability we enter the grounds of risk analysis; see, e.g., Machina and Rothschild
(1987) as well as Kilian and Manganelli (2007, 2008) and references therein.

The papers by Kilian and Manganelli focus on deflation and excess inflation risks, but we may
of course apply their approach to any variable. The exercise begins with setting up an upper and
a lower bound of an event. The probability of the event occurring can therefore be computed
from, e.g., the paths of the predictive distribution that were obtained for the state-space model
in Section 12.1, by counting how many times it is satisfied by a path and comparing this number
to the total number of times it could have happened.

Let yU ≥ yL be the upper an lower bounds for the observed variables yt. Following Kilian
and Manganelli (2007) we define the downside risk as follows

DRα(yL) = −
∫ yL

−∞

(
yL − y

)α
dF(y), α ≥ 0. (12.53)

Notice that if α = 0, then DR(yL) = − Pr[y ≤ yL]. For larger values of α the downside risk
measure weighs the probability of the event with the expected value of (yL−y)α given that the
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event occurs. That is,

DRα(yL) = −E
[
(yL − y)α|y < yL

]
Pr
[
y < yL

]
.

The upside risk can similarly be defined as

URβ(yU) =

∫ ∞

yU

(
y − yU

)β
dF(y), β ≥ 0. (12.54)

It therefore follows that the upside risk can be computed as

URβ(yU) = E
[
(y − yU)β|y > yU

]
Pr
[
y > yU

]
.

Like Kilian and Manganelli I have here adopted the convention of defining downside risk as a

negative number and upside risk as a positive number.100

These risk measures are related to the loss function

L
(
y
)

=





a(yL − y)α if y < yL,

0 if yL ≤ y ≤ yU,

(1 − a)
(
y − yU

)β
if y > yU.

(12.55)

This mean that the expected loss is given by

E
[
L
(
y
)]

= −aDRα(yL) + (1 − a)URβ(yU), (12.56)

where 0 ≤ a ≤ 1 thus gives the weight on downside risk relative to upside risk in the loss
function.

As pointed out by Kilian and Manganelli it is common in discussions of risk to stress the need
to balance the upside and downside risks. Risk balancing in this sense may be considered as
taking a weighted average of the upside and downside risks. As shown by Kilian and Manganelli
(2007) such a balance of risk measure may be derived under optimality arguments and is here
given by

BRα−1,β−1

(
yL, yU

)
= aαDRα−1

(
yL
)

+ (1 − a)βURβ−1

(
yU
)
. (12.57)

For the case with a quadratic loss function with equal weights given to upside and downside
risks, the balance of risk measure in (12.57) is

BR1,1

(
yL, yU

)
= E

[
(y − yL)|y < yL

]
Pr
[
y < yL

]
+ E

[
(y − yU)|y > yU

]
Pr
[
y > yU

]
.

That is, the balance of risks is a weighted average of the expected value of y given that it is
below the lower bound and the expected value of y given that it is above the upper bound with
weights given by the probabilities that the events occur. Such a measure is, for instance, used
by Smets and Wouters (2004) in their study on the forecasting properties of a DSGE model. For
more elaborate analyses of such risk balance measures in connection with the zero lower bound
on nominal interest rates, see Coenen and Warne (2014).

12.6. The Predictive Likelihood and Log Predictive Score

The calculation of the height of the joint or the marginal predictive density is often needed by
methods for comparing or evaluating density forecasts; see, e.g., Geweke and Amisano (2010).
As Gneiting, Balabdaoui, and Raftery (2007) point out, the assessment of a predictive distri-
bution on the basis of its density and the observed data only—the predictive likelihood—is
consistent with the prequential approach of Dawid (1984), according to which forecasts are
both probabilistic and sequential in nature, taking the form of probability distributions over a
sequence of future values; see also Geweke (2010) and Geweke and Amisano (2011, 2012).

The use of the predictive likelihood as a valid Bayesian approach to model selection has long
been recognized. Box (1980), for example, has emphasized the complementary roles in the
model building process of the posterior and predictive distributions, where the former provides
a basis for robust estimation, while the latter is used for diagnostic checking and modifications

100 Risk measures of this type were first proposed in the portfolio allocation literature by Fishburn (1977); see also,

e.g., Holthausen (1981).
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of the model.101 Moreover, for models with improper priors the predictive likelihood can still
be used for model selection provided that the sample being conditioned on is large enough to
train the prior to a proper one; see, e.g., Gelfand and Dey (1994), Eklund and Karlsson (2007),
and Strachan and van Dijk (2011).

A forecast comparison exercise is naturally cast as a decision problem within a Bayesian
setting and therefore needs to be based on a particular preference ordering. Scoring rules can
be used to compare the quality of probabilistic forecasts by giving a numerical value using the
predictive distribution and an event or value that materializes. A scoring rule is said to be proper
if a forecaster who maximizes the expected score provides its true subjective distribution; see
Winkler and Murphy (1968). If the maximum is unique then the rule is said to be strictly proper.
Proper scoring rules are important since they encourage the forecaster to be honest.

A widely used scoring rule that was suggested by, e.g., Good (1952) is the log predictive
score. Based on the predictive density function of yt+1, . . . , yT+h, it can be expressed as

SJ(h,m) =
T+Nh−1∑

t=T

lnp(yt+1, . . . , yt+h|Yt,m), h = 1, . . . , H, (12.58)

where Nh is the number of time periods the h-step-ahead predictive density is evaluated, Yt

is the observed data of yt until period t, and m is an index for the model. If the scoring rule
depends on the predictive density only through the realization of y over the prediction sample,
then the scoring rule is said to be local. Under the assumption that only local scoring rules are
considered, Bernardo (1979) showed that every proper scoring rule is equivalent to a positive
constant times the log predictive score plus a real valued function that only depends on the
realized data; see Bernardo and Smith (2000) for general discussions on related issues and
Gneiting and Raftery (2007) for a recent survey on scoring rules.

When evaluating the log score with the realized value of y over the prediction sample, the
difference between the log predictive score of model m and model k is equal to the average
log predictive Bayes factor of these two models, where a positive value indicates that, on av-
erage, model m is better at predicting the variables over the given sample than model k. It is
furthermore straightforward to show that the log predictive likelihood of model m is equal to
the difference between the log marginal likelihood value when the historical data, Yt, and the
realisations yt+1, . . . , yt+h are used and the log marginal likelhood value obtained when only
the historical data are employed; see, e.g., Geweke (2005, Chapter 2.6.2). In fact, based on the
observations YT+N1

and with Nh = Nh−1 − 1 we can rewrite the log predictive score in (12.58)
as

SJ(h,m) =
1

Nh

h−1∑

i=0

[
lnp

(
YT+N1−i,m

)
− lnp

(
YT+i,m

)]
, h = 1, . . . , H. (12.59)

This means that the log predictive score of model m for one-step-ahead forecasts is proportional
to the difference between the log-marginal likelihood for the full sample YT+N1

and the historical
sample YT . Moreover, the calculation of the score for h-step-ahead forecasts based on the joint
predictive likelihood requires exactly 2h marginal likelihood values, where the first h are based
on the samples YT+N1−i and the last h on YT+i for i = 0, . . . , h − 1.

A scale for determining how much better (or worse) model m is than model k has been
suggested by, e.g., Kass and Raftery (1995) for Bayes factors. In the case of one-step-ahead
predictions, this scale may also be applied to the log predictive score where values above 5 may
be seen as very strong evidence in favor of model m. Provided that one of these models is
assumed to be “true”, the translation into posterior probabilities is straightforward, where the
case of equal prior probabilities for models m and k and a value of the log score of 5 or more
corresponds to a posterior probability of above 99 percent for model m.

It can also be seen that the log predictive likelihood in (12.58) can be rewritten as a sum
of one-step-ahead log predictive likelihoods. Hence, in essence the log score SJ(h,m) covers

101 The predictive distribution in Box (1980) is described by the density of the observed variables given the model

(assumptions). The value of this density at the observed data is equal to the marginal likelihood.
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one-step-ahead forecasts only and is therefore not well suited for a comparison of h-step-ahead
forecasts when h > 1. When comparing the density forecasts of the NAWM and alternative
forecast models, Christoffel et al. (2011) therefore focus on the marginal predictive likelihood
of the h-step-ahead forecasts rather than the joint predictive likelihood in (12.58). The log
predictive score can now be expressed as

SM(h,m) =
T+Nh−1∑

t=T

lnp
(
yt+h|Yt,m

)
, h = 1, . . . , H. (12.60)

The relationship between the marginal likelihood and the log predictive score in (12.60) holds
when h = 1. For other forecast horizons it is claimed by both Christoffel et al. (2011, p. 114)
(p. 114) and Adolfson et al. (2007d, p. 324) that this connection breaks down and, hence,
that the marginal likelihood cannot detect if some models perform well on certain forecast
horizons while other models do better on other horizons. Furthermore, Adolfson et al. (2007d,
p. 325) remark that computing SM(h,m) for h > 1 is not an easy task since p

(
yt+h|Yt,m

)

does not have a closed form solution and that kernel density estimation from the predictive
draws is not practical unless the dimension of yt+h is small. They therefore suggest using a
normal approximation of the predictive likelihood based on the mean and the covariance of the
marginal predictive distribution.

However, going back one step one realizes that Christoffel et al. (2011) and Adolfson et al.
are incorrect since

p(yt+h|Yt,m) =
p
(
yt+h,Yt,m

)

p
(
Yt,m

) , h = 1, . . . , H. (12.61)

The denominator is the marginal likelihood of model m when using the data Yt and the numer-
ator is likewise the marginal likelihood for this model when using the data (yt+h,Yt). Hence,
the connection between the predictive likelihood and the marginal likelihood remains also for
h > 1. The problem for calculating the log predictive score in (12.60) for h > 1 therefore con-
cerns the question: it is possible to compute the marginal likelihood for the sample (yt+h,Yt)?

A solution to this problem is suggested by Warne, Coenen, and Christoffel (2013); see also
Warne, Coenen, and Christoffel (2017). Suppose we replace the realizations of yt+i, i =
1, . . . , h − 1, in Yt+h with missing observations and apply a valid method for dealing with
incomplete-data when evaluating the likelihood function for fixed parameters of model m. This
effectively means that we treat missing observations as a method for integrating out variables
at certain points in time from the likelihood, and that the marginal likelihood of the model

for (yt+h,Yt) can thereafter be computed via standard tools.102 Such an approach can also be
used to estimate the marginal likelihood for the data (y∗

t+h,Yt), where y∗
t+h is a subset of the

elements of yt+h, as well as for, e.g., the data (y∗
t+1, . . . , y

∗
t+h,Yt). In fact, we may replace

data points with missing observations anywhere in the predictive sample yt+1, . . . yt+h when
calculating the likelihood function.

In the case of linear state-space models with Gaussian shocks and measurement errors, the
likelihood function can be calculated using a Kalman filter which allows for missing observa-
tions; see, e.g., Durbin and Koopman (2012, Chapter 4.10) or Harvey (1989, Chapter 3.4.7).
Once we turn to non-linear, non-normal state-space models a missing observations consistent
filter, such as the particle filter (sequential Monte Carlo), may instead be applied when comput-
ing the likelihood; see Giordani, Pitt, and Kohn (2011) for a survey on filtering in state-space
models, or Durbin and Koopman (2012, Chapter 12) for an introduction to particle filtering.

102 This idea is related to but also different from data augmentation and other such EM algorithm extensions. For

these algorithms, the model is used to replace missing observations with model-based draws of the latent variables

and then use complete-data methods to address the incomplete-data problem; see, e.g., Tanner and Wong (1987)

and Rubin (1991).
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When the joint predictive density for fixed parameters is Gaussian, marginalization can also
be conducted directly via the predictive mean and the covariance matrix for given parame-
ters (provided these moments can be determined analytically) by utilizing well-known proper-

ties of the normal distribution.103 In the case of the linear Gaussian models this approach to
marginalization is equivalent to the Kalman filter approach, where the Kalman filter approach to
marginalization provides a unifying framework and is as parsimonious as possible when dealing
with potentially large matrices.

The predictive likelihood for a subset of the variables may now be estimated with, e.g., the
harmonic mean; see Gelfand and Dey (1994), the modification in Geweke (1999, 2005), or the
extension in Sims et al. (2008).104 For this estimator of the predictive likelihood we formally

need two sets of posterior draws: θ
(s)
h

∈ p(θ|y∗
t+h,Yt), s = 1, . . . , Sh, and θ(s) ∈ p(θ|Yt), for

s = 1, . . . , S, where the model index m has been supressed, and where θ denotes all parameters
of the model. The marginal predictive likelihood can now be estimated as

p̂H(y∗
t+h|Yt) =

[
1

Sh

Sh∑

s=1

f
(
θ

(s)
h

)

L
(
y∗
t+h|Yt; θ

(s)
h

)
p
(
θ

(s)
h

|Yt

)
]−1

=

[
1

Sh

Sh∑

s=1

f
(
θ

(s)
h

)

L
(
y∗
t+h,Yt|θ(s)

h

)
p
(
θ

(s)
h

)
]−1 [

1

S

S∑

s=1

f
(
θ(s)
)

L
(
Yt; θ(s)

)
p
(
θ(s)
)
]
,

(12.62)

where L(y∗
t+h|Yt; θ) denotes the conditional likelihood, L(Yt; θ) the likelihood, L(y∗

t+h,Yt|θ) is
equal to the product between the conditional likelihood and the likelihood, we have used the
fact that p(θ|Yt) = L(Yt; θ)p(θ)/p(Yt), and where the function f(θ) is either the truncated
normal density, chosen as in equation (10.5), or the truncated elliptical density, computed as in
Sims et al. (2008).

To avoid having to generate posterior draws for each sample (y∗
t+h,Yt), it is tempting to

replace the draws θ
(s)
h

in (12.62) with the draws θ(s). If the dimension of y∗
t+h is small, this

approximation is likely to work well in practise, but also implies that the resulting estimator is
not consistent. With f(θ) being a proper probability density function, the justification for using
the harmonic mean estimator is due to the following:

E

[
f(θ)

p
(
y∗
t+h|Yt, θ

)
p
(
θ|Yt

)
∣∣∣∣y∗

t+h,Yt

]
=

∫
f(θ)

p
(
y∗
t+h|Yt, θ

)
p
(
θ|Yt

)p
(
θ|y∗

t+h,Yt

)
dθ

=

∫
f(θ)

p
(
y∗
t+h|Yt

)dθ = p
(
y∗
t+h|Yt

)−1
,

(12.63)

where the second equality follows from applying Bayes rule to the posterior p(θ|y∗
t+h,Yt) =

p(y∗
t+h|Yt, θ)p(θ|Yt)/p(y∗

t+h|Yt). Provided that integration is performed with respect to the

posterior p(θ|y∗
t+h,Yt), the integral is equal to the inverse of the predictive likelihood. The

harmonic mean estimator is therefore consistent, but from Jensen’s inequality we also know

that it is upward biased.105

However, if we instead take the expectation of f(θ)/p(y∗
t+h|Yt, θ)p(θ|Yt) with respect to

the density p(θ|Yt) in (12.63), i.e., use the θ(s) posterior draws rather than θ
(s)
h

, we find that

the integration concerns the ratio between f(θ) and p(y∗
t+h|Yt, θ), rather than between f(θ)

and p(y∗
t+h|Yt), and the resulting expression is generally not equal the inverse of the predictive

103 In fact, any distribution where the marginal density can be determined analytically from the joint for given

parameters, such as the Student t, can be marginalized in this way.

104 Other methods, such as bridge sampling, annealed importance sampling, power posteriors (thermodynamic inte-

gration), steppingstone sampling, or cross-entropy may also be considered; see Meng and Wong (1996), Frühwirth-

Schnatter (2004) [bridge sampling], Neal (2001) [annealed importance sampling], Lartillot and Philippe (2006),

Friel and Pettitt (2008) [power posteriors], Xie, Lewis, Fan, Kuo, and Chen (2011) [steppingstone sampling], and

Chan and Eisenstat (2015) [cross-entropy with importance sampling].

105 The inverse of x is a convex function, such that Jensen’s inequality implies that (E[x])−1 ≤ E[x−1].
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likelihood. Accordingly, replacing the θ
(s)
h

draws with θ(s) when computing the harmonic mean
estimator in (12.62) is unappealing since the estimator is no longer consistent.

If we insist on using only one set of parameter draws for all forecast horizons when computing
the predictive likelihood, we may instead use an importance sampling (IS) estimator; see, e.g.,

Geweke (2005). With θ(i) being draws from the importance density g(θ), a general expression
of the IS estimator is

p̂IS
(
y∗
t+h|Yt

)
=

1

N

N∑

i=1

L
(
y∗
t+h|Yt, θ

(i)
)
p
(
θ(i)|Yt

)

g
(
θ(i)
) . (12.64)

Letting g(θ) = p(θ|Yt) such that θ(i) = θ(s) with N = S, the estimator of the predictive likeli-

hood in (12.64) is simply the average over the S posterior draws θ(s) of the conditional likeli-
hood, i.e. standard Monte Carlo (MC) integration based on the conditional likelihood. Under
certain conditions, the right hand side of (12.64) converges almost surely to the expected value

of p(y∗
t+h|Yt, θ) with respect to p(θ|Yt), i.e., to the predictive likelihood p(y∗

t+h|Yt).106 Hence,

equipped with the posterior draws θ(s) and the conditional likelihood, L(y∗
t+h|Yt, θ), the pre-

dictive likelihood can be consistently estimated directly, without having to compute it from two
marginal likelihoods, and without having to sample from the distribution of the parameters
conditional (y∗

t+h,Yt) for h = 1, . . . , H.
A further important property of the IS estimator is that it is unbiased (see Chan and Eisen-

stat, 2015, Proposition 1), while the harmonic mean estimator is not. Furthermore, the latter
estimator is sensitive to the choice of f(θ) and can be difficult to pin down numerically when
the dimension of θ is large, while the IS estimator based on the posterior p(θ|Yt) should be less
hampered by the this. In the case of DSGE models, which are typically tightly parameterized,
numerical issues with the harmonic mean should not be a major concern, but for DSGE-VARs
and BVAR models the computations need to take all the VAR parameters into account and is
therefore likely to be an important issue.

The IS (MC) estimator works well in practise when the draws from the importance density
(posterior density) covers well enough the parameter region where the conditional likelihood is
large. When computing the marginal predictive likelihood with g(θ) = p(θ|Yt) this is typically
the case, but is questionable when dealing with the joint predictive likelihood as h becomes

large.107 For such situations it may be useful to consider cross-entropy methods for selecting
the importance density optimally, as in Chan and Eisenstat (2015), or apply one of the other
methods mentioned above or in footnote 104. For an application to euro area data also covering
the period of the Great Recession, see Warne et al. (2017).

We may also compute the numerical standard error of the IS (MC) estimator in (12.64).
Assuming that g(θ) = p(θ|Yt), the numerical standard error of p̂IS(y∗

t+h|Yt) can be calculated

with the Newey and West (1987) estimator, as in equation (8.2) but with φ(n) replaced with

L(y∗
t+h|Yt, θ

(i)) and φ̄ with p̂IS(y∗
t+h|Yt). The corresponding numerical standard error of the

log predictive likelihood can now be calculated as the square root of of that value divided
by p̂IS(y∗

t+h|Yt). That is, we multiply the standard error of the predictive likelihood with the
derivative of the log predictive likelihood with respect to the predictive likelihood as prescribed
by the delta method.

106 Importance sampling is based on iid draws from the importance density; see, for instance, Geweke (2005, Chap-

ter 4.2.2) for further details. In the case of DSGE and DSGE-VAR models, the posterior draws are typically obtained

via Markov chain Monte Carlo, such as the random walk Metropolis sampler, and are therefore not independent.

However, under certain conditions (Tierney, 1994) the estimator in (12.64) is consistent also when the draws from

g(θ) = p(θ|Yt) are not independent and the same conditions can be used to verify that the harmonic mean estimator

in (12.62) is consistent. In strict terms, the estimator in (12.64) is not an IS estimator when the iid assumption is

violated, but we shall nevertheless use this term also when the draws from the posterior are dependent.

107 For sufficiently large h the situation resembles the case when the marginal likelihood is computed by averaging

the likelihood over the prior draws. Such an estimator typically gives a poor estimate of the marginal likelihood.
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For models with a normal likelihood, the log of the conditional likelihood for y∗
t+h given the

history and the parameters is given by

lnL
(
y∗
t+h|Yt; θ

)
= −n

∗

2
ln(2π) − 1

2
ln
∣∣Σy∗,t+h|t

∣∣

−1

2

(
y∗
t+h − y∗

t+h|t

)′
Σ−1
y∗,t+h|t

(
y∗
t+h − y∗

t+h|t

)
,

(12.65)

where n∗ is the dimension of y∗
t+h, y∗

t = K′yt and Σy∗,t+h|t = K′Σy,t+h|tK, with K being an
n × n∗ known selection matrix. We here assume that the K matrix is constant across time, but
we can also add a time subscript to it and to n∗. For DSGE models the Kalman filter provides us
with

yt+h|t = µ+H′Fhξt|t,

Σy,t+h|t = H′Pt+h|tH + R,

Pt+h|t = FPt+h−1|tF
′ + BB′, h = 1, . . . , H,

where ξt|t is the filter estimate of the state variables, and Pt|t the corresponding filter estimate
of the state variable covariance matrix based on the data Yt. The matrices (µ,H,R, F, B) are all
evaluated for a given value of θ.

The Kalman filter for missing observations can also be used when we are interested in the
joint predictive likelihood for subsets of variables across a sequence of future dates. To this end,
the conditional likelihood is now

lnL
(
y∗
t+1, . . . , y

∗
t+h|Yt; θ

)
=

h∑

i=1

lnL
(
y∗
t+i|Y∗

t+i−1,Yt; θ
)
, (12.66)

where Y∗
t+i−1

= {y∗
t+j}i−1

j=1 and
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y∗
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t+i−1,Yt; θ
)

= −n
∗

2
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2
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t+i|t+i−1

)
.

(12.67)

We assume for notational simplicity but without loss of generality that n∗ and K are constant
across the h periods, i.e., that the same variables are conditioned on and that the realizations
are available. We now have have that Σy∗,t+i|t+i−1 = K′Σy,t+i|t+i−1K, H∗ = HK, A∗ = AK,

R∗ = K′RK, while

y∗
t+i|t+i−1

= A∗′xt+i +H∗′Fξt+i|t+i−1,

Σ∗
y,t+i|t+i−1

= H∗′Pt+i|t+i−1H
∗ + R∗.

The 1-step-ahead state variable forecasts are given by

ξt+i|t+i−1 = Fξt+i−1|t+i−2 + Gt+i−1

(
y∗
t+i−1 − y∗

t+i−1|t+i−2

)
,

where the Kalman gain matrix is

Gt+i−1 = FPt+i−1|t+i−2H
∗Σ∗−1

y∗,t+i−1|t+i−2
.

The 1-step-ahead state variable forecast error covariance matrix is

Pt+i|t+i−1 =
(
F − Gt+i−1H

∗′)Pt+i−1|t+i−2

(
F − Gt+i−1H

∗′)′ + Gt+i−1R
∗G′

t+i−1 + Q.

While the outlined solution to the problem of how to calculate the log predictive score based
on the marginal predictive likelihood for a subset of the observed variables is straightforward,
the calculation of marginal likelihoods for large systems is computationally expensive when
based on posterior draws. An approximate but computationally inexpensive estimator of the
marginal likelihood is the Laplace approximation, discussed above in Section 10.1; see also
Tierney and Kadane (1986), Gelfand and Dey (1994), and Raftery (1996). It requires that the
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mode of the log posterior, given by the sum of the log likelihood and the log prior, can be
computed and that its Hessian is available.

Letting θ̃ be the posterior mode of θ and Σ̃ be minus the Hessian, the Laplace approximation
based on the sample Yt is given by

ln p̂L
(
Yt

)
= lnL

(
Yt; θ̃

)
+ lnp

(
θ̃
)

+
d ln(2π) + ln |Σ̃−1|

2
, (12.68)

where d is the dimension of θ. The third term on the right hand side approximates − lnp(θ̃|Yt)
with O(t−1) accuracy and, hence, the expression in (12.68) is a reflection of Bayes theorem
through what Chib (1995) calls the basic marginal likelihood identity.

Similarly, let θ∗ be the posterior mode when the sample (y∗
t+h,Yt) is used, with minus the

Hessian being denoted by Σ∗. The Laplace approximation of the marginal predictive likelihood
is therefore given by:

ln p̂L
(
y∗
t+h|Yt

)
= lnL

(
y∗
t+h|Yt; θ

∗) + lnL
(
Yt; θ

∗)− lnL
(
Yt; θ̃

)

+ lnp
(
θ∗
)
− lnp

(
θ̃
)

+
ln |Σ̃| − ln |Σ∗|

2
,

(12.69)

where the expression takes into account that ln |A−1| = − ln |A| when A has full rank. Gelfand
and Dey (1994) refer to (12.69) as their case (ii) and they note that the approximation has
O(t−2) accuracy. In other words, the Laplace approximation of the marginal predictive likeli-
hood in (12.69) is “more accurate” than the Laplace approximation of the marginal likelihood.

Alternatively, the log posterior for the sample (y∗
t+h,Yt) and its Hessian can be evaluated at

the parameter value θ̃ instead of θ∗. This has the advantage that only one posterior mode esti-
mation is required, rather than one plus one for each y∗

t+h (h = 1, . . . , H) that we are interested

in. However, the use of θ∗ in (12.69) ensures that the first derivatives of the log posterior for

the sample (y∗
t+h,Yt) are equal to zero, while the use of θ̃ only ensures that they are, at best,

approximately zero. This fact implies an additional error source for the approximation, with
the effect that its accuracy is reduced to O(t−1), i.e., the same order of accuracy as the one the
marginal likelihood approximation in (12.68) has.

Replacing θ∗ with θ̃ in (12.69) yields the following simplified expression of the log of the
marginal predictive likelihood:

ln p̃L
(
y∗
t+h|Yt

)
= lnL

(
y∗
t+h|Yt; θ̃

)
+

1

2

(
ln |Σ̃t| − ln |Σ̃t+h|

)
, (12.70)

where Σ̃t+h and Σ̃t are minus the Hessians of the log posteriors based on the samples (y∗
t+h,Yt)

and Yt, respectively, evaluated at θ̃. The first term on the right hand side of (12.70) is the log
of the conditional likelihood, evaluated at the posterior mode using the Yt data, and we often
expect the marginal predictive likelihood to be dominated by this term. Concerning the second
term it may be noted that if the two log determinants are equal, then the Laplace approximation

is equal to the θ̃ plug-in estimator of the predictive likelihood. Moreover, it is straightforward
to show that

Σ̃t+h = Σ̃t −
∂2 lnL

(
y∗
t+h|Yt; θ̃

)

∂θ∂θ′
= Σ̃t + Ω̃t+h|t. (12.71)

Hence, we may expect that the second term in (12.70) is often close to zero. Furthermore, the
overall computational cost when using (12.70) is not reduced by taking the expression on the
right hand side of (12.71) into account unless analytical derivatives are available.

12.6.1. The Predictive Likelihood under Annualizations

In some situations we are also interested in annualizations of variables in first differences when
computing the predictive likelihood. For quarterly data of variables in first differences we simply
add the current and the previous three quarters to obtain the annual difference, while monthly
data require the current and previous 11 months to obtain the annual difference. The joint pre-
dictive likelihood is invariant to such variables transformations for any subset of the variables,
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but the marginal predictive likelihood is not. For example,

p
( 3∑

j=0

∆qt+i−j , . . . ,
3∑

j=0

∆qt+1−j |Yt

)
=

i−1∏

j=0
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∆qt+i−j |∆qt+i−j−1, . . . ,∆qt+1,Yt

)

= p
(
∆qt+i, . . . ,∆qt+1|Yt

)
,

(12.72)

for any horizon i and variable q which is in the information set Yt. It is here assumed that qt−j ,
for j = 0,1,2,3 are not missing observations. This assumption guarantees that ∆qt+i−j can all

be uniquely determined from
∑3

k=0 ∆qt+i−j−k and qt−j .
From equation (12.72) it also follows that the predictive likelihood of

∑3
j=0 ∆qt+i−j for i > 2

is not same as the predictive likelihood of ∆qt+i since the first equality is not satisfied. Below we
shall examine which additions to the Kalman filter that are needed to compute the predictive
likelihood under annualizations that involve adding current and past values. Moreover, for
models where some variables are given as, say, quarterly first differences while others are given
in levels we also need to take the covariance structure between these entities into account.

To provide the covariance matrices for sums of future values of the observed variables, let s
be an integer which determines how many current and past values of the variables that will be
added. It would be 4 for quarterly data and 12 for monthly. Next, for i = 1, . . . , s − 1

Fi = Fi−1 + Fi,

Qi = Qi−1 + FiQF
′
i ,

P
(i)
t|t = FiPt|tF

′
i ,

with initialization values F0 = Ir and Q0 = Q, resulting in P
(0)
t|t = Pt|t Define the covariance

matrices:

C
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)
, (12.73)

Σ(i)
t = C

(
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j=is
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∣∣∣Yt; θ

)
, (12.74)

where is = max{1, i − s+ 1}. For example, when s = 4 this means that for i = 1, . . . ,4 we add

ξt+1 until ξt+i in the C
(i)
t covariances, and for i ≥ 5 we add ξt+i−3 until ξt+i.

By throwing oneself into a multitude of tedious algebra it can be shown that

C
(i)
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FP
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t|t F′ + Q

i−1
, if i = 1, . . . , s,

FC
(i−1)
t F′ + Qs−1, if i ≥ s+ 1.

(12.75)

Furthermore, it can also be shown that

Σ(i)
t =




H′C(i)

t H + iR, if i = 1, . . . , s

H′C(i)
t H + sR, if i ≥ s+ 1.

(12.76)

Provided that all variables in the y vector are in first differences, the conditional likelihood

for zt+i =
∑i

j=is y
∗
t+j = K′∑i

j=is yt+j , i = 1, . . . , h, is now given by:
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(12.77)

where Σ(i)
z,t = K′Σ(i)

t K and zt+i|t =
∑i

j=is y
∗
t+j |t.
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When some variables in the y vector are in first differences and some in levels, the actuals

(yt+i), the forecasts (yt+i|t), and the covariance matrices (Σ(i)
t ) need to take this into account.

For the actuals and the forecast we simply avoid summing current and past values for the

variables in levels, while the diagonal elements of the covariances Σ(i)
t corresponding to levels

variables are replaced with the diagonal elements of Σy,t+i|t from these positions. It remains

to replace the off-diagonal elements of the Σ(i)
t matrices which should represent covariances

between first differenced variables and levels variables with the correct covariances.
To determine the covariances between sums of first differenced variables and levels variables,

define

Ξ(i)
t = C

(
ξt+i,

i∑

j=is

ξt+j

∣∣∣Yt; θ

)
, (12.78)

Υ(i)
t = C

(
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∣∣∣Yt; θ

)
. (12.79)

Some further algebra later it can be established that for Ξ(0)
t = 0

Ξ(i)
t =




Pt+i|t + FΞ(i−1)

t , if i = 1, . . . , s,

FΞ(i−1)
t F′ + Fs−1Q, if i ≥ s+ 1.

(12.80)

Finally, it can be shown that

Υ(i)
t = H′Ξ(i)

t H + R, i = 1, . . . , h. (12.81)

12.7. Testing the Normal Approximation of the Predictive Distribution

The distributional form of the predictive distribution is unknown unless we condition on the
parameters, in which case the predictive distribution is normal. For this reason it may be
intreresting to check if the predictive distribution itself can be approximated by a normal distri-
bution. To begin with, we know how the mean and the covariance matrix can be estimated; see,
e.g., equations (12.3) and (12.5) for the unconditional forecasts. With these estimates at hand
we check how well the normal approximation works for the marginal predictive distribution of
yT+i.

The Kolmogorov-Smirnov test is a well-known nonparametric test for the equality of con-
tinuous, one-dimensional probability distributions that can be used to compare the predictive
distribution to a normal; in Section 11.14 we considered the test staistic for the case when
draws from two empirical distributions are considered. The dimensionality issue means that

we can only check for one variable and one forecast horizon at a time.108 Hence, even if the
null hypothesis that the distributions are equal is true, need it be the case that the full predic-
tive distribution is well approximated by a normal distribution. Nevetheless, such tests may be
informative about the appropriateness of using a normal distribution.

Let FN(yj) be the cumulated empirical distribution function based on N = PS draws from
the predictive distribution of element j of yT+i, while F(yj) is the normal cdf. The Kolmogorov-
Smirnov statistic is now given by

DN = sup
yj

∣∣FN
(
yj
)
− F

(
yj
)∣∣ . (12.82)

The asymptotic behavior of the statistic is given by
√
NDN ⇒ sup

t∈[0,1]
|B(t)| = K, (12.83)

where K is the Kolmogorov distribution whose cdf is shown in equation (11.67).

108 There are some attempts to determine test statistics for the multivariate case; see, e.g., Fasano and Franceschini

(1987) who consider two and three dimensions for the test. For some more recent work on the problem of comparing

multivariate distributions, see Loudin and Miettinen (2003).
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12.8. YADA Code

The main functions for computing unconditional prediction paths for the observed variables of
the DSGE model are called DSGEPredictionPathsTheta and DSGEPredictionPaths. The former
works with a fixed value for the model parameters θ, while the latter works for a set of draws
from the posterior distribution of θ. The calculation of the conditional prediction paths for the
observed variables of the DSGE model are handled by DSGECondPredictionPathsTheta and
DSGECondPredictionPaths for the case when the shock values are directly controlled. For the
Waggoner-Zha approach with controlled shock distributions, the conditional prediction paths
are dealt with by DSGECondPredictionPathsThetaWZ and DSGECondPredictionPathsWZ. The
smooth estimate of the state vector and its covariance matrix are handled through the function
CondPredictionKalmanSmoother (CondPredictionKalmanSmootherHt).

Unconditional prediction paths can also be calculated for the Bayesian VAR models. The main
functions for this objective are BVARPredictionPathsPostMode and BVARPredictionPaths. The
former function uses a fixed value for the model parameters, while the latter uses draws from
the posterior distribution of (Ψ,Π,Ω). Hence, the latter function makes it possible to estimate
a predictive distribution of the Bayesian VAR that does not depend on the particular values of
the model parameters.

12.8.1. DSGEPredictionPathsTheta

The function DSGEPredictionPathsTheta needs 11 inputs. First of all, a set of values for the
parameters θ is supplied through the variable theta. To use the values properly the vector struc-
ture thetaPositions and the structure ModelParameter that were discussed in Section 7.4 are
also needed. Furthermore, the DSGE model information structure DSGEModel and the generic
initialization structure CurrINI must be supplied to the function. The following input is given
by the k × h matrix X with the values of the exogenous variables over the h period long pre-
diction sample. Next, the value of h is accepted since X is empty if k = 0. The 8th input is
called NumPaths and specifies how many prediction paths to compute, while the boolean vari-
able AnnualizeData indicates if the prediction paths should be annualized or not. Similarly, the
boolean variable TransData indicates if the data should be transformed or not. The final input
is given by NameStr which indicates the type of values that are used for θ, e.g., the posterior
mode estimate.

The main output from the function is the 3-dimensional matrix PredPaths and the matrices
PredEventData and YObsEventData. The dimensions of the PredPaths matrix are given by
the number of observed variables, the length of the prediction sample, and the number of
prediction paths. The matrix PredEventData has as many rows as number of observed variables
and 7 colummns; the matrix is computed through the function CalculatePredictionEvents;
see Section 12.8.9. A prediction event can, for instance, be defined as non-negative inflation
for h∗ consecutive periods over the prediction period. The h∗ integer of always less than or
equal to the length of the prediction period. Similarly, the matrix YObsEventData has the same
dimension as PredEventData and holds prediction event data when the mean of the predictive
distribution is equal to the realized values for the observed data.

12.8.2. DSGEPredictionPaths

The function DSGEPredictionPaths requires 13 inputs. Relative to the previous function,
DSGEPredictionPathsTheta, there are two additional inputs (the first and the last) and the
second last input variable is different from the last of DSGEPredictionPathsTheta. Before the
thetaMode input, the current function accepts the matrix thetaPostSample with NumDraws rows
and NumParam columns. Despite the name, this matrix can either hold draws from the posterior
or from the prior distribution. Similarly, thetaMode can be the posterior mode estimates as well
as the initial values of the parameters θ.

The number of draws from the posterior that are used can vary irrespective of how many
draws from the posterior that are available, while the number of draws from the prior are,
in principle, arbitrary. Typically, the number of draws of θ that are sent to this function is a
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small number, such as 500 or 1,000. The last two input variables used by the function are
CurrChain, which is an integer that indicates the MCMC chain number, and IsPosterior, a
boolean variable which is one if the parameter draws are taken from the posterior distribution
and zero if they are taken from the prior.

As output the function provides 6 variables. The first is the boolean DoneCalc that indicates
if all calculations were performed or not. The next is the matrix PredEventData with prediction
event results. The final 4 variables provides the data on the prediction variance decomposi-
tions for the observed variables over the whole prediction horizon. These variables are called
StateCov, ShockCov, MeasureCov, and ParameterCov, respectively. Apart from MeasureCov

these are all 3D matrices with dimensions n × n × h, where h is the length of the prediction
horizon, while MeasureCov is n × n.

The prediction paths are not directly sent as output from the function. These are instead
written to disk in mat-files, one for each parameter draw. In each file the 3D matrix PredPaths

is stored. Its dimensions are given by the number of observed variables, the length of the
prediction sample, and the number of prediction paths.

12.8.3. DSGECondPredictionPathsTheta(WZ/Mixed)

The function DSGECondPredictionPathsTheta (DSGECondPredictionPathsThetaWZ for the dis-
tribution of shocks (Waggoner and Zha, 1999), or DSGECondPredictionPathsThetaMixed for
the distribution of a subset of the shocks cases) needs 13 inputs. The first 6 and the last 5 are
the same inputs as the function DSGEPredictionPathsTheta takes. The 2 additional inputs nat-
urally refer to the conditioning information. Specifically, the 7th input is given by Z, an qm × g
matrix with the conditioning data [zT+1 · · · zT+g], while the 8th input variable is called U, an
qm × g matrix with the initial values [uT−g+1 · · · uT] for the conditioning; cf. equations (12.6)
and (12.38).

The main output from the function is the 3-dimensional matrix PredPaths, the matrices
with prediction event test results, PredEventData and YObsEventData, and the modesty results,
MultiModestyStat, UniModestyStat, and UniModestyStatLZ. The dimension of PredPaths is
given by the number of observed variables, the length of the prediction sample, and the number
of prediction paths. The matrix PredEventData (and YObsEventData) has as many rows as
number of observed variables and 7 columns. These matrices are computed by the function
CalculatePredictionEvents. A prediction event can, for instance, be defined as non-negative
inflation for h∗ consecutive periods over the prediction period. The h∗ integer of always less
than or equal to the length of the prediction period. The difference between PredEventData

and YObsEventData is that the latter matrix holds prediction event results when the mean of
the predictive distribution has been set equal to the realized values of the observed variables.

The modesty statistics are only calculated when AnnualizeData is zero. When this con-
dition is met, MultiModestyStat is a matrix of dimension NumPaths times 2, where the first
columns holds the values of MT,g(η̄), while the second column gives MT,g(η). The matrix
UniModestyStat has dimension NumPaths times n and gives the univariate modesty statistics
in equation (12.48), while UniModestyStatLZ is a vector with the n values of the univariate
Leeper-Zha related modesty statistic.

12.8.4. DSGECondPredictionPaths(WZ/Mixed)

The function DSGECondPredictionPaths (DSGECondPredictionPathsWZ for the distribution of
shocks (Waggoner and Zha, 1999), or DSGECondPredictionPathsMixed for the distribution of
a subset of the shocks cases) for computing the conditional predictive distribution requires
15 inputs. The first 7 and the last 6 input variables are the same as those that the function
DSGEPredictionPaths accepts. The two additional inputs refer to the same data that the func-
tion DSGECondPredictionPathsTheta requires, i.e., to Z and U.

Moreover, as in the case of DSGEPredictionPaths for the unconditional predictive distribu-
tion, the majority of the output from this function is not sent through its output arguments, but
are written to disk. For instance, the prediction paths are written to disk in mat-files, one for
each parameter draw. In each file the 3D matrix PredPaths is stored. Its dimensions are given
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by the number of observed variables, the length of the prediction sample, and the number of
prediction paths. Moreover, the multivariate and univariate modesty statistics are calculated
and saved to disk provided that the AnnualizeData variable is zero (no annualization).

The function provides the same 6 output arguments as the DSGEPredictionPaths function.
Moreover, the prediction paths data is also written to disk in mat-files, one for each parameter
draw. In each file the 3D matrix PredPaths is stored. Its dimensions are given by the number
of observed variables, the length of the prediction sample, and the number of prediction paths.

12.8.5. CondPredictionSmoother(Ht)

The function CondPredictionSmoother (CondPredictionSmootherHt) computes smooth esti-
mate of the state variables and its covariance matrix in period T using the conditioning assump-
tions when K2 = 0 and uT = 0, i.e., when zt = K′

1yt in equation (12.6). To fulfill its mission
the function needs 15 input variables to compute the smooth estimate of the state variables
for the last historical time period (T) using the conditioning assumptions. The first 4 variables
are given by KsiTT1, PTT1, KsiTT, and PTT which provide the forecast and smooth estimates of
the state variables and the corresponding covariance matrices at T . Next, the function needs
YhatT and YT, the forecast and the realization of the observed variables at T . In order to run
the Kalman filter over the conditioning sample, the function thereafter needs XPred, a matrix
with the values for the exogenous variables over this sample, Z, a matrix with the conditioning
assumptions, and K1, which maps the conditioning assumptions into the observed variables.
Finally, the function takes the matrices A, H, R, F, and B0 from the state-space represenation for
the observed variables, and the integer variable KalmanAlgorithm, determining which Kalman
filtering approach to apply.

As output the function gives two variables: KsiTTg and PTTg. The first is a vector with
the smooth estimates of the state variables at T conditional on the historical sample and the
conditioning assumptions. The second variable is a matrix with the covariance matrix for the
state variables based on this estimator. In other words, the first output variable is equal to

ξ
(z)
T |T+g

, while the second is equal to P
(z)
T |T+g

; see Section 12.2.4 for mathematical details.

12.8.6. CondPredictionKalmanSmoother(Ht)

The function CondPredictionKalmanSmoother (CondPredictionKalmanSmootherHt) computes
smooth estimate of the state variables and its covariance matrix in period T using the condi-
tioning assumptions when either K2 6= 0 or uT 6= 0 in equation (12.6). To complete its task the
function needs 13 input variables. To setup initial conditions for running the Kalman smoother
that makes use of the conditioning assumptions, smooth estimates of the state vector, its covari-
ance matrix, and the measurement errors are needed. These are accepted as the input variables
KsitT, PtT, and wtT, being of dimensions r × g, r × r × g, and n × g, respectively. The time
dimension of this data should correspond to periods T − g + 1, . . . , T , where g is the length of
the conditioning sample and T is the last period of the historical sample, i.e., the conditioning
sample covers periods T + 1, . . . , T + g. Next, the conditioning assumptions are given by the
qm × g matrix Z, while the qm × g matrix U contains initial values; see the discussion above for
the function DSGECondPredictionPathsTheta. The sixth input is X, a k× g matrix with data on
the exogenous variables over the conditioning sample. The following two inputs are K1 and K2,
n × qm matrices linking the observed variables to the conditioning assumptions; see equation
(12.6) or (12.38). The final 5 input variables are the parameter matrices: A, H, and R for the
measurement equation, as well as F and B0 for the state equation. The measurement matrix H

has dimension r×n in CondPredictionKalmanSmoother, while it has dimension r×n×(2g−1)
in CondPredictionKalmanSmootherHt.

As output the function gives the r dimensional vector KsiTTz of smooth state variable esti-
mates that take the conditioning assumptions into account and the r×r covariance matrix PTTz.

The former is equal to ξ
(z)
T |T+g

, while the latter is P
(z)
T |T+g

; see Section 12.2.4 for mathematical de-

tails.
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12.8.7. StateCondPredictionPathsTheta(WZ/Mixed)

The function StateCondPredictionPathsTheta (StateCondPredictionPathsThetaWZ for the
distribution of shocks (Waggoner and Zha, 1999), or StateCondPredictionPathsThetaMixed

for the distribution of a subset of the shocks cases) needs 14 input variables. The first 6 and last
7 are exactly the same input variables as the functions in Section 12.8.3 accept. The additional
seventh input variable is called Zeta, a qz × g matrix with conditioning data for the linear
combinations of the state variables [ζT+1 · · · ζT+g]; cf. equation (12.51).

The output variables are identical to those delivered by the conditional forecasting function
DSGECondPredictionPathsTheta (DSGECondPredictionPathsThetaWZ).

12.8.8. StateCondPredictionPaths(WZ/Mixed)

The function StateCondPredictionPaths (StateCondPredictionPathsWZ for the distribution
of shocks (Waggoner and Zha, 1999), or StateCondPredictionPathsMixed for the distribution
of a subset of the shocks cases) requires 17 input variables to perform its task. In addition to
the 15 input variables that the conditional forecasting functions in Section 12.8.4 take, the 8th
input variable is given by Zeta, described above, while the 17th input variable is CondTypeStr.
This variable is a string vector that takes the value State- or State-Obs-. The former value
indicates that only assumptions for the state variables are used, while the latter indicates that
conditioning assumptions for the observed variables are added.

The output variables are identical to those delivered by the conditional forecasting function
DSGECondPredictionPaths (DSGECondPredictionPathsWZ).

12.8.9. CalculatePredictionEvents

The function CalculatePredictionEvents computes prediction event and risk analysis data
from the simulated prediction paths. The function requires 2 input variables: PredPaths and
PredictionEvent. The first variable is the familiar matrix with all prediction paths for a given
parameter value, while the second is a matrix that holds the prediction event information. The
number of rows of PredictionEvent is equal to the number of variables, and the number of
columns is three; the upper bound of the event, the lower bound, and the number of consecutive
periods for the event.

As output the function provides the matrix PredEventData. The number of rows is equal to
the number of variables, while the number of columns is 8. The first column gives the number
of times the event is true, i.e., the number of times that the paths contain values that fall within
the upper and lower bound for the number of periods of the event. The second column holds
the number of times that the paths are below the lower bound of the event for the length of
the event, the third provides the number of times that the paths are above the upper bound
of the event for the length of the event, while the 4th column has the total number of times
that the event could be true. The 5th and 6th column store the sum of and the sum of squared
deviations from the lower bound of the event when the paths are below the lower bound for
the required length of the event. Similarly, the 7th and 8th column hold the sum of and sum
of squared deviations from the upper bound of the event when the paths are above the upper
bound for the required length of the event.

12.8.10. DSGEPredictiveLikelihoodTheta

The function DSGEPredictiveLikelihoodTheta computes the joint and the marginal predictive
likelihood for fixed parameter values using the Laplace approximation. The function requires
17 input variables: theta, thetaPositions, thetaIndex, thetaDist, PriorDist, LowerBound,
UniformBounds, ModelParameters, YData, X, IsOriginal, IsPlugin, and also FirstPeriod,
LastPeriod, StepLength, DSGEModel, and CurrINI. Most of these input variables have been
described above. The matrix YData contains the realizations of the observed variables over the
forecast sample, X is a matrix with data on the deterministic variables over the same sample,
IsOriginal is a boolean variable that takes the value 1 if the original data should be forecasted
and 0 if annualized data should be predicted, while IsPlugin is a boolean variable that takes the
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value 1 if only the plugin estimator should be computed and 0 if also the Laplace approximation
should be calculated. Finally, StepLength is the step length used by the function that estimates
the Hessian matrix using finite differences; see Abramowitz and Stegun (1964, p. 884) formulas
25.3.24 and 25.3.27, and Gill and King (2004).

The function provides six required output variables and two optional. The required variables
are JointPDH and MargPDH, vectors with the joint and marginal predictive likelihood values,
respectively. Furthermore, the variable LaplaceMargLike is a scalar with the value of the mar-
ginal likelihood for the historical sample using the Laplace approximation, while the cell array
PredVars contains vectors with positions of the predicted variables among all observed vari-
ables. The vectors MargPlugin and JointPlugin give the plugin estimates of the marginal and
joint predictivce likelihood, i.e., when the second term involving the Hessian matrices in equa-
tion (12.70) is dropped. The optional output variables are status and kalmanstatus, which
have been discussed above.
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13. Frequency Domain Analysis

13.1. Population Spectrum

Let Σy(h) denote the covariance between yt and yt−h. Under the assumption that yt is covari-
ance stationary and that the autocovariances are absolutely summable, the population spectrum
of y is a Fourier transform of the autocovariance function and is given by

sy(ω) =
1

2π

∞∑

h=−∞
Σy(h) exp

(
−iωh

)
, (13.1)

where i =
√
−1 and ω is the angular frequency measured in radians, while exp(−iωh) is a point

on the unit circle for all ω ∈ R and integers h; see, e.g., Fuller (1976, Chapter 4) or Hamilton
(1994, Chapters 6 and 10). De Moivre’s theorem allows us to write

exp
(
−iωh

)
= cos(ωh) − i sin(ωh).

Making use of the some well known results from trigonometry,109 it can be shown that the
population spectrum can be rewritten as

sy(ω) =
1

2π

[
Σy(0) +

∞∑

h=1

(
Σy(h) + Σy(h)′

)
cos(ωh)

− i

∞∑

h=1

(
Σy(h) − Σy(h)′

)
sin(ωh)

]
.

(13.2)

From (13.2) it can be seen that the diagonal elements of the population spectrum are real

and symmetric around zero.110 The off-diagonal elements (cross-spectrum) are complex while
the modulus of each such element is symmetric around zero. This follows by noticing that the
real part of the spectrum is symmetric, while the imaginary part is skew-symmetric.111 Hence,
the population spectrum is a Hermitian matrix so that sy(ω) = sy(−ω)′, i.e., the complex
equivalent of a symmetric matrix. The real part of the cross-spectrum is called the co-spectrum
while the imaginary part is known as the quadrature spectrum.

Moreover, since the sine and cosine functions are periodic such that cos(a) = cos(a + 2πk)
and sin(a) = sin(a+ 2πk) for any integer k the population spectrum is also a periodic function
of ω with period 2π. Hence, if the know the value of a diagonal element of the spectrum for all
ω between 0 and π, we can infer the value of this element for any ω. Similarly, if we know the
value of the modulus of an off-diagonal element of the spectrum for all ω between 0 and π, we
can infer the value of the modulus for any ω.

Translating frequencies into time periods we let ωj = 2πj/T , where the frequency ωj has a
period of T/j time units (months, quarters, or years). This means that the frequency is equal to
2π divided by the period in the selected time units. As an example, suppose that low frequencies
are regarded as those with a period of 8 years or more, business cycle frequencies those with
a period of, say, 1 to 8 years, while high frequencies are those with a period less than 1 year.
For quarterly time units, these periods imply that low frequencies are given by ω ∈ [0, π/16],
busines cycle frequencies by ω ∈ [π/16, π/2], while high frequencies are ω ∈ [π/2, π].

13.2. Spectral Decompositions

There is an inverse transformation of (13.1) that allows us to retrieve the autocovariance matri-
ces from the spectral density. Specifically,

Σy(h) =

∫ π

−π
sy(ω) exp

(
iωh
)
dω. (13.3)

109 Specifically, recall that cos(0) = 1, cos(−a) = cos(a), sin(0) = 0, and sin(−a) = − sin(a); see, e.g., Hamilton

(1994, Appendix A) for some details.

110 In addition, the diagonal elements of the population spectrum are non-negative for all ω; see, e.g., Fuller (1976,

Theorem 3.1.9).

111 A matrix B is said to be skew-symmetric if B′ = −B.
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For h = 0 it thus follows that the area under the population spectrum is equal to the contempo-
raneous covariance matrix of yt. That is,

Σy(0) =

∫ π

−π
sy(ω)dω. (13.4)

For a diagonal element of the population spectrum of the observed variables we can therefore
consider 2 times the area between 0 and ω to represent the share of the variance of the corre-
sponding element of y that can be attributed to periodic random components with frequency
less than or equal to ω.

The conditional covariance of the state variables in the state-space model are given in equa-
tion (11.48), while the conditional covariance of the observed variables are shown in equation
(11.49). The covariance matrix of the state variables, Σξ, is related to the conditional covariance
of these variables through

Σξ =
q∑

j=1

Σ
(j)
ξ
. (13.5)

This means that the contemporaneous covariance matrix of the observed variables, Σy(0), can
be expressed as

Σy(0) = H′
(

q∑

j=1

Σ
(j)
ξ

)
H + R. (13.6)

Let sξ(ω) be the population spectrum of the state variables, while s
(j)
ξ

(ω) is the spectrum of

the state variables when all shocks are zero excepts ηj for j = 1, . . . , q. Since the state-space
model is linear and the shocks and measurement errors are uncorrelated, the spectrum of the
state variables is equal to the sum of these spectra; see, e.g., Fuller (1976, Theorem 4.4.1) for a
generalization of this property. That is,

sξ(ω) =
q∑

j=1

s
(j)
ξ

(ω). (13.7)

Moreover, let sw(ω) denotes the spectrum of the measurement errors. Since these errors are
just white noise, it follows that sw(ω) = (1/2π)R is constant.

The population spectrum of the observed variables is equal to the weighted sum of the spec-
trum of the state variables plus the spectrum of the measurement errors. Specifically,

sy(ω) = H′sξ(ω)H +
1

2π
R = H′

q∑

j=1

s
(j)
ξ

(ω)H +
1

2π
R. (13.8)

Combining this with the results on the conditional covariances above it follows that

H′Σ(j)
ξ
H =

∫ π

−π
H′s(j)

ξ
(ω)Hdω.

The matrix H′s(j)
ξ

(ω)H is the spectrum of the observed variables when there are no measure-

ment error and when all shocks are zero expect for ηj . From equation (13.4) it follows for a

diagonal element of H′s(j)
ξ

(ω)H that 2 times the area under this spectrum is equal to the share

of the contemporaneous variance of the corresponding element of the observed variables that
are due to state shock j.

13.3. Estimating the Population Spectrum for a State-Space Model

From equation (5.42) we know that if F has all eigenvalues inside the unit circle, then the
autocovariances of the state-space model exist and can be expressed as

Σy(h) =




H′ΣξH + R, if h = 0,

H′FhΣξH, for h = 1,2, . . .

(13.9)
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In addition, it is straightforward to show that Σy(h) = Σy(−h)′ for h = −1,−2, . . .. Since all
the eigenvalues of F lie inside the unit circle, the autocovariances of the state-space model are
also absolutely summable.

To estimate the population spectrum using the state-space model we may therefore use the
values of Σy(h) from (13.9) for a given θ and substitute them into, e.g., equation (13.2) for

h = 0,1, . . . , h̄. The integer h̄ may be selected such that Σy(h̄) is sufficiently close to zero. This
yields a parametric estimate of the population spectrum.

However, there is a more efficient use of the state-space model which allows us to not only
compute the spectrum with greater numerical accuracy, but also at a higher computational
speed. To this end, we express the state equation using the lag operator as

F(L)ξt = B0ηt,

where F(z) = Ir − Fz is invertible for all |z| ≥ 1 since all the eigenvalues of F lie inside the
unit circle. The population spectrum for a VAR model is well known (see, e.g., Hamilton, 1994,

Chapter 10) and can for the state equation with z = exp(−iω) be expressed as112

sξ(ω) =
1

2π
F
(
exp(−iω)

)−1
B0B

′
0

(
F
(
exp(iω)

)′)−1

. (13.10)

From this expression we can also infer that the spectrum of the state variables when all shocks
are zero except ηj is given by

s
(j)
ξ

(ω) =
1

2π
F
(
exp(−iω)

)−1
B0jB

′
0j

(
F
(
exp(iω)

)′)−1

, j = 1, . . . , q. (13.11)

Notice that the property in equation (13.7) can be seen to hold from equations (13.10) and

(13.11) since B0B
′
0 =

∑q

j=1 B0jB
′
0j .

13.4. Estimating the Population Spectrum from the Observed Data

Instead of using the structure of the state-space model directly, we can simulate data from
the model and estimate the population spectrum with non-parametric methods. This has the
advantage that we can directly compare the spectrum for the simulated data to the spectrum
for the actual observed data since the same estimation method may be used.

Suppose we have simulated T observations from the state-space model and estimated the
autocovariances from

Σ̂y(h) =
1

T

T∑

t=h+1

(
yt − ȳt

)(
yt−h − ȳt−h

)′
, h = 0,1, . . . , h̄,

where h̄ < T and

ȳt =
T∑

t=1

ytx
′
t

(
T∑

t=1

xtx
′
t

)−1

xt.

Let κh be a symmetric function of h (κh = κ−h) that is used to weight the autocovariances of
the spectrum. A family of non-parametric estimators of the population spectrum may therefore
be expressed as:

ŝy(ω) =
1

2π

[
Σ̂y(0) +

h̄∑

h=1

κh
(
Σ̂y(h) + Σ̂y(h)′

)
cos(ωh)

− i
h̄∑

h=1

κh
(
Σ̂y(h) − Σ̂y(h)′

)
sin(ωh)

]
.

(13.12)

112 Notice that exp(−iω) takes us along the unit circle from 1 to −1 for the real part and from 0 into negative values

and back to 0 for the imaginary part as ω goes from 0 to π. Similarly, exp(iω) traces out the positive region of the

unit circle for the imaginary part as ω goes from 0 to π, while the real part again begins at 1 and ends at −1. That

is, exp(iω) and exp(−iω) are mirror images along the unit circle.
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One popular estimate of the spectrum uses the modified Bartlett kernel, which is given by

κh =
h̄ + 1 − h

h̄+ 1
, h = 1,2, . . . , h̄.

From a practical perspective, the main problem with the non-parametric estimator in (13.12)

is how to choose h̄; see, e.g, Hamilton (1994) for additional discussions. For the selected

value of h̄ we can compare the estimated population spectrum for the simulated data to the
estimated population spectrum for the observed data. With simulated data we may consider,
say, S number of simulated paths per parameter value for θ and P different parameter values
from the posterior distributions, thus yielding an estimate of the posterior distribution of the
non-parametric estimate of the population spectrum.

13.5. Filters

The population spectra for the state-space model and the VAR model are special cases of the
filter vt = A(L)wt, where wt is a covariance stationary vector time series of dimension k and
the m× k polynomial

A
(
z
)

=
∞∑

j=−∞
Ajz

j ,

is absolutely summable. Assuming that the population spectrum of wt is given by sw(ω), the
population spectrum of the m dimensional time series vt is

sv(ω) = A
(
exp(−iω)

)
sw(ω)A

(
exp(iω)

)′
, ω ∈ [−π, π], (13.13)

see, e.g., Fuller (1976, Theorem 4.4.1) and Hamilton (1994, Chapter 10). A very simple example
of such a filter is when we wish to transform a vector wt from quarterly differences, (1 − z), to
annual differences, (1 − z4). This means that A(z) = (1 + z + z2 + z3)Ik so that vt is the sum
of the current and previous 3 quarterly changes.

13.6. Coherence

Let syk,yl(ω) denote the element in row k and column l of sy(ω). The coherence between yk
and yl is given by

R2
yk,yl

(ω) =
syk,yl(ω)syk,yl(−ω)

syk,yk(ω)syl,yl(ω)
=

|syk,yl(ω)|2

syk ,yk(ω)syl,yl(ω)
, ω ∈ [0, π], (13.14)

where |a| denotes the modulus of a and the terms in the denominator are assumed to be
non-zero. In the event that one of them is zero the statistic is zero. It can be shown that
0 ≤ R2

yk,yl
(ω) ≤ 1 for all ω as long as y is covariance stationary with absolutely summable

autocovariances; see, e.g., Fuller (1976, p. 156). The coherence statistic thus measures the
squared correlation between yk and yl at frequency ω, i.e., R2

yk ,yl
(ω) = R2

yl ,yk
(ω) for all pairs

(yk, yl).
We can similarly define a coherence statistic for pairs of state variables in the state-space

model. Letting sξk,ξl(ω) denote the element in row k and column l of the population spectrum
of the state variables, sξ(ω), it follows that

R2
ξk,ξl

(ω) =
|sξk,ξl(ω)|2

sξk,ξk(ω)sξl,ξl(ω)
, ω ∈ [0, π],

is the coherence between ξk and ξl. Again we note that the statistic is zero whenever one of the
terms in the denominator is zero.

Finally, it may be noted that if q = 1 and R = 0, then the coherence between two observed
variables is either zero or one. Hence, there is not any point in computing conherence statistics
conditional on all shocks being zero except one.
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13.7. Gain and Phase

It was mentioned in Section 13.1 that the real part of the cross-spectrum is called the co-
spectrum, while the imaginary part is called the quadrature spectrum. Letting cyk,yl(ω) denote
the former and qyk,yl(ω) the latter, we have that

syk ,yl(ω) = cyk,yl(ω) + iqyk,yl(ω), k, l = 1, . . . , n, k 6= l.

The cross-spectrum may be rewritten as

syk ,yl(ω) = ayk ,yl(ω) exp
(
iϕyk,yl(ω)

)
, (13.15)

where ayk ,yl(ω) = |syk ,yl(ω)| is called the cross amplitude spectrum and ϕyk,yl(ω) the phase
spectrum; see, e.g., Fuller (1976, p. 159) or Sargent (1987, p. 269). The latter object can be
computed from

ϕyk,yl(ω) = arctan

[
qyk,yl(ω)

cyk,yl(ω)

]
, (13.16)

where arctan denotes the arctangent, i.e., the inverse tangent.113 The gain of yl over yk can be
defined as

ψyk ,yl(ω) =
ayk ,yl(ω)

syk ,yk(ω)
, (13.17)

for those ω where syk,yk(ω) > 0. The gain is sometimes also defined as the numerator in
(13.17); see, e.g., Sargent (1987) or Christiano and Vigfusson (2003). The cross amplitude
tells how the amplitude in yl is multiplied in contributing to the amplitude of yk at frequency
ω. Similarly, the phase statistic gives the lead of yk over yl at frequency ω. Specifically, if
ϕyk,yl(ω) > 0, then yk leads yl by ϕyk,yl(ω)/ω periods, while ϕyk,yl(ω) < 0 means that yl
leads yk by −ϕyk,yl(ω)/ω periods.

However, the phase is not unique since there are multiple values of ϕyk ,yl(ω) that satisfy
equation (13.15) for each ω ∈ [−π, π]. For example, if ϕyk,yl(ω) solves (13.15), then so does
ϕyk,yl(ω) + 2πh for h = 0,±1,±2, . . .. In other words, the lead and the lag between two
sinusoidal functions with the same period (T/j) is ill-defined.

As a method for resolving the ambiguity in characterizing the lead-lag relationship between
variables, Christiano and Vigfusson (2003) proposes an alternative approach. From equation
(13.3) we find that

Σyk ,yl(h) =

∫ π

−π
syk,yl(ω) exp

(
iωh
)
dω. (13.18)

Using the fact that the population spectrum is Hermitian,114 equation (13.15) and De Moivre’s
theorem, Christiano and Vigfusson (2003) show that

Σyk,yl(h) =

∫ π

0

[
syk,yl(ω) exp

(
iωh
)

+ syk ,yl(−ω) exp
(
−iωh

)]
dω

=

∫ π

0
2ayk,yl(ω) cos

[
ϕyk,yl(ω) + ωh

]
dω

=

∫ π

0
Σyk,yl(h,ω)dω.

(13.19)

113 Recall that the tangent is given by tan(x) = sin(x)/ cos(x). The inverse tangent can be defined as

arctan(x) = tan−1(x) =
i

2
ln

(
i+ x

i− x

)
,

where arctan(x) ∈ [−π/2, π/2] for real valued x. The inverses of the trigonometric functions do not meet the

usual requirements of inverse functions since their ranges are subsets of the domains of the original functions. The

latter is a consequence of, e.g., the cosine function being periodic such that cos(0) = cos(π), and so on. This means

that an inverse of the cosine function will deliver multiple values, unless its range is restricted to a certain subset.

For values of x within this subset, the usual requirement of inverse functions apply.

114 For the cross amplitude spectrum and the phase spectrum it follows from this property that ayk,yl(ω) = ayk ,yl(−ω)
and ϕyk ,yl(−ω) = −ϕyk ,yl(ω), respectively.
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where Σyk,yl(h,ω) is the covariance between the component of yk,t at frequency ω and the
component of yl,t−h at frequency ω.

Christiano and Vigfusson note that it is common to characterize the lead-lag reation between
two variables by the value of h for which Σyk ,yl(h) is the largest (in absolute terms). From
(13.19) it can be seen that Σyk,yl(h,ω) is maximized for h = −ϕyk,yl(ω)/ω, since cos(0) is the
unique maximum of the cosine function.

To resolve the ambiguity of ϕyk,yl(ω), Christiano and Vigfusson suggest that phase is chosen
such that

hyk,yl(ω,∆)∗ = arg max
h

∫ ω+∆

ω−∆
Σyk ,yl(h,ω)dω, π − ∆ ≥ ω ≥ ∆ > 0, (13.20)

where ϕyk,yl(ω,∆)∗ = −ωhyk ,yl(ω,∆)∗. The measure of phase suggested by Christiano and
Vigfusson is now given by ϕyk,yl(ω)∗ = lim∆→0 ϕyk,yl(ω,∆)∗, or, equivalently, hyk,yl(ω)∗ =
lim∆→0 hyk,yl(ω,∆)∗ when measured in time units. In practise, this seems to imply that ∆ is a
small positive number (since ∆ = 0 means that hyk,yl(ω)∗ = −ϕyk,yl(ω)/ω) while h is taken
from a suitable interval, say, (L,U).

13.8. Fisher’s Information Matrix in the Frequency Domain

Whittle (1953) was the first to present a frequency domain expression of Fisher’s information
matrix. His results are based on a stationary vector time series with zero mean and they have
since been given a solid mathematical treatment by, e.g., Walker (1964), Dunsmuir and Hannan
(1976), Deistler, Dunsmuir, and Hannan (1978), and Dunsmuir (1979); see also Harvey (1989).
More recent investigations of the matrix are provided by, e.g., Klein and Spreij (2006, 2009).

Let ϑ be the p-dimensional vector of parameters that can affect the population spectrum. This
means that we here exclude parameters in θ that only affect the mean. For example, in the An

and Schorfheide model the parameters (γ (Q), π(A)) are excluded from ϑ, while the remaining
11 parameters in θ are included in ϑ.

Whittle’s estimator of the information matrix can be expressed as

Iϑ =
T

4π

∫ π

−π
K(ϑ,ω)dω, (13.21)

where

Kk,l(ϑ,ω) = tr

[
sy(ω)−1

∂sy(ω)

∂ϑk
sy(ω)−1

∂sy(ω)

∂ϑl

]
, k, l = 1, . . . , p. (13.22)

Using the relationship between the trace and the vec operator (see Magnus and Neudecker,
1988, Theorem 2.3) it can be shown that

K(ϑ,ω) =

(
∂vec

(
sy(ω)′

)

∂ϑ′

)′ [(
sy(ω)′

)−1 ⊗ sy(ω)−1
] ∂vec

(
sy(ω)

)

∂ϑ′
. (13.23)

Recall that sy(ω) is not symmetric, but Hermitian. Note also that the transpose used in (13.23)

is not the complex conjugate but the standard transpose.115 It is now straightforward to show
that K(ϑ,ω) is Hermitian, i.e., K(ϑ,ω) = K(ϑ,−ω)′. It follows that Iϑ in (13.21) is real and
symmetric since K(ϑ,ω) +K(ϑ,−ω) is real and symmetric for each ω ∈ (0, π], while K(ϑ,0) is
real and symmetric since sy(0) is; see equation (13.2).

It is important to note that the population spectrum need not be invertible at all frequencies.
In particular, it may be the case that it is singular at frequency zero (the long-run covariance
matrix is singular). YADA checks such cases and uses the rule that K(ϑ,ω) is not computed for
the frequencies where the population spectral density is singular.

The population spectrum of the state-space model is given by equations (13.8) and (13.10).
Since we exclude parameters that concern the mean of the observed variables, we let all partial

115 Recalling footnote 18, the complex conjugate or conjugate transpose for a complex matrix A = B + iC is equal to

A∗ = B′ − iC′. This means that a matrix A is Hermitian if A = A∗. The standard transpose of A is instead given by

A′ = B′ + iC′.
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derivatives with respect to the elements of A be equal to zero. Next, using the matrix differential
rules in Magnus and Neudecker (1988) it can be shown that

∂vec
(
sy(ω)

)

∂vec
(
R
)′ =

1

2π
In2 . (13.24)

With Knn being defined as the n2 × n2 dimensional commutation matrix,116 it can be shown
that

∂vec
(
sy(ω)

)

∂vec
(
H
)′ = Knn

[
In ⊗H′sξ(ω)′

]
+
[
In ⊗H′sξ(ω)

]
. (13.25)

Letting Nr = (1/2)(Ir2 +Krr), as in Magnus and Neudecker (1988, Theorem 3.11), it can be
shown that

∂vec
(
sy(ω)

)

∂vec
(
B0

)′ =
1

π

[
H′F

(
exp(iω)

)−1 ⊗H′F
(
exp(−iω)

)−1
]
Nr (B0 ⊗ Ir) . (13.26)

Furthermore, the partial derivatives with respect to the state transition matrix is given by

∂vec
(
sy(ω)

)

∂vec
(
F
)′ =

[
H′sξ(ω)′ ⊗H′F

(
exp(−iω)

)−1
]

exp
(
−iω

)

+Knn

[
H′sξ(ω) ⊗H′F

(
exp(iω)

)−1
]

exp
(
iω
)
.

(13.27)

The next step is to determine the partial derivatives of (R,H, F, B0) with respect to ϑ and,
using the chain rule, postmultiply the matrices on the right hand side of equations (13.24)–
(13.27) by ∂vec(R)/∂ϑ′, ∂vec(H)/∂ϑ′, and so on. The partial derivatives of the reduced form
parameters of the state-space model with respect to the structural parameters can either be
achieved numerically or analytically; see Iskrev (2007). To determine which elements of θ that
are included in ϑ, we may simply check which elements of θ that have a non-zero column in at
least one of the matrices with partial derivatives ∂vec(M)/∂θ′, with M = R,H, F, B0. To obtain
∂vec(M)/∂ϑ′ we remove the columns of ∂vec(M)/∂θ′ that correspond to the elements of θ that
do not meet this condition. Finally, the partial derivative of sy(ω)′ with respect to ϑ is obtained
by premultiplying the above matrices of partial derivatives by the commutation matrix, i.e., we
use vec(sy(ω)′) = Knnvec(sy(ω)).

A frequency domain expression of Fisher’s information matrix may also be derived as in
Harvey (1989, Chapters 4 and 8). When following his approach, it may be expressed as

Iϑ =
1

2

T−1∑

j=0

K(ϑ,ωj), (13.28)

where ωj = 2πj/T as above. In practise we may use either (13.21) or (13.28) as the informa-
tion matrix, but the numerical integration needed for the Whittle’s expression is likely to give
a better approximation of Iϑ than the right hand side of (13.28). The reason is that a smaller
numerical representation of dω may be used in (13.21) than the value ∆ωj = 2π/T used in

(13.28).117

13.9. YADA Code

The decomposition of the population spectrum for the state-space model is undertaken by the
function DSGESpectralDecompTheta. This function works for a fixed value of the parameter
vector θ and computes the decomposition for either the observed variables or for the state
variables.

116 For any m × n matrix A, the mn ×mn dimensional commutation matrix is defined from vec(A) = Knmvec(A′),
with KmnKnm = Imn; see Magnus and Neudecker (1988, Chapter 3) for some properties of this matrix.

117 It may be noted that the information matrix in (13.28) is based on an asymptotic approximation of the log-

likelihood function when transforming it from the time domain to the frequency domain; see Harvey (1989, Chap-

ter 4.3) for details.
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When computing spectral densities for the observed variables, the function can also deal
with annualized variables. For variables in first differences of quarterly observations the an-

nualization filter is A(z) = 1 +
∑3

j=1 z
j , while for variables in first differences of monthly

observations the filter is A(z) = 1 +
∑11

j=1 z
j . The filter computation is taken care of by the

function AnnualFilter.
The function DSGEPopulationSpectrum computes the population spectrum for a fixed param-

eter value, while DSGECoherenceTheta computes the coherence statistic either for the observed
variables or for the state variables. Whittle’s estimator of the information matrix in (13.21) is
calculated by DSGEFrequencyDomainInfMat for T = 1.

13.9.1. DSGESpectralDecompTheta

The function DSGESpectralDecompTheta requires 6 input variables: theta, thetaPositions,
ModelParameters, VarStr, DSGEModel, and CurrINI. The first three and last two variables have
often appeared above; see, e.g., CalculateDSGEStateVariables in Section 11.17.3. The 4th
input variable VarStr is a string that supports the values ’Observed Variables’ and ’State

Variables’, thus indicating if spectral density decompositions should be performed for ob-
served variables or state variables.

The function provides the output variable SpecDec, a structure whose fields depend on the
value of VarStr. In addition, the function can provide output on status, the mcode output
variable from the DSGE model solving function that has been used, and kalmanstatus, the
status output from the Kalman filter.

For spectral decompositions of observed variables, the SpecDec structure has at least 13 fields
and at most 18. The additional 5 fields are all related to annualization of the data. The latter
operation can only be performed if the vector stored in the field annual to the DSGEModel input
variable has at least one value which is greater than unity. Specifically, a value of 4 means that
the corresponding observed variable is annualized by adding the current and previous 3 values
while a value of 12 means that the variables is annualized by adding the current and previous
11 values.

The 5 fields with annualized spectral densities are called AnnualY, AnnualMeasureError,
AnnualYStates, AnnualYShocks, and AnnualVariance. The first three hold f dimensional cell
arrays with n × n matrices, where f is the number of used frequencies between 0 and π. The
spectral density for the annualized observed variables are located in the AnnualY cell array, the
term related to the measurement errors in AnnualMeasureError, and the total influence of the
states variables in AnnualYStates. The field AnnualYShocks is a q × f cell array with n × n
matrices with the influence of the individual economic shocks in the rows of the cell array.
Finally, the field AnnualVariance is a vector with the population variances of the observed
variables.

Among the always present fields are Frequencies, Y, States, Shocks, MeasureError, and
OriginalVariance. The first is an f dimensional vector with the frequencies that have been
used for the spectral densities. The value of f is 300 with ω = 0, π/299,2π/299, . . . , π. The
following three fields are cell arrays of dimension f , f and q× f , respectively, with the spectral
densities for the observed variables, the share of all the state variables, and the shares due

to the individual shocks. The latter two are given by H′sξ(ω)H and H′s(j)
ξ

(ω)H; cf. equations

(13.10)–(13.11). The field MeasureError is an n × n matrix with the frequency independent
influence of the measurement errors on the spectral density, i.e., (1/2π)R, while the field
OriginalVariance is a vector with the population variances of the observed variables.

Three fields are further related to the population covariance of the observed variables. They
are called SigmaY, SigmaXi, and R. The first is the population covariance matrix itself, while
the second field is the share due to the state variables, and the third the share due to the
measurement errors.

Furthermore, the structure SpecDec has 4 fields that hold data for using shocks groups:
ShockNames, ShockGroups, ShockGroupNames, and ShockGroupColors. The first and the third
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are string matrices where the rows hold the names of the shocks and the shock groups, respec-
tively, where the number of rows is q for the shocks and g for the shock groups, with q ≥ g.
The second field is a vector of dimension q with integers that map each shock to a certain shock
group, while the last field is a g × 3 matrix, where each row gives the color as an RGB triple for
a shock group. The RGB triple holds values between 0 and 1, representing the combination of
red, green and blue, and this scale can be translated into the more common 8-bit scale that is
used to represent colors with integer values between 0 and 255.

For spectral decompositions of the state variables, the number of fields in the SpecDec struc-
ture is smaller. Among the 13 fields that are always present for the observed variables, 4 are no
longer available for the spectral decomposition of the state variables. The missing fields are: Y,
MeasureError, SigmaY, and R. Regarding the cell arrays, the dimension of the matrices stored
in each cell is now r× r. This means that, for example, the States field is an f dimensional cell
array of the r × r matrices sξ(ω). Moreover, the field OriginalVariance is a vector with the
population variances of the state variables, while SigmaXi is the corresponding r× r population
covariance matrix.

13.9.2. DSGEPopulationSpectrum

The function DSGEPopulationSpectrum computes the population spectrum for a set of frequen-
cies ω ∈ [0, π] using 4 input variables: H, R, F, B0. These variables correspond to the H, R, F,
and B0 matrices of the state-space model.

The function provides 7 output variables. The first is given by the cell array SyOmega that has
300 entries. Each element in the array is equal to the n× n matrix sy(ωj) for a given frequency
ωj = π(j − 1)/299, j = 1, . . . ,300. The second variable, Omega, is a vector of length 300 with
the different frequencies ωj , while the following, SxiOmega, is a cell array with 300 entries. This
time the array holds the r × r matrices sξ(ωj).

All the remaining output variables concerns input for the partial derivatives in (13.26) and
(13.27). The variables Fi and Fmi are cell arrays with 300 elements that hold the inverse
of F(exp(iωj))−1 and F(exp(−iωj))−1, respectively, while ei and emi are vectors with 300
elements, where each entry is exp(iωj) and exp(−iωj).

13.9.3. DSGECoherenceTheta

The function DSGECoherenceTheta requires 6 input variables to compute coherence for a fixed
value of the DSGE model parameters: theta, thetaPositions, ModelParameters, VarType,
DSGEModel, and CurrINI. The only unfamiliar variable is VarType, a boolean variable which is
unity if coherence for the observed variables should be computed and zero if state variables
have been selected.

As output, the function provides SOmega and Omega. The former is a matrix of dimension
m(m− 1)/2× f , where m is the number of variables, i.e., equal to n for the observed variables
and to r for the state variables. The dimension f is equal to the number of frequencies between
0 and π. The Omega variable is a vector of dimension f with the frequency values ωj . Following
the convention used by the DSGEPopulationSpectrum function above, f = 300 so that ωj =
π(j − 1)/299 for j = 1, . . . ,300.

13.9.4. DSGEFrequencyDomainInfMat

The function DSGEFrequencyDomainInfMat takes the same input variables as the time domain
function DSGEInformationMatrix (see Section 11.17.10). That is, it accepts the 6 variables:
theta, thetaPositions, ModelParameters, ParameterNames, DSGEModel, and CurrINI.

As output the function returns informationMatrix, the p × p information matrix in (13.21)
with T = 1. The dimension p is equal to the number of entries in θ that affect the population
spectrum, i.e., the number of entries that affect at least one of the state-space matrices H, R, F,
B0. The positions of these parameters are provided in the output variable ParamIncluded, while
the third output variable, ParamExcluded, holds the positions in θ of the parameters that do not
have an effect on the above state-space matrices (and, hence, only concern the A matrix).
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14. Bayesian VAR Analysis

Bayesian VAR models can be analysed with YADA. Their main purpose is to provide a competitor
when performing multistep out-of-sample forecasts with a DSGE model. Let xt be a p dimen-
sional covariance stationary vector stochastic process which satisfies the dynamic relation:

xt = Ψdt +
k∑

l=1

Πl

(
xt−l − Ψdt−l

)
+ εt, t = 1, . . . , T. (14.1)

The vector dt is deterministic and assumed to be of dimension q. The residuals εt are assumed to
be iid Gaussian with zero mean and positive definite covariance matrix Ω. The Πl matrix is p×p
for all lags, while Ψ is p×q and measures the expected value of xt conditional on the parameters
and other information available at t = 0. All Bayesian VAR models that are supported by YADA
have an informative prior on the Ψ parameters, the steady state of xt. Moreover, the elements
of the vector xt (dt) are all elements of the vector yt (xt) in the measurement equation of the
DSGE model. It is hoped that this notational overlap will not be confusing for you.

14.1. The Prior

The setup of the VAR model in (14.1) is identical to the stationary VAR process in mean-adjusted
form that Villani (2009) examines. The prior on the steady state Ψ is also the same as that con-
sidered in his paper and used by, e.g., Adolfson, Anderson, Lindé, Villani, and Vredin (2007a).
That is, with ψ = vec(Ψ) I assume that the marginal prior is given by

ψ ∼ Npq

(
θψ ,Σψ

)
, (14.2)

where Σψ is positive definite. YADA allows the user to select any values for θψ and for the
diagonal of Σψ . The off-diagonal elements of the prior covariance matrix are assumed to be
zero.

Let Π = [Π1 · · · Πk] be the p × pk matrix with parameters on lagged x. The prior distribu-
tions for these parameters that YADA supports are as follows:

(i) a Minnesota-style prior similar to the one considered by Villani (2009);
(ii) a normal conditional on the covariance matrix of the residuals (see, e.g., Kadiyala and

Karlsson, 1997); and
(iii) a diffuse prior.

I will address the details about each prior distribution below.
First, for the Minnesota-style prior the marginal prior distribution of Π is given by:

vec(Π) ∼ Np2k

(
θπ ,Σπ

)
, (14.3)

where the prior mean θπ need not be unity for the first own lagged parameters and zero for the
remaining. In fact, the general setup considers xt to be stationary with steady state determined
by the prior mean of Ψ and dt.

Let θπ = vec(µπ), where µπ = [µΠ1
· · · µΠk

] is a p × pk matrix with the prior mean of Π.
The assumption in YADA is that µΠl

= 0 for l ≥ 2, while µΠ1
is diagonal. The diagonal entries

are determined by two hyperparameters, γd and γl. With Πii,1 being the i:th diagonal element
of Π1, the prior mean of this parameter, denoted by µii,Π1

, is equal to γd if variable i in the xt
vector is regarded as being first differenced (e.g., output growth), and γl if variable i is in levels
(e.g., the nominal interest rate).

The Minnesota feature of this prior refers to the covariance matrix Σπ . Let Πij,l denote the
element in row (equation) i and column (on variable) j for lag l. The matrix Σπ is here assumed
to be diagonal with

Var
(
Πij,l

)
=





λo

lλh
, if i = j,

λoλcΩii

lλhΩjj

, otherwise.
(14.4)

The parameter Ωii is simply the variance of the residual in equation i and, hence, the ratio
Ωii/Ωjj takes into account that variable i and variable j may have different scales.
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Formally, this parameterization is inconsistent with the prior being a marginal distribution
since it depends on Ω. YADA tackles this in the standard way by replacing the Ωii parameters
with the maximum likelihood estimate. The hyperparameter λo > 0 gives the overall tightness
of the prior around the mean, while 0 < λc < 1 is the cross-equation tightness hyperparameter.
Finally, the hyperparameter λh > 0 measures the harmonic lag decay.

Second, when the prior distribution of Π is no longer marginal but conditional on the covari-
ance matrix of the residuals we use the following:

vec(Π)|Ω ∼ Np2k

(
θπ ,Ωπ ⊗ Ω

)
, (14.5)

where Ωπ is a positive definite pk × pk matrix, while θπ is determined in exactly the same way
as for the Minnesota-style prior above. A prior of this generic form is, for instance, examined
by Kadiyala and Karlsson (1997), where it is also discussed relative to, e.g., the Minnesota
prior. The matrix Ωπ is assumed to be block diagonal in YADA, where block l = 1, . . . , k
(corresponding to Πl) is given by

Ωπl =
λo

lλh
Ip. (14.6)

Hence, the overall tightness as well as the harmonic lag decay hyperparameter enter this prior,
while the cross-equation hyperparameter cannot be included. This is the price for using the
Kronecker structure of the prior covariance matrix. At the same time, different scales of the
variables are now handled by conditioning on Ω instead of using sample information.

Finally, in the case of the diffuse prior we simply assume that the prior density p(Π) = 1.
The marginal prior distribution for Ω is either assumed to be diffuse or inverted Wishart. Let

the marginal prior density of Ω be denoted by p(Ω). In the former case, we simply make use of
the standard formula (see, e.g., Zellner, 1971)

p(Ω) ∝ |Ω|−(p+1)/2
. (14.7)

In the latter case, the density function of Ω is proper and given in equation (4.12) in Sec-
tion 4.2.4. Recall that the mode of the inverted Wishart is equal to (1/(p+ v+ 1))A, while the
mean exists if v ≥ p+ 2 and is then given by E[Ω] = (1/(v−p−1))A; see, e.g., Zellner (1971,
Appendix B.4) and Bauwens et al. (1999, Appendix A) for details.

The hyperparameter A can be selected in two ways in YADA. The first route is to let A equal
the maximum likelihood estimate of Ω. This was suggested by, e.g., Villani (2005). The alter-
native is to let A = λAIp, where the hyperparameter λA gives the joint marginal prior residual
variance; see, e.g., Warne (2006). By selecting the degrees of freedom as small as possible
(given finite first moments) the impact of the parameterization for A is minimized, i.e., by

letting v = p + 2.118

Finally, it should be pointed out that the joint prior distribution of (Ψ,Π,Ω) satisfies certain
independence conditions. Specifically, Ψ is assumed to be independent of Π and Ω. Under the
Minnesota-style prior for Π it is also assumed that Π is a prior independent of Ω.

14.2. Posterior Mode

Before we turn to the estimation of the posterior mode we need to introduce some additional
notation. Let x be a p × T matrix with xt in column t, while ε is constructed in the same way.
Similarly, let d be a q × T matrix with dt in column t. Furthermore, let D be a q(k + 1) × T
matrix where column t is given by [d′t − d′

t−1
· · · − d′

t−k]′. Also, let y = x − Ψd, while Y is a

pk × T matrix where column t is given by [y′
t−1

· · · y′
t−k]′ with yt = xt −Ψdt. Next, let X be a

pk × T matrix where column t is [x′
t−1

· · · x′
t−k]′. From this we can define z = x − ΠX.

Hence, the stacked VAR may be expressed as either:

y = ΠY + ε, (14.8)

or
z = ΘD + ε, (14.9)

118 Given that the inverted Wishart prior has been selected for Ω and the normal conditional on Ω prior for Π, it

follows by standard distribution theory that the marginal prior of Π is matricvariate t.
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where Θ = [Ψ Π1Ψ · · · ΠkΨ]. Applying the vec operator on Θ gives us:

vec
(
Θ
)

=




Ipq(
Iq ⊗ Π1

)
...

(
Iq ⊗ Πk

)




vec
(
Ψ
)
,

= Uvec
(
Ψ
)
.

(14.10)

The nonlinearity of the VAR model means that an analytical solution for the mode of the joint
posterior distribution of (Ψ,Π,Ω) is not available. However, from the first order conditions we
can express three systems of equations that the mode must satisfy, and by iterating on these
equations it is possible to quickly solve for the posterior mode. Naturally, the choice of prior
influences the three systems of equation.

First, the choice of prior for Π and Ω does not have any effect on the equations that Ψ has to
satisfy at the mode conditional on Π and Ω. Here we find that

ψ =
[
U′(DD′ ⊗ Ω−1

)
U + Σ−1

ψ

]−1 (
U′vec

(
Ω−1zD′) + Σ−1

ψ θψ

)
. (14.11)

Second, in case the Minnesota-style prior is applied to Π, the posterior mode estimate must
satisfy the system of equations

vec
(
Π
)

=
[(
YY ′ ⊗ Ω−1

)
+ Σ−1

π

]−1 (
vec
(
Ω−1yY ′) + Σ−1

π θπ
)
. (14.12)

Similarly, when a normal conditional on the residual covariance matrix prior is used for Π, then
the posterior mode must satisfy:

Π =
(
yY ′ + µπΩ−1

π

) [
YY ′ + Ω−1

π

]−1
. (14.13)

The system of equations that Π needs to satisfy when a diffuse prior is used on these parameters

is, for instance, obtained by letting Ω−1
π = 0 in (14.13), i.e., Π = yY ′(YY ′)−1.

Third, in case a Minnesota-style prior is used on Π, then the posterior mode of Ω must satisfy:

Ω =
1

T + p + v + 1

(
εε′ +A

)
. (14.14)

If the prior on Ω is diffuse, i.e., given by (14.7), we simply set v = 0 and A = 0 in (14.14).
Similarly, when the prior on Π is given by (14.5), then the posterior mode of Ω satisfies

Ω =
1

T + p(k + 1) + v + 1

(
εε′ +A +

(
Π − µπ

)
Ω−1
π

(
Π − µπ

)′)
. (14.15)

If the prior on Ω is diffuse we again let v = 0 and A = 0. Similarly, if the prior on Π is diffuse,

we set k = 0 and Ω−1
π = 0 in (14.15).

14.3. Gibbs Samplers for a Bayesian VAR

The posterior samplers used by YADA for drawing from the posterior distribution of the param-
eters of the Bayesian VAR models that it supports are simple Gibbs samplers; see, e.g., Geman
and Geman (1984), Casella and George (1992), Tierney (1994), or Geweke (1999, 2005). This

means that the full conditional posterior distributions are needed for (Ψ,Π,Ω).119

The full conditional posterior distribution of Ψ is given by Villani (2009, Proposition A.1). Let
DT = {x1−k, . . . , x0, x1 . . . , xT , d1−k, . . . , d0, d1 . . . , dT}. We can now express this distribution
as:

ψ|Π,Ω,DT ∼ Npq

(
θ̄ψ , Σ̄ψ

)
, (14.16)

119 The Gibbs sampler is a special case of the Metropolis-Hastings algorithm where the proposal density is equal to

the full conditional posterior, with the effect that the accetance rate is always unity. The sampler was given its name

by Geman and Geman (1984), who used it for analysing Gibbs distributions on lattices.
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where Σ̄−1
ψ = U′(DD′⊗Ω−1)U+Σ−1

ψ and θ̄ψ = Σ̄ψ(U′vec(Ω−1zD′)+Σ−1
ψ θψ). Notice that the mean

of this conditional distribution has the same general construction as the first order condition
expression for Ψ in (14.11).

The full conditional posterior distribution of Π when a Minnesota-style prior is used is also
given by Villani (2009, Proposition A.1). Given our notation, this distribution can be expressed
as

vec
(
Π
)
|Ψ,Ω,DT ∼ Np2k

(
θ̄π , Σ̄π

)
, (14.17)

where Σ̄−1
π = (YY ′ ⊗ Ω−1) + Σ−1

π , while θ̄π = Σ̄π(vec(Ω−1yY ′) + Σ−1
π θπ). In this case the full

conditional distribution of Ω is:

Ω|Ψ,Π,DT ∼ IWp

(
εε′ +A, T + v

)
. (14.18)

If the prior on Ω is assumed to be diffuse, then we simply let v = 0 and A = 0 in (14.17). This
results in the full conditional posterior of Ω in Villani (2009).

The case when the prior distribution of Π is normal conditional on Ω instead implies that the
full conditional posterior of the autoregressive parameters is given by:

vec
(
Π
)
|Ψ,Ω,DT ∼ Np2k

(
vec
(
µ̄π
)
,
[
Ω̄π ⊗ Ω

])
, (14.19)

where Ω̄−1
π = YY ′ + Ω−1

π and µ̄π = (yY ′ + µπΩ−1
π )Ω̄π . For this case we find that the full

conditional posterior of Ω is:

Ω|Ψ,Π,DT ∼ IWp

(
εε′ +A +

(
Π − µπ

)
Ω−1
π

(
Π − µπ

)′
, T + pk + v

)
. (14.20)

If the prior on Ω is assumed to be diffuse, then we simply let v = 0 and A = 0 in (14.20).
Finally, in case a diffuse prior is assumed for Π, then the full conditional distribution of Π is

given by (14.19), with Ω−1
π = 0. Similarly, the full conditional distribution of Ω is now given by

(14.20), with k = 0 and Ω−1
π = 0. Again, if the prior on Ω is assumed to be diffuse, then we

simply let v = 0 and A = 0 in (14.20).

14.4. Marginal Likelihood

The marginal likelihood for the Bayesian VAR model can be computed using the ideas in Chib
(1995); see, also, Geweke (1999, 2005). That is, we first note that

p
(
DT

)
=
p
(
DT |Ψ,Π,Ω

)
p
(
Ψ,Π,Ω

)

p
(
Ψ,Π,Ω|DT

) , (14.21)

by applying Bayes rule. Chib (1995) refers to this expression as the basic marginal likelihood
identity and it holds for any parameter point (Ψ,Π,Ω) in the support.

The numerator in (14.21) is simply the likelihood times the joint prior density, while the
denominator is the joint posterior density. The numerator can be directly evaluated at any valid
parameter point, such as the posterior mode. The density of the joint posterior is, however,
unknown, but can be estimated.

The obtain such an estimate we first factorize the joint posterior density as follows:

p
(
Ψ,Π,Ω|DT

)
= p

(
Ω|Ψ,Π,DT

)
p
(
Ψ|Π,DT

)
p
(
Π|DT

)
. (14.22)

The first term on the right hand side of (14.22) is the density of the inverted Wishart and

can therefore be evaluated directly at the selected parameter point (Ψ,Π,Ω) = (Ψ̃, Π̃, Ω̃); cf.
equation (14.18) or (14.20).

Let (Ψ(i),Π(i),Ω(i)) be N posterior draws using the relevant Gibbs sampler in Section 14.3
for the full conditional posterior. The third term on the right hand side of (14.22) can now be
estimated as

p̂
(
Π̃|DT

)
= N−1

N∑

i=1

p
(
Π̃|Ψ(i),Ω(i),DT

)
. (14.23)

The density on the right hand side of (14.23) is normal and parameterized as shown in equation
(14.17) or (14.19).
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There remains to estimate the conditional posterior density p(Ψ|Π,DT ) at the selected pa-
rameter point. In this case we cannot, as Chib (1995) explains, use the posterior draws from the
Gibbs sampler from the full conditional posteriors above. Instead, we can apply Gibbs samplers

for (Ψ,Ω) for the fixed value of Π = Π̃. That is, we draw Ψ(j) from (14.16) with Π = Π̃. Sim-
ilarly, we draw Ω(j) from either (14.18) or from (14.20) with Π = Π̃. The gives us N posterior

draws (Ψ(j),Ω(j)) that are all based on a fixed value of Π. We can now estimate p(Ψ|Π,DT ) at

(Ψ̃, Π̃) using

p̂
(
Ψ̃|Π̃,DT

)
= N−1

N∑

j=1

p
(
Ψ̃|Ω(j), Π̃,DT

)
. (14.24)

The density on the right hand side is normal with parameters given by equation (14.16).
There are, of course, alternative ways of estimating the marginal likelihood p(DT ) for the

Bayesian VAR model; see, e.g., Geweke (1999). The approach advocated by Chib (1995) may be
regarded as reliable when a parameter point with a high posterior density is used. The posterior
mode, discussed in Section 14.2, is one such point, but one may also consider an estimate of the
joint posterior mean. YADA always makes use of the posterior mode, thus explaining why the
posterior mode must be estimated prior to running the posterior sampler for the Bayesian VAR.
Moreover, when the Gibbs sampler based on the full conditional posteriors is applied, then the
point of initialization is given by the posterior mode.

The chosen order of factorization in equation (14.22) influences how the Chib estimator of
the marginal likelihood is carried out. Since Π generally has (a lot) more parameters than Ψ
or Ω it is useful to fix Π first. The additional Gibbs steps for Ψ and Ω can be carried out much
more quickly than the more time consuming Π step. The choice between using the full condition
posterior for Ψ or Ω is not so important. From a computational perspective it should generally
not matter much if we estimate p(Ψ|Π,DT ) or p(Ω|Π,DT ) since the dimensions of Ψ and Ω are
generally fairly low.

14.5. Unconditional Forecasting with a VAR Model

The Thompson and Miller (1986) procedure may also be applied to the Bayesian VAR in Sec-
tion 14. In this case we let θ = (Ψ,Π,Ω) where the draws are obtained using the Gibbs
samplers discussed in Section 14.3. For a given draw θ from its posterior distribution we may
first draw residuals εT+1, . . . , εT+h from a normal distribution with mean zero and covariance
matrix Ω. Next, we simulate the xT+1, . . . , xT+h by feeding the residual draws into the VAR
system in (14.1). Repeating this P times for the given θ gives us P sample paths conditional on
θ. By using S draws of θ from its posterior we end up with PS paths of xT+1, . . . , xT+h from its
predictive density.

For the Bayesian VAR we may decompose the prediction uncertainty into two components,
residual uncertainty and parameter uncertainty. That is,

C
(
xT+i|DT

)
= ET

[
C
(
xT+i|DT ; θ

)]
+ CT

[
E
(
xT+i|DT ; θ

)]
, (14.25)

where the deterministic process dT+1, . . . , dT+h has been suppressed from the expressions to
simplify notation. The first term on the right hand side measures the residual uncertainty,
while the second measures parameter uncertainty. To parameterize these two terms, we first
rewrite the VAR model in (14.1) in first order form:

YT+i = BYT+i−1 + JkεT+i, i = 1, . . . , h, (14.26)

where Jk is a pk × p matrix with Ip on top and a zero matrix below. This means that yT+i =
J ′
k
YT+i. Furthermore, the pk × pk matrix B is given by

B =




Π1 · · · Πk−1 Πk

Ip 0 0
. . .

0 Ip 0



. (14.27)
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Using these well known expressions we first find that the residual uncertainty term is:

ET
[
C
(
xT+i|DT ; θ

)]
= ET

[
i−1∑

j=0

J ′
k
BjJ

k
ΩJ ′

k

(
Bj
)′
J
k

]
i = 1, . . . , h, (14.28)

while the parameter uncertainty term is given by:

CT
[
E
(
xT+i|DT ; θ

)]
= CT

[
ΨdT+i + J ′

k
BiYT

]
i = 1, . . . , h. (14.29)

It may be noted that the parametric expression for the residual uncertainty term can be

simplified such that the summation over j is avoided for all i. Define the pk × pk matrix Σ̄(i)
X

from the difference equation

Σ̄(i)
X = J

k
ΩJ ′

k
+ BΣ̄(i−1)

X B′, i = 1, . . . , h,

where Σ̄(0)
X = 0. It can now be shown that:

J ′
k
Σ̄(i)
X Jk =

i−1∑

j=0

J ′
k
BjJ

k
ΩJ ′

k

(
Bj
)′
J
k
, i = 1, . . . , h.

14.6. Conditional Forecasting with the VAR Model

Conditional forecasting with a reduced form Bayesian VAR can be conducted in YADA using
the ideas from Waggoner and Zha (1999). That is, reduced form shocks εT+i are drawn over
the conditioning sample from a normal distribution with a mean and covariance matrix which
guarantees that the assumptions are satisfied. The approach of fixing certain shocks is not used
for the VAR since the individual reduced form shocks do not have any particular interpretation
other than being 1-step ahead forecast errors when the parameters are given.

The conditioning assumptions for the VAR model are expressed as

z̃T+i = K̃′
1xT+i +

i−1∑

j=1

K̃′
2jxT+i−j + ũT , i = 1, . . . , g, (14.30)

where z̃T+i ism dimensional withm < p, and ũT is anm dimensional vector of known constants.

The matrices K̃1 and K̃2j are p ×m with rank(K̃1) = m and j = 1, . . . , g − 1.
To derive the moments of the distribution for the shocks over the conditioning sample it is

convenient to write the VAR model on state-space form. Hence, let the measurement equation
be given by

xt = Ψdt + J ′
k
Yt, (14.31)

while the state equation is
Yt = BYt−1 + Jkεt, (14.32)

where Jk, Yt, and B are defined in Section 14.5.
For convenience and, as we shall soon see, without loss of generality, let

εt = Ω1/2η̃t, (14.33)

where Ω1/2 is any matrix such that Ω = Ω1/2Ω1/2′. The shocks η̃t are iid N(0, Ip). The first
step shall be to derive the mean and the covariance matrix for these normalized shocks which
guarantee that the conditioning assumptions in (14.30) are satisfied. We shall then translate
these moments into the ones that apply for the reduced form shocks εt. Given that the moments
do not involve a specific choice for Ω1/2, the above claim is implied.

The state equation for period T + i can be expressed relative to YT and the normalized shocks
from periods T + 1, . . . , T + i by

YT+i = BiYT +
i−1∑

j=0

BjJkΩ1/2η̃T+i−j , i = 1, . . . , g.
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Substituting this into the measurement equation for xT+i we obtain

xT+i = ΨdT+i + J ′
k
BiYT +

i−1∑

j=0

J ′
k
BjJ

k
Ω1/2η̃T+i−j , i = 1, . . . , g.

For periods T + 1, . . . , T + g we can stack these equations as



xT+g

xT+g−1
...

xT+1




=




ΨdT+g

ΨdT+g−1
...

ΨdT+1




+




J ′
k
Bg

J ′
k
Bg−1

...

J ′
k
B



YT+

+




Ω1/2 J ′
k
BJ

k
Ω1/2 · · · J ′

k
Bg−1J

k
Ω1/2

0 Ω1/2 J ′
k
Bg−2J

k
Ω1/2

...
. . .

...

0 0 Ω1/2







η̃T+g

η̃T+g−1
...

η̃T+1



,

or
X̃T+g = ΨT+g + GYT + DÑT+g . (14.34)

The conditioning assumptions in (14.30) can also be stacked in the same manner as the
conditioning assumptions for the DSGE model in equation (12.15). This means that:




z̃T+g

z̃T+g−1
...

z̃T+1




=




K̃′
1 K̃′

21 · · · K̃′
2g−1

0 K̃′
1 K̃′

2g−2
...

. . .

0 0 K̃′
1







xT+g

xT+g−1
...

xT+1




+




ũT

ũT
...

ũT



,

or
Z̃T+g = K̃′X̃T+g + ŨT . (14.35)

Substituting for X̃T+g from (14.34) in (14.35) and rearranging terms gives us the following

linear restrictions that the shocks ÑT+g must satisfy in order to meet the conditioning assump-
tions

K̃′DÑT+g = k̃T+g , (14.36)

where k̃T+g = Z̃T+g − ŨT − K̃′(ΨT+g + GYT ).

Like in Waggoner and Zha (1999), the distribution of the shocks ÑT+g conditional on the
restriction (14.36) is normal with mean µÑ,T+g and idempotent covariance matrix ΣÑ,T+g . We

here find that

µÑ,T+g = D′K̃
(
K̃′DD′K̃

)−1
k̃T+g ,

ΣÑ,T+g = Ipg − D′K̃
(
K̃′DD′K̃

)−1
K̃′D.

(14.37)

This concludes the first step of deriving the mean and the covariance matrix that the standard-
ized shocks should be drawn from to ensure that the conditioning assumptions are satisfied.

For the second step, where we will show that the choice of Ω1/2 does not have any effect on
the reduced form shocks subject to the conditioning assumptions, let ET+g be the stacking of
εT+g , . . . , εT+1. This means that

ET+g =
(
Ig ⊗ Ω1/2

)
ÑT+g . (14.38)

The restriction (14.36) can now be expressed in terms of ET+g as

K̃′D̃ET+g = k̃T+g . (14.39)
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The matrix D̃ = D(Ig ⊗ Ω−1/2) and does not depend on Ω1/2. In fact

D̃ =




Ip J ′
k
BJ

k
· · · J ′

k
Bg−1J

k

0 Ip J ′
k
Bg−2J

k
...

. . .
...

0 0 Ip



.

Moreover, the definition in (14.38) also means that the distribution of the reduced form shocks
ET+g conditional on the restriction (14.39) is normal with mean µE,T+g and covariance matrix
ΣE,T+g . These moments are equal to

µE,T+g =
(
Ig ⊗ Ω

)
D̃′K̃

[
K̃′D̃

(
Ig ⊗ Ω

)
D̃′K̃

]−1

k̃T+g ,

ΣE,T+g =
(
Ig ⊗ Ω

)
−
(
Ig ⊗ Ω

)
D̃′K̃

[
K̃′D̃

(
Ig ⊗ Ω

)
D̃′K̃

]−1

K̃′D̃
(
Ig ⊗ Ω

)
.

(14.40)

From these expressions we find that the moments do not depend on a particular choice of Ω1/2

and the claim has therefore been established.
The computation of the conditional predictive distribution can now proceed as follow. For

a draw θ = (Ψ,Π,Ω) from the joint posterior distribution, we may first draw ET+g from
N(µE,T+g ,ΣE,T+g) thus yielding a sequence of shocks, εT+1, . . . , εT+g , which guarantees that
the conditioning assumptions (14.30) are met. Next, we draw εT+i for i = g + 1, . . . , h from
N(0,Ω). With these shocks we can simulate the path xT+1, . . . , xT+h by feeding the residuals
into the VAR system (14.1). Repeating this P times for the given θ gives us P sample paths from
the predictive distribution conditional on the historical data, the conditioning assumptions, and
θ. Repeating the above procedure for S draws of θ from its joint posterior distribution means
that we end up with PS paths of xT+1, . . . , xT+h from the conditional predictive distribution.

For each draw θ we can also estimate the population mean of xT+1, . . . , xT+h by letting
εT+1, . . . , εT+g be equal to µE,T+g . The shocks εT+i are next set to zero for i = g + 1, . . . , h.

By feeding these shock values into the VAR system we obtain a path for E[xT+i|DT , Z̃T+g ; θ],
i = 1, . . . , h. Repeating this S times for the different θ draws we may estimate the population
mean of the conditional predictive distribution by taking the average of these S paths.

The prediction uncertainty of the conditional forecasts can be decomposed into error (or
residual) uncertainty and parameter uncertainty. The equivalent to equation (14.25) is now

C
(
xT+i|DT , Z̃T+g

)
= ET

[
C
(
xT+i|DT , Z̃T+g ; θ

)]
+ CT

[
E
(
xT+i|DT , Z̃T+g ; θ

)]
, (14.41)

for i = 1, . . . , h, where the ET and CT as in Section 12.1 denotes the expectation and covariance
with respect to the posterior of θ at time T . Once again, the deterministic variables over the
prediction horizon have been suppressed from the expression.

To parameterize these terms we first note that

E
[
xT+i|DT , Z̃T+g ; θ

]
= ΨdT+i + J ′

k
BiYT +

i−1∑

j=0

J ′
k
BjJ

k
µ̄E,T+i−j ,

where µ̄E,T+i−j = 0 if i − j > g. These expected values satisfy the conditioning assumptions for
i = 1, . . . , g. Moreover, the forecast error for a given θ is

xT+i − E
[
xT+i|DT , Z̃T+g ; θ

]
=

i−1∑

j=0

J ′
k
BjJ

k

(
εT+i−j − µ̄E,T+i−j

)
.
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Next, the covariance matrix ΣE,T+g is invariant to T since D̃ and K̃ are both invariant to T .
Partitioning this gp × gp matrix as follows

ΣE,T+g =




Σ̄(g,g) · · · Σ̄(g,1)

...
. . .

...

Σ̄(1,g) · · · Σ̄(1,1)


 ,

where Σ̄(i,j) = Σ̄(j,i)′ is the p × p covariance matrix for the vector pair (εT+i, εT+j) for all i, j =
1, . . . , g. The forecast error covariance matrix of xT+i conditional on DT , Z̃T+g and θ is now
equal to

C
[
xT+i|DT , Z̃T+g ; θ

]
=

i−1∑

j=0

i−1∑

l=0

J ′
k
BjJ

k
Ω̄(i,j)J ′

k

(
B′)lJ

k
,

where

Ω̄(i,j) =





Σ̄(i,j), if i, j = 1, . . . , g,

Ω, if i = j, i = g + 1, . . . , h

0 otherwise.

These covariance matrices also satisfy the conditioning assumptions, meaning that, for instance,

K̃′
1Σ̄(1,1) = 0.
The moment expression for fixed parameters may also be expressed more compactly. For

forecast horizons until g we have that

E
[
X̃T+g |DT , Z̃T+g ; θ

]
= ΨT+g + GYT + D̃µE,T+g , (14.42)

gives us the mean predictions from T + 1 until T + g. The forecast error covariance matrix is
here given by

C
(
X̃T+g |DT , Z̃T+g ; θ

)
= D̃ΣE,T+gD̃

′. (14.43)

Premultiplying the mean predictions in (14.42) by K̃′ gives us Z̃T+g − ŨT and, hence, they

satisfy the conditioning assumptions. Similarly, premultiplying the covariance matrix by K̃′ or

postmultiplying it by K̃ gives us a zero matrix. It follows that the conditioning assumptions are
always satisfied by any draw from the predictive distribution for fixed θ.

For forecast horizons i greater than the conditioning horizon g it can be shown that

E
[
xT+i|DT , Z̃T+g ; θ

]
= ΨdT+i + J ′

k
BiYT + J ′

k
Bi−gB̃µE,T+g , i = g + 1, . . . , h, (14.44)

where the pk × pg matrix

B̃ =
[
Jk BJk · · · Bg−1Jk

]
.

The forecast error covariance matrix for fixed θ is now given by

C
(
xT+i|DT , Z̃T+g ; θ

)
=

i−g−1∑

j=0

J ′
k
BjJ

k
ΩJ ′

k

(
B′)jJ

k
+ J ′

k
Bi−gB̃ΣE,T+g B̃

′(B′)i−gJ
k
, (14.45)

for i = g + 1, . . . , h. Notice that for a stationary VAR model the mean prediction converges to
the mean of x as i→ ∞ and the prediction covariance matrix to the covariance matrix of x.

The modesty analysis can also be performed in the VAR setting. Like in the case of the state-
space model we can consider one multivariate and two univariate statistics. These are again

based on the ideas of Adolfson et al. (2005) and Leeper and Zha (2003). For a given draw ĒT+g

from N(µE,T+g ,ΣE,T+g) the difference between the period T + g simulated conditional forecast
value of the endogenous variables and the unconditional forecast (given θ) is

ΦT,g

(
ĒT+g

)
= xT+g

(
ĒT+g; θ

)
−E
[
xT+g |DT ; θ

]
=

g−1∑

j=0

J ′
k
BjJ

k
ε̄T+g−j = J ′

k
B̃ĒT+g , (14.46)

– 231 –



where ĒT+g = [ε̄′T+g · · · ε̄′T+1]′. The forecast error covariance matrix for the unconditional

forecast of xT+g is

ΩT+g =
g−1∑

j=0

J ′
k
BjJ

k
Ω
(
J ′
k
BjJ

k

)′
. (14.47)

From these expressions we can define a multivariate modesty statistic as

MT,g

(
ĒT+g

)
= ΦT,g

(
ĒT+g

)′
Ω−1
T+gΦT,g

(
ĒT+g

)
. (14.48)

Under the hypothesis that the conditioning shocks are modest this statistic is χ2(p). An

alternative reference distribution can be generated by computing the same statistic with ĒT+g

replaced with εT+i drawn from N(0,Ω) for i = 1, . . . , g and defining this reference statistic as

MT,g(ET+g). The event {MT,g(ET+g) ≥ MT,g(ĒT+g)} can then be tested for each one of the PS
conditional forecast paths that is computed, making it possible to estimate the probability of this
event. If the probability is sufficiently small we may say the hypothesis of modest conditioning
assumptions is rejected.

Univariate modesty statistics can now be specified by selecting elements from the vector in
(14.46) and the matrix in (14.47). Specifically, we let

M(i)
T,g

(
ĒT+g

)
=

Φ(i)
T,g

(
ĒT+g

)
√

Ω(i,i)
T+g

, i = 1, . . . , p. (14.49)

This statistic has a standard normal distribution under the assumption that the conditioning
information is modest and, like the multivariate statistic, it takes into account that there is
uncertainty about all shocks.

For a Leeper-Zha type of univariate modesty statistic we set the reduced form shocks equal
to the mean µE,T+g = [µ̄′E,T+g · · · µ̄E,T+1]′ value. The covariance matrix for the forecast errors

thus becomes singular and is given by

Ω̄T+g =
g−1∑

j=0

J ′
k
BjJ

k
Σ̄E,T+g−jJ ′k

(
B′)jJ

k
. (14.50)

where the “covariance matrix” of the non-zero shocks is given by

Σ̄E,T+j = ΩK̃1

(
K̃′

1ΩK̃1

)−1

K̃′
1Ω,

for j = 1, . . . , g. The univariate Leeper-Zha type of modesty statistic is now given by

M(i)
T,g

(
µE,T+g

)
=

Φ(i)
T,g

(
µE,T+g

)
√

Ω̄(i,i)
T+g

, i = 1, . . . , p. (14.51)

This statistic can now be compared with a standard normal distribution.

14.7. Estimating the Population Spectrum for a VAR Model

As already mentioned in Section 13.3, the population spectrum for a VAR model is provided in,
e.g., Hamilton (1994, Chapter 10). The model in equation (14.1) may be rewritten as

Π(L)
(
xt − Ψdt

)
= εt, (14.52)

where

Π(z) = Ip −
k∑

l=1

Πlz
l.

If all roots of Π(z) lie outside the unit circle120 it follows that xt is covariance stationary and
that the autocovariances are absolutely summable.

120 Or equivalently, all eigenvalues of B in (14.27) lie inside the unit circle.
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The population spectrum of x, denoted by sx(ω), exists for all ω and is now equal to

sx(ω) =
1

2π
Π
(
exp(−iω)

)−1
Ω
(

Π
(
exp(iω)

)′)−1

, ω ∈ [−π, π]. (14.53)

Rather than comparing the population spectrum of the state-space model to a non-parametric
estimate it may be useful to compare it to a VAR based estimate. The latter model often gives a
reasonably good approximation of the covariance properties of the data; see, for instance, King
and Watson (1996) and Christiano and Vigfusson (2003) for papers using unrestricted VARs
when comparing frequency domain properties of estimated models to the data.

14.8. YADA Code

YADA contains a wide range of functions for the Bayesian VAR analysis. In this section I will
limit the discussion to the four main topics above, i.e., the prior, the posterior mode estimation,
the Gibbs sampler, and the marginal likelihood calculation.

14.8.1. Functions for Computing the Prior

This section concerns two functions, MinnesotaPrior and NormalConditionPrior. These func-
tions both compute elements needed for the prior covariance matrix of the Π parameters. The
first functions is used when the Minnesota-style prior is assumed for these parameters, i.e.,
when Σπ in (14.3) is determined as in equation (14.4). Similarly, the second function is applied
when the normal condition on Ω prior is assumed. In this case, the matrix Ωπ in (14.5) is
determined as in equation (14.6).

14.8.1.1. MinnesotaPrior

The function MinnesotaPrior requires 5 inputs: OverallTightness (λo), CrossEqTightness
(λc), HarmonicLagDecay (λh), OmegaVec, and k. While the first three inputs are hyperparam-
eters, the fourth is a vector with the diagonal elements of Ω, i.e., with the residual variances.
YADA always uses the maximum likelihood estimate of Ω to generate these residual variances.
Finally, the fifth input is the lag order of the Bayesian VAR. The function provides the p2k×p2k
matrix SigmaPi (Σπ) as output.

14.8.1.2. NormalConditionPrior

The function NormalConditionPrior takes 4 inputs: OverallTightness, HarmonicLagDecay, p,
and k. The first two are the same hyperparameters as the MinnesotaPrior function uses, while
the third input is the number of endogenous variables, and the fourth the lag order. As output
the function provides the pk × pk matrix OmegaPi (Ωπ).

14.8.2. Functions for Estimating the Mode of the Joint Posterior

The function BVARPosteriorModeEstimation is used to estimate the posterior mode of the
Bayesian VAR parameters. It handles all the types of priors discussed in Section 14.1. The
main inputs for this function are the structures DSGEModel and CurrINI; see Section 7.4.

From the perspective of analysing a Bayesian VAR model, the DSGEModel structure contains
information about the type of prior to use for VAR parameters, their hyperparameters, the lag
order, as well as which endogenous and exogenous variables to use, for which sample, the data,
the maximum number of iterations to consider, and the tolerance value of the convergence
criterion. This information allows the function to compute the maximum likelihood estimates
of Ψ, Π, and Ω and fully set up the prior. The maximum likelihood estimates are used as initial
values for the posterior mode estimation algorithm. The maximum likelihood estimate of Ω is
adjusted to take the prior into account. For example, if a diffuse prior is used for Ω and for
Π, then the maximum likelihood estimate of Ω is multiplied by T/(T + p + 1). Similarly, if
the inverted Wishart prior in (4.12) is assumed with v ≥ p + 2, then the maximum likelihood
estimate is multiplied by T , A is added to this, and everything is divided by T + p + v + 1.

As discussed in Section 14.2, it is not possible to solve for the posterior mode analytically.
Instead, it is possible to iterate on the first order conditions until a set of values that satisfy
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these conditions can be found. The posterior mode estimation routine in YADA first evaluates
the log posterior at the initial values. For each iteration i YADA computes:

• Π(i) given Ψ(i−1) and Ω(i−1) as shown in equation (14.12) or (14.13);

• Ψ(i) given Π(i) and Ω(i−1) as shown in equation (14.11); and

• Ω(i) given Ψ(i) and Π(i) as shown in equation (14.14) or (14.15).

With a new set of parameter values, the log posterior is recalculated and if then absolute change
is not sufficiently small, the algorithm computes iteration i + 1. Otherwise it exits.

YADA has three functions for calculating the log posterior. First, if a diffuse prior on Π
is assumed, then BVARLogPosteriorDiffuse is called. Second, if the prior on Π is of the
Minnesota-style, then the function BVARLogPosteriorMinnesota is used. Finally, the function
BVARLogPosteriorNormalCond is considered when a normal conditional on the residual covari-
ance matrix prior on Π is assumed.

Furthermore, YADA has 5 functions for dealing with the computations in (14.11)–(14.15).
These functions are: BVARPsiMean (equation 14.11) for Ψ, BVARPiMeanMinnesota (equation
14.12) or BVARPiMeanNormalCond (equation 14.13) for Π, and BVAROmegaMinnesota (equation
14.14) or BVAROmegaNormal (equation 14.15) for Ω. The functions are also used by the Gibbs
sampling routine for the Bayesian VAR; cf. Section 14.8.3.

14.8.2.1. BVARLogPosteriorDiffuse

The function BVARLogPosteriorDiffuse needs 11 inputs. First of all it requires the parameter
values Omega (Ω), Pi (Π), and Psi (Ψ). Next, the hyperparameters of the prior of the residual
covariance matrix are needed as Amatrix (A) and qDF (v), and the hyperparameters of the
steady state prior thetaPsi (θψ) and SigmaPsi (Σψ). Finally, the function needs information
about the endogenous and exogenous variables in terms of the matrices x (x), X (X), d (d), and
dLag. The latter matrix is given by d−1 in D = [d′ d′−1

]′, i.e., the final qk rows of D.

The function provides the output scalar logPost which is the sum of the log-likelihood,
the log-prior of Ψ and the log-prior of Ω. All proper log-densities include their integration
constants. In case the Ω prior is diffuse (improper), it simply uses the log of the right hand side
of equation (14.7).

14.8.2.2. BVARLogPosteriorMinnesota

The function BVARLogPosteriorMinnesota requires 13 inputs. All the inputs that the function
BVARLogPosteriorDiffuse accepts are included as well as two additional inputs. These extra
inputs appear as argument eight and nine and are called thetaPi (θπ) and SigmaPi (Σπ).

As output the function provides the scalar logPost which is the sum of the log-likelihood,
the log-prior of Ψ, the log-prior of Π, and the log-prior of Ω.

14.8.2.3. BVARLogPosteriorNormalCond

The function BVARLogPosteriorNormalCond requires 13 inputs. All the inputs that the function
BVARLogPosteriorDiffuse accepts are included as well as two additional inputs. These extra
inputs appear as argument eight and nine and are called muPi (µπ) and OmegaPi (Ωπ).

As output the function provides the scalar logPost which is the sum of the log-likelihood,
the log-prior of Ψ, the log-prior of Π, and the log-prior of Ω.

14.8.2.4. BVARPsiMean

The function BVARPsiMean is used to compute the value of θ̄ψ is equation (14.16). Optionally,

it can also calculate the pq × pq matrix Σ̄ψ as well. A total of 8 inputs are needed by the
function. These are given by: Omega, Pi, thetaPsi, invSigmaPsi, x, X, d, and dLag. Apart from
invSigmaPsi all these inputs are discussed for the BVARLogPosteriorDiffuse function. The
matrix invSigmaPsi is simply the inverse of Σψ .

The required output from the function is ThetaBarPsi, a p × q matrix. If we apply the vec

operator on this matrix we obtain θ̄ψ . The optional output is called SigmaBarPsi. While only
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the required output is needed by the posterior mode estimation routine, the optional output is
needed by the Gibbs sampler for drawing from the posterior distribution.

14.8.2.5. BVARPiMeanMinnesota

The function BVARPiMeanMinnesota accepts 8 inputs: Omega, Psi, thetaPi, invOmegaPi, x, X,
d, and dLag. Apart from invOmegaPi all these inputs are described above for the log posterior
function BVARLogPosteriorMinnesota. The input invOmegaPi is simply the inverse of Σπ .

The output ThetaBarPi is required and is a p×pk matrix. The vector θ̄π in (14.17) is obtained
by applying the vec operator to this output. Optionally, the matrix SigmaBarPi is provided. This
output is equal to Σ̄π in the same equation.

14.8.2.6. BVARPiMeanNormalCond

The function BVARPiMeanNormalCond needs 7 inputs: Psi, muPi, invOmegaPi, x, X, d, and
dLag. All these inputs apart from invOmegaPi are discussed above for the log posterior function
BVARLogPosteriorNormalCond. The input invOmegaPi is, of course, the inverse of Ωπ .

The output muBarPi is required and is the p×pk matrix µ̄π in (14.19). Optionally, the matrix
OmegaBarPi is provided. This output is equal to Ω̄π in the same equation.

14.8.2.7. BVAROmegaMinnesota

The function BVAROmegaMinnesota needs 8 inputs: Pi, Psi, A, qDF, x, X, d, and dLag. These in-
puts are also required by BVARLogPosteriorMinnesota. As output the function provides Omega,
the p × p matrix in equation (14.14).

14.8.2.8. BVAROmegaNormal

The function BVAROmegaNormal accepts 10 inputs: Pi, Psi, A, qDF, muPi, invOmegaPi, x, X, d,
and dLag. These inputs are discussed above; see the BVARLogPosteriorNormalCond and the
BVARPiMeanNormalCond functions. As output the function provides Omega, the p × p matrix in
equation (14.15).

14.8.3. Gibbs Sampling

The function BVARPosteriorSampling controls the events regarding the posterior sampling al-
gorithm. The function takes exactly the same inputs as the posterior mode estimation function
BVARPosteriorModeEstimation. The Bayesian VAR estimation routines follow the same type
of logic as the DSGE model estimation routines. This means that you have to run the posterior
mode estimation before the posterior sampling function can be run. The reason is simply that
the posterior sampling routine for the Bayesian VAR uses the posterior mode estimates of the
parameters to initialize the Gibbs sampler.

As in the case of posterior sampling for the DSGE model, the sampling function for the
Bayesian VAR model reads a number of variable entries from the posterior mode estimation
output file. These data are read from file to ensure that exactly the same data is used for
posterior sampling as was used for posterior mode estimation. Hence, if you have changed
some hyperparameter after running the posterior mode estimation part, the new value will not
be used by YADA. Similarly, changes to the sample will be ignored as well as any other changes
to the data.

The posterior sampling function can look for sampling data that you have already gener-
ated and can load this data. These features operate in exactly the same way for the posterior
sampling function for the DSGE and the Bayesian VAR model.

The precise Gibbs sampler for the Bayesian VAR depends on the prior you are using for the
Ψ, Π, and Ω parameters. The posterior mode estimates are always used as initial values for

the sampler. To generate draw number i of the parameters YADA first draws Ω(i) conditional

on Ψ(i−1) and Π(i−1) with the function InvWishartRndFcn. Since the marginal likelihood is
also estimated as described in Section 14.4 YADA also draws a value for Ω conditional on
Π fixed at the posterior mode and a theoretically consistent previous value of Ψ, i.e., one

that is also conditioned on Π at the posterior mode. Next, YADA draws Π(i) conditional on
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Ψ(i−1) and Ω(i). Here it utilizes the function MultiNormalRndFcn. To finish the i:th draw, a
value of Ψ(i) conditional on Π(i) and Ω(i) is obtained. Again, YADA makes use of the function
MultiNormalRndFcn.

As in the case of Ω YADA also draws a value of Ψ conditional on Π fixed at the posterior mode
and the draw obtained for Ω when Π is fixed at the mode. This value of Ψ is used for the next
draw of Ω conditional on Π fixed at the posterior mode. In this fashion YADA generates two

sets of Gibbs sampler draws. The first full set (Ψ(i),Π(i),Ω(i)) are draws from the joint posterior

and are also used to estimate the density p(Π̃|DT) in equation (14.23). The second partial set

(Ψ(j),Ω(j)) is only used to estimate the conditional density p(Ψ̃|Π̃,DT ) in equation (14.24).

14.8.3.1. InvWishartRndFcn

The function InvWishartRndFcn requires two inputs to generate a draw from the inverted
Wishart distribution. These inputs are A and df, representing the location parameter and the
degrees of freedom parameter respectively. As output the function provides Omega.

14.8.3.2. MultiNormalRndFcn

The function MultiNormalRndFcn generates a desired number of draws from the multivariate
normal distribution. As input the function needs mu, Sigma, and NumDraws. These inputs provide
the mean, the covariance matrix and the number of desired draws, respectively. The last input
is optional and defaults to 1.

As output the function gives z, a matrix with as the same number of rows as the dimension
of the mean and number of columns gives by NumDraws.

14.8.4. Marginal Likelihood of the Bayesian VAR

Estimation of the marginal likelihood is handled by the function MargLikeChib in YADA. Be-
fore discussing this function in more detail it is worthwhile to keep Lindley’s (also known as
Bartlett’s) paradox in mind; see Bartlett (1957) and Lindley (1957). That is, as a rule of thumb
we should only compare the marginal likelihood value across two models if the prior is proper
in the dimensions where they differ. By proper we mean that the prior density should integrate
to unity (a finite constant) over these parameters. For instance, if the Minnesota-style prior is
assumed for Π, then we can compare the marginal likelihood for models that differ in terms of
the lag order given that the same sample dates and variables are covered by xt. If, instead, the
diffuse prior p(Π) ∝ 1 is used for these parameters, then the marginal likelihoods should not
be compared in this dimension. The paradox here states that the model with fewer lags will
have a greater marginal likelihood value regardless of the information in the data.

14.8.4.1. MargLikeChib

The function MargLikeChib computes the log marginal likelihood using Chib’s marginal like-
lihood identity. As input the function requires 9 inputs (and accepts a 10th). First of all

it takes two vectors with NumIter elements of values of the log densities p(Π̃|Ψ(i),Ω(i),DT)
(LogPiDensity) and p(Ψ̃|Π̃,Ω(j),DT ) (LogPsiDensity). Next, the scalars LogPosterior and
LogOmegaDensity are accepted, where the first measures the sum of the log-likelihood and the

log-prior, while the second measures the log of p(Ω̃|Ψ̃, Π̃,DT ). The fifth input is q, giving the
number of exogenous variables.

The following and sixth input is the integer NumBurnin which provides the number of burn-in
draws to be removed from the top of the log density vector. Next, MargLikeChib accepts the
boolean input ComputeSequential. The function will compute sequential estimates of the log
marginal likelihood is this input is unity, and only the final estimate if it is zero. The first of
the remaining inputs is SequentialStartIterationValue. This integer determines after how
many draws the first sequential estimate shall be performed. Similarly, the last required input
SequentialStepLengthValue determines how many draws to use as increment.

The function provides the matrix LogMargs as output. The number of rows of this matrix is
equal to the number of sequential estimates. The first column contains the number of draws
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used for a particular estimate, the second column the estimated log marginal likelihood, and
the third column the numerical standard error of the estimate based on the Newey and West
(1987) correction for autocorrelation.

14.8.5. Forecasting with a Bayesian VAR

14.8.5.1. BVARPredictionPathsPostMode

The function BVARPredictionPathsPostMode requires 9 inputs. The first group is Psi, Pi, and
Omega with fixed values for Ψ, Π, and Ω, respectively. Next, the function takes the structures
DSGEModel and CurrINI. Furthermore, the p × h matrix DPred with data on the exogenous
variables over the h periods in the prediction sample as well as h, the prediction sample length
are needed. Finally, the function requires the integer NumPaths and the boolean AnnualizaData.
The former determines the number of prediction paths to compute at the fixed parameter value,
while the latter indicates if the prediction paths should be annualized or not.

The number of output variables is equal to 6. The first is the 3-dimensional matrix PredPaths,
whose dimensions are given by the number of observed variables, the length of the prediction
sample, and the number of prediction paths. The second output variable is PredMean, a matrix
with the population mean predictions of the observed variables. The following output variables
are the matrices PredEventData, which stores the prediction event results, and YObsEventData,
which stores the observed event paths, i.e., those when the mean of the paths is equal to the
observed ath. These two matrices are obtained from the function CalculatePredictionEvents

and have as many rows as variables and 7 columns; see Section 12.8.9. The last two output
variables are called KernelX and KernelY, 3-dimensional matrices with kernel density estimates
of the marginal predictive densities. The dimensions of both matrices are equal to the number
of observed variables, the number of grid points, and the prediction sample length.

14.8.5.2. BVARPredictionPaths

The function BVARPredictionPaths also requires 9 inputs. The final 6 input variables are iden-
tical to the final 6 input variables for the BVARPredictionPathsPostMode function. The first 3,
however, are now given by the matrices PsiPostSample, PiPostSample, and OmegaPostSample.
The number of rows of these matrices is NumDraws, while the number of columns is equal to the
number of parameters of Ψ, Π, and Ω, respectively.

The function gives 4 variables as output. First, the boolean variable DoneCalc indicates if
the calculations were finished or not. The second output is PredEventData, a p × 2 matrix
with the prediction event results. Furthermore, the prediction uncertainty decomposition into
the residual uncertainty and the parameter uncertainty is provided through the 3D matrices
ShockCov and ParameterCov. The dimensions of these matrices are p × p × h, where h is the
length of the prediction sample. This decomposition is only calculated when the boolean input
variable AnnualizeData is zero.

14.8.5.3. BVARCondPredictionPathsPostMode

The function BVARCondPredictionPathsPostMode for computing conditional forecasts with the
BVAR at posterior mode values of the parameters requires 11 input variable. Nine of these vari-
ables are shared with BVARPredictionPathsPostMode, the function for unconditional forecasts
at posterior mode. The additional two input variables are Z and U. The matrix Z is an m × g
matrix with the conditioning data used by the Bayesian VAR, while the vector U holds the initial
values ũT ; see equation (14.30).

The number of output variables supplied by the function is equal to 10 and in addition to the
variables given by BVARPredictionPathsPostMode it also provides MeanShocks, a p × h matrix
with the mean value of the shocks at the population mean prediction, and three variables
related to modesty analysis: MultiModestyStat, UniModestyStat, and UniModestyStatLZ. The
modesty statistics are only calculated when AnnualizeData is 0. In that case, MultiModestyStat
is a NumPaths times 2 matrix, with the multivariate modesty statistic and the reference statistic
in the two columns. The univariate Adolfson et al. (2005) statistics are stored in the NumPaths
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times p matrix UniModestyStat, while the univariate Leeper-Zha related statistics are given by
the p-dimensional vector UniModestyStatLZ.

14.8.5.4. BVARCondPredictionPaths

The function BVARCondPredictionPaths calculates conditional forecasts with the BVAR using
draws from the posterior distribution of the model parameters. It uses 11 input variables, where
nine are shared with BVARPredictionPaths, and the additional two inputs are given by Z and
U, discussed above for BVARCondPredictionPathsPostMode.

The function supplies 5 output variables and 4 of these are shared with the unconditional
forecasting function BVARPredictionPaths. The remaining variable is ShockMean, a p×hmatrix
with the estimated population mean of the residuals over the posterior draws.
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15. Misspecification Analysis of DSGE Models with DSGE-VARs

An important aspect of Bayesian analysis is that it does not rely on the assumption that the
model is correctly specified. The so called DSGE-VAR approach, advocated in a series of articles
by Del Negro and Schorfheide (2004, 2006, 2009) and Del Negro, Schorfheide, Smets, and
Wouters (2007), has been suggested as a tool for measuring the degree of misspecification of
a DSGE model by approximating it by a VAR; see also An and Schorfheide (2007). The idea of
using VARs as an alternative data generating process to a DSGE model can be traced back to the
literature on indirect inference; see Smith (1993) in particular, but also Gouriéroux, Monfort,
and Renault (1993).

An early attempt of combining DSGE models with Bayesian VARs is Ingram and Whiteman
(1994), where the VAR parameters were expressed as a function of the DSGE model parameters
by solving the latter model. A prior for the DSGE model parameters then implied a prior for the
VAR parameters through a first-order Taylor expansion of the mapping. This idea was consid-
erably enriched by Del Negro and Schorfheide (2004) where the prior distribution of the VAR
model parameters was determined from the DSGE model by parameterizing the distribution
through the implied first and second moments of the DSGE model.

DSGE-VARs may be indexed by a single parameter that has the DSGE model approximation
at one end and an unrestricted VAR at the other end. In between these extreme values, a large
number of models exist. Apart from providing a measure of the degree to which the DSGE
model may be misspecified, the approach also allows for posterior analysis of the DSGE model
parameters as well as any real valued functions of these parameters (and the data) via the VAR
model; see Smith (1993) for similar ideas. For the DSGE-VAR, this is achieved by integrating out
the VAR parameters from the joint posterior of the VAR and DSGE model parameters. The re-
sulting likelihood function may be combined with the prior of the DSGE model parameters and
used for posterior sampling or posterior mode estimation. While the framework in Del Negro
and Schorfheide (2004) was designed to improve forecasting and monetary policy analysis with
VARs, the extension to a model evaluation tool was carried out by Del Negro and Schorfheide
(2006), while Del Negro et al. (2007) used it to assess the fit of a DSGE model. The DSGE-VAR
approach, as it has been implemented in YADA, is discussed here. First, however, we turn to two
preliminary issues that needs attention. Namely, how to deal with the deterministic variables
and a time-varying H matrix in the measurement equation.

15.1. Preliminary Considerations

A DSGE-VAR model is typically assumed to have a constant term, but not any other deterministic
components. Provided that all the roots of the polynomial function of the VAR representation
lie outside the unit circle, the endogenous variables will have a constant mean and autocovari-
ance function; see, e.g., equation (14.52). As a consequence, the non-central second moments
are also constant over time. When the deterministic variables are time-varying, the mean of
the observed variables is time-varying and thereby also non-central second moments even for
constant central second moments.

One solution to this problem is to require that xt in the DSGE model is a constant so that
E[yt; θ] = A or that A = 0. In addition, the autocovariances are constant over time if a time-
varying H matrix in the measurement equation is ruled out. Should the DSGE model not satisfy
these two conditions, then the DSGE-VAR would simply not be available for estimation in the
program. Alternatively, these restrictions may be weakened by taking sample averages of the
time-varying population mean and autocovariances. Should xt be constant and the H matrix
time-invariant, then the model based population moments are constant over time and equal to
the sample averages. YADA uses this more general framework for its DSGE-VAR implementation.

Under the latter approach, we first note that the DSGE model based population mean of yt
conditional on θ is:

E
[
yt; θ

]
= A′xt, t = 1, . . . , T. (15.1)

Moreover,
E
[
ytx

′
t−j ; θ

]
= A′xtx

′
t−j , t = 1, . . . , T, and j = 0,1, . . . . (15.2)
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Similarly, the central DSGE model based population autocovariances of yt conditional on θ may
be expressed as:

Σ
(j)
y,t = E

[(
yt −A′xt

)(
yt−j −A′xt−j

)′
; θ
]

=




H′
tΣξHt + R, if j = 0,

H′
tF

jΣξHt−j , for j = 1,2, . . . .

(15.3)

Recall that Σξ is the central population covariance matrix of the state variables conditional on θ,
i.e., it satisfies the Lyapunov equation (5.15). It now follows from equations (15.2) and (15.3)
that the non-central population autocovariances are

E
[
yty

′
t−j ; θ

]
= Σ

(j)
y,t +A′xtx

′
t−jA, t = 1, . . . , T, and j = 0,1, . . . . (15.4)

We may next define average DSGE model based population moments from these expressions.
Specifically, the sample average of the products for the deterministic variables is

Σ̄
(j)
x =

1

T

T∑

t=1

xtx
′
t−j , j = 0,1, . . . , (15.5)

while

Σ̄
(j)
y =

1

T

T∑

t=1

Σ
(j)
y,t, j = 0,1, . . . , (15.6)

gives the sample average of the central population autocovariances conditional on θ. If Ht = H

for all t, then Σ
(j)
y,t is equal to Σ̄

(j)
y . Moreover, if xt = 1, then Σ̄

(j)
x is equal to unity.

In terms of non-central moments, these averages imply that

1

T

T∑

t=1

E
[
yty

′
t−j ; θ

]
= Σ̄

(j)
y +A′Σ̄(j)

x A, j = 0,1, . . . , (15.7)

while

1

T

T∑

t=1

E
[
ytx

′
t−j ; θ

]
= A′Σ̄(j)

x , j = 0,1, . . . . (15.8)

We shall use these average moments below when parameterizing the prior distribution of the
DSGE-VAR.

15.2. The DSGE-VAR Model

To setup the DSGE-VAR, we proceed as follows. The VAR representation of yt can be written as:

yt = Φ0xt +
p∑

j=1

Φjyt−j + ǫt, t = 1, . . . , T, (15.9)

where ǫt ∼ Nn(0,Σǫ). The matrix Φ0 is n×k, while Φj is n×n for j = 1, . . . , p. We assume that
initial values for yt and xt exists for t = 0, . . . ,1 − p.

Let Yt = [x′t y
′
t−1

· · · y′
t−p]′ be an (np + k)-dimensional vector, while the matrix Φ =

[Φ0 Φ1 · · · Φp] has dimension n× (np + k). This means that the VAR can be expressed as

yt = ΦYt + ǫt.

Next, stack the variables as y = [y1 · · · yT], Y = [Y1 · · · YT], while ǫ = [ǫ1 · · · ǫT], yieding
the system

y = ΦY + ǫ. (15.10)

Del Negro and Schorfheide (2004) suggests that a VAR approximation of the DSGE model can
be obtained by replacing the VAR parameters by the implied “estimates” using the population
moments conditional on θ. That is, let ΓYY (θ) be an (np + k) × (np + k) matrix with average
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non-central population moments based on the Yt vector:

ΓYY (θ) =




Σ̄(0)
x Σ̄(1)

x A · · · Σ̄
(p)
x A

A′Σ̄(1)′
x Σ̄(0)

y +A′Σ̄(0)
x A · · · Σ̄

(p−1)
y +A′Σ̄(p−1)

x A
...

...
. . .

...

A′Σ̄(p)′
x Σ̄

(p−1)′
y +A′Σ̄(p−1)′

x A · · · Σ̄(0)
y +A′Σ̄(0)

x A



. (15.11)

Similarly, let ΓyY (θ) be an n×(np+k) matrix with the average non-central population moments
based on the yt and Yt vectors

ΓyY (θ) =
[
A′Σ̄(0)

x Σ̄(1)
y +A′Σ̄(1)

x A · · · Σ̄
(p)
y +A′Σ̄(p)

x A

]
. (15.12)

If xt is a constant and the H matrix in the measurement equation is not time-varying, these
average population moments are the same as those given Del Negro and Schorfheide (2004,
Section A.2).

A population based regression can now determine the mapping from the DSGE model pa-
rameters to the VAR parameters. Specifically, suppose that ΓYY (θ) is invertible, then

Φ(θ) = ΓyY (θ)Γ−1
YY (θ), (15.13)

Σǫ(θ) = Γyy(θ) − ΓyY (θ)Γ−1
YY (θ)Γ′

yY (θ), (15.14)

where Γyy(θ) = Σ̄(0)
y +A′Σ̄(0)

x A is an n×n matrix with average non-central population moments
based on the yt vector. The matrices Φ(θ) and Σǫ(θ) are restriction functions that will be used
to center the prior distribution of (Φ,Σǫ) conditional on θ and a hyperparameter λ ≥ 0 that
measures the deviation of the DSGE-VAR from the VAR approximation of the DSGE model.

15.3. Prior Distribution of the DSGE-VAR

The joint prior distribution of the VAR and DSGE model parameters has the following hierar-
chical structure:

p
(
Φ,Σǫ, θ|λ

)
= p

(
Φ,Σǫ|θ, λ

)
p(θ). (15.15)

The conditional prior distribution of the VAR parameters will be centered at the VAR approx-
imation of the DSGE model (Φ(θ),Σǫ(θ)), but will allow for deviations from the restrictions
to account for possible misspecification. The precision of the prior is determined by the hy-
perparameter λ, which generates a continuum of models that have an unrestricted VAR at one
extreme (λ close to zero) and the DSGE model approximation at the other (λ = ∞). In practise,
a grid is used for λ such that the values Λ = {λ1, . . . , λq} are considered.

One interpretation of the hyperparameter λ is related to dummy observations through Tλ =
λT . That is, we may augment the VAR model with Tλ observations of the endogenous variables
that are generated from the DSGE model. Specifically, the prior of the VAR parameters takes
the form

Σǫ|θ, λ ∼ IWn

(
TλΣǫ(θ), Tλ − (np + k)

)
, (15.16)

vec(Φ)|Σǫ, θ, λ ∼ Nn(np+k)

(
vec(Φ(θ)), T−1

λ

[
Γ−1
YY (θ) ⊗ Σǫ

])
. (15.17)

The conjugate normal-inverted Wishart prior assumed here is proper (integrates to unity) when
Tλ ≥ n(p + 1) + k. Hence, the domain of λ is restricted to the interval [(n(p + 1) + k)/T,∞]
for the DSGE-VAR.121

15.4. Conditional Posterior Distribution of the VAR parameters

The posterior density is proportional to the product of the prior density and the likelihood
function. Conditional on (θ, λ) the DSGE-VAR prior and likelihood are conjugate. It follows
that the posterior distribution of Φ and Σǫ are also of the normal-inverted Wishart form; see

121 The density function of the inverted Wishart is provided in equation (4.12); see Section 4.2.4.
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Zellner (1971). Let the non-central sample product moment matrices be given by:

Γ̂yy =
1

T

T∑

t=1

yty
′
t, Γ̂YY =

1

T

T∑

t=1

YtY
′
t , Γ̂yY =

1

T

T∑

t=1

ytY
′
t .

From, e.g., Del Negro and Schorfheide (2004), the conditional posterior distributions of the
DSGE-VAR parameters can now be expressed as:

Σǫ|y, Y1, θ, λ ∼ IWn

(
(1 + λ)T Σ̂ǫ(θ), (1 + λ)T − (np + k)

)
, (15.18)

vec(Φ)|y, Y1,Σǫ, θ, λ ∼ Nn(np+k)

(
vec(Φ̂(θ)),

[
(1/T)[λΓYY (θ) + Γ̂YY ]−1 ⊗ Σǫ

])
, (15.19)

where

Φ̂(θ) =

(
λ

1 + λ
ΓyY (θ) +

1

1 + λ
Γ̂yY

)(
λ

1 + λ
ΓYY (θ) +

1

1 + λ
Γ̂YY

)−1

, (15.20)

Σ̂ǫ(θ) =

(
λ

1 + λ
Γyy(θ) +

1

1 + λ
Γ̂yy

)
−
(

λ

1 + λ
ΓyY (θ) +

1

1 + λ
Γ̂yY

)
×

(
λ

1 + λ
ΓYY (θ) +

1

1 + λ
Γ̂YY

)−1(
λ

1 + λ
ΓyY (θ) +

1

1 + λ
Γ̂yY

)′
.

(15.21)

Notice that the posterior distributions in (15.18) and (15.19) depend on the initial values Y1.
When we wish to compare marginal likelihoods for the DSGE-VAR to the DSGE model, the
information sets need to be the same. This may be handled in the DSGE model by using the
sample y1−p, . . . , y0 as a training sample for the Kalman filter.

From the expressions in (15.20) and (15.21) it can also be seen that the larger λ is, the closer
the posterior mean of the VAR parameters is to Φ(θ) and Σǫ(θ), the values that respect the cross
equation restrictions of the DSGE model. At the same time, the smaller λ becomes, the closer
the posterior mean is to the classical maximum likelihood estimates of Φ and Σǫ.

15.5. Posterior Sampling of the DSGE Model Parameters

The joint posterior density of the DSGE and VAR model parameters can be factorized as:

p
(
Φ,Σǫ, θ|y, Y1, λ

)
= p

(
Φ,Σǫ|y, Y1, θ, λ

)
p
(
θ|y, Y1, λ

)
. (15.22)

The first term on the right hand side is given by the product of the densities in (15.18) and
(15.19). The second term is the marginal posterior density of θ for a given λ and it can be
determined via the marginal likelihood function p(y|Y1, θ, λ), the prior of the DSGE model
parameters, and a suitable posterior sampler. It is straightforward to show that:

p
(
y |Y1, θ, λ

)
=
p
(
y|Y1,Φ,Σǫ, θ, λ

)
p
(
Φ,Σǫ|θ, λ

)

p
(
Φ,Σǫ|y, Y1, θ, λ

) . (15.23)

The first term in the numerator is the likelihood function of the VAR in (15.9), while the second
term is the prior density of the VAR parameters conditional on θ and λ; cf. equations (15.16) and
(15.17). The numerator is the conditional posterior density of the VAR parameters. Del Negro
and Schorfheide (2004) shows that the ratio on the right hand side is equal to

p
(
y |Y1, θ, λ

)
=

∣∣λTΓYY (θ) + T Γ̂YY
∣∣−n/2 ∣∣(1 + λ)T Σ̂ǫ(θ)

∣∣−((1+λ)T−np−k)/2

|λTΓYY (θ)|−n/2 |λTΣǫ(θ)|−(λT−np−k)/2

×
(
π
)−nT/2

Γn
(
(1 + λ)T − np − k

)

Γn
(
λT − np − k

) ,

(15.24)

where Γb(a) =
∏b

i=1 Γ([a+1−i]/2) for positive integers a, b with a ≥ b, and Γ(·) is the gamma

function; see equation (4.4).122

122 Relative to equation (A.2) in Del Negro and Schorfheide (2004), the expression in (15.24) takes into account

that all terms involving powers of 2 cancel out in the numerator and denominator. The expression in (15.24) can

– 242 –



These results are valid when λ is finite. The case of λ = ∞ implies that the VAR parameters
(Φ,Σǫ) are equal to (Φ(θ),Σǫ(θ)). The two densities for the VAR parameters in (15.23) are
therefore unity, so that

p
(
y |Y1, θ, λ = ∞

)
= p

(
y |Y1,Φ(θ),Σǫ(θ), λ = ∞

)
. (15.25)

The right hand side of (15.25) is the likelihood function of the VAR and, hence, the multivariate
normal density provides us with

p
(
y |Y1,Φ(θ),Σǫ(θ), λ = ∞

)
=
(
2π
)−nT/2 |Σǫ(θ)|−T/2

exp

(
−T

2
tr
[
Σ−1
ǫ (θ)Σ̃ǫ(θ)

])
, (15.26)

where
Σ̃ǫ(θ) = Γ̂yy − Γ̂yY Γ̂−1

YY Γ̂′
yY +

(
Φ(θ) − Φ̂

)
Γ̂YY

(
Φ(θ) − Φ̂

)′
,

and Φ̂ = Γ̂yY Γ̂−1
YY is the maximum likelihood estimator of Φ.

The posterior density of the original DSGE model parameters for a given λ is proportional to
the marginal likelihood in (15.24) times the prior of θ. That is

p
(
θ|y, Y1, λ

)
∝ p

(
y |Y1, θ, λ

)
p
(
θ
)
. (15.27)

Since the marginal likelihood in (15.24) is equal to the marginal likelihood for the transformed
parameters φ, the posterior density of the transformed DSGE model parameters is proportional
to the marginal likelihood times the prior of φ. The latter prior is, as noted in Section 6, equal
to the product of the Jacobian in the transformation from φ into θ and the prior of θ; see, e.g.,
Section 4.2.1. With θ = g−1(φ), this means that

p
(
φ|y, Y1, λ

)
∝ p

(
y |Y1, g(φ), λ

)
p
(
φ
)
, (15.28)

where p(φ) = J(φ)p(g−1(φ)).
It is now possible to sample from the posterior distribution of φ for each λ ∈ Λ by relying on

one of the MCMC algorithms discussed in Section 8, or on the SMC with likelihood tempering
algorithm. The RWM algorithm with a normal proposal density is considered in Del Negro and
Schorfheide (2004, 2006) and Del Negro et al. (2007). If one of the RWM algorithms is made
use of, then the proposal density from the DSGE model may be used. Alternatively, the posterior
mode and inverse Hessian at the mode of φ can be computed from the above expressions via a
numerical optimization routine, as in Section 7, and then used for the posterior sampler. If the
DSGE model is severely misspecified this latter approach may result in a better proposal density.
YADA allows for both possibilities and when the posterior mode exists for all λ as well as for
the DSGE model, the user will be asked which approach to take. For the SMC with likelihood
tempering algorithm, the posterior mode results are not directly used, but are nevertheless
required by YADA before the sampler can be executed.

15.6. Marginal Likelihood for a DSGE-VAR

Once a posterior sample has been calculated for the DSGE-VAR(λ) model, the marginal likeli-
hood is evaluated. Letting this function be denoted by p(y|Y1, λ), Del Negro and Schorfheide
(2004) suggests to pick λ such that:

λ̂ = arg max
λ∈Λ

p
(
y|Y1, λ

)
. (15.29)

furthermore be simplified by noting that∣∣λTΓYY (θ) + T Γ̂YY
∣∣

|λTΓYY (θ)| =

∣∣ΓYY (θ) + (1/λ)Γ̂YY
∣∣

|ΓYY (θ)| .

Moreover, ∣∣(1 + λ)T Σ̂ǫ(θ)
∣∣−((1+λ)T−np−k)/2

|λTΣǫ(θ)|−(λT−np−k)/2
=

(
λT
)−nT/2 ∣∣(1 + (1/λ)

)
Σ̂ǫ(θ)

∣∣−((1+λ)T−np−k)/2

|Σǫ(θ)|−(λT−np−k)/2
.

The expressions on the right hand side of these two relations are preferable from a numerical perspective since they

are less likely to involve matrices with large numerical values.
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If we assign equal probabilities to the elements of Λ, then the posterior probabilities for this

hyperparameter are proportional to the marginal likelihood. This means that λ̂ in (15.29) is the

posterior mode of λ.123

The function p(y|Y1, λ) summarizes the time series evidence on model misspecification and
documents by how much the DSGE model must be relaxed to balance within-sample fit and
model complexity. To estimate the marginal likelihood we may use either the modified har-
monic mean due to Geweke (1999, 2005) that was discussed in Section 10.2, or the marginal
likelihood identity based estimator due to Chib and Jeliazkov (2001) that was presented in Sec-
tion 10.3. The latter approach should only be used if the RWM algorithm has been used for
posterior sampling.

The posterior distribution of the DSGE-VAR parameters can be computed by generating a

pair (Φ(s),Σ(s)
ǫ ) from the normal-inverted Wishart distribution in (15.18)–(15.19) for each θ(s)

that was obtained under λ̂ for s = 1, . . . , N. Once these parameters have been sampled, the
DSGE-VAR model can be applied to any exercise that is valid for a reduced form VAR model,
such as forecasting or estimating the implied population or sample moments of the model.

As noted by Adolfson et al. (2008b), an appealing feature of the comparison of the DSGE
model to DSGE-VARs is that the same prior distribution is used to weight the likelihood func-
tions across models when forming the marginal likelihood. Bayesian model probabilities have
great appeal, but they are sensitive to the choice of prior. This sensitivity may not be so large
when the models are similar and the prior is elicited in a similar way. A comparison between
a DSGE model and a Bayesian VAR using a statistically motivated prior, as in Section 14.1, is

more likely to be sensitive to the selected priors.124

Even if the DSGE model does not have a finite order VAR representation, the VAR model
mainly functions as a tool to relax the cross-equation restrictions and to obtain a specification
with superior empirical fit. The VAR model does not have to nest the DSGE model for this
analysis to remain sensible since the moments of the DSGE model that are used to form the
prior on the VAR are exact regardless of how good the approximation is. This means that a

large λ̂ indicates that the cross product moments of the DSGE model that are used to form the
prior agree well with the likelihood function.

15.7. Posterior Mode of the DSGE-VAR

The mode of the marginal posterior of φ can be determined by maximizing p(φ|y, Y1, λ) in
(15.28) numerically with respect to φ. The mode of the marginal posterior of θ is thereafter
obtained by using the transformation function θ = g−1(φ) when the posterior density for the
transformed parameters has been utilized; cf. Section 6. Alternatively, the marginal posterior
mode of θ can be computed by maximizing (15.27) numerically with respect to the original
parameters. Given that we have located the posterior mode for each λ ∈ Λ, the Laplace ap-
proximation of the marginal likelihood for p(y|Y1, λ) may be computed using the expression

123 To elicit a proper prior for a continuous λ ≥ T(n(p + 1) + k) = λl which we are willing to regard as “fair” is not

a trivial problem. To see why, notice that a natural transformation of λ is τ = λ/(1 + λ), where τ ∈ [τl,1] and

0 < τl = λl/(1 + λl) < 1. The transformation is natural in the sense that it delivers a parameter which is defined

over a finite interval, thus making it feasible to use a uniform distribution. Although such a prior for τ may seem

fair since it gives different values an equal weight, it implies that λ has the density

p
(
λ|λl

)
=

1 + λl(
1 + λ

)2
.

Hence, λ is Pareto distributed, with cdf F(λ|λl) = 1−(1+λl)/(1+λ); see Section 4.2.12. Since the shape parameter

(a in equation 4.34) is unity, the moments do not exists. The location parameter, λl, is both equal to the lower bound

and to the mode of the distribution (while the origin parameter, c, is −1). Hence, this prior puts an extreme weight

of values of λ close to the lower bound, λl, and therefore on models which are as far away as possible from the

DSGE model. Moreover, the density height decreases exponentially as λ increases. While such a prior may seem

appropriate among economists who think DSGE model are of little or no value, the “penalties” on models with larger

λ values are extreme. Although this prior for λ is proper, it is not even in the neightborhood of being fair. In fact, it

is not even in the fringes of the fringes of the fringes of satisfying such a (loose) concept.

124 The Bayesian VAR prior is radically different from the economic prior of the DSGE model.
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in equation (10.2). Although this may be a rather crude approximation unless sufficient care
is taken when calculating the Hessian matrix numerically, it can nevertheless yield some infor-
mation about which values of λ the data tend to favor. In fact, this is the approach taken in
Adolfson et al. (2008b, Table 2) when comparing their DSGE models to DSGE-VARs with and
without cointegration relations.

When λ = ∞ the VAR parameters are fully determined by θ and, hence, the joint posterior
mode of all parameters is determined directly from the mode of the marginal posterior of θ.
When λ is finite, however, we only approximate the mode of the joint posterior of (Φ,Σǫ, θ)
through the mode of the joint conditional posterior of (Φ,Σǫ) if we plug in the marginal mode
of θ into the relations that determine the joint conditional mode. The approximation result
follows when we note that the joint conditional posterior of (Φ,Σǫ) depends on θ and this
dependence is not taken into account when we compute the mode of the marginal posterior of
θ. Given that the marginal mode of θ is close to the joint mode of θ, the approximation of the
joint posterior mode of (Φ,Σǫ) can be expected to be very good.

Still, once we have determined the mode of the joint conditional posterior of the VAR pa-
rameters we can compute the concentrated likelihood for θ. From this likelihood of θ the joint
mode may be computed through numerical optimization of the concentrated posterior of θ.
The resulting value may then be used in the expressions determining the joint mode of the VAR
parameters and, thus, provide us with the mode of the joint posterior of (Φ,Σǫ, θ).

The joint posterior of (Φ,Σǫ, θ) can be factorized as in (15.22), where the first term on the
right hand side can be rewritten as

p
(
Φ,Σǫ|y, Y1, θ, λ

)
= p

(
Φ|y, Y1,Σǫ, θ, λ

)
p
(
Σǫ|y, Y1, θ, λ

)
. (15.30)

Since the full conditional posterior of Φ is given by the normal distribution, it follows that at
the mode of the joint distribution Φ is equal to its mean

Φ̄(θ) = Φ̂(θ), (15.31)

where the term on the right hand side is given in equation (15.20). Substituting this value into
the first density function on the right hand side of (15.30) we obtain an expression from which
the joint mode of Σǫ can be determined as a function of θ. Maximizing this function with respect
to the covariance matrix of the VAR residuals one arrives at

Σ̄ǫ(θ) =
(1 + λ)T

(1 + λ)T + n + 1
Σ̂ǫ(θ), (15.32)

where the second term on the right hand side is given in equation (15.21). It is now straightfor-
ward to show that the mode of Σǫ for the joint posterior is less than the mode of the conditional

posterior density in (15.18).125 As noted above, if we plug in the marginal mode of θ into equa-
tions (15.31) and (15.32) we may use these values as an approximation of the joint mode of
the DSGE-VAR. However, to actually determine the joint mode we need to continue a few more
steps.

First, substiting the mode expressions in (15.31) and (15.32) for Φ and Σǫ, respectively, into
(15.30) and rearranging terms we find that

p
(
Φ̄(θ), Σ̄ǫ(θ)|y, Y1, θ, λ

)
= c
(
λ, T

) ∣∣λTΓYY (θ) + T Γ̂YY
∣∣n/2

∣∣(1 + λ)T Σ̂ǫ(θ)
∣∣−(n(p+1)+k+1)/2

,
(15.33)

125 It was noted in Section 14.1 that if Ω ∼ IWp(A, v), then its mode is equal to Ω̄ = (1/(p + v + 1))A. This means

that the mode of the conditional posterior of Σǫ in (15.18) is equal to

Σ̄(c)
ǫ (θ) =

(1 + λ)T

(1 + λ)T + n+ 1 − (np + k)
Σ̂ǫ(θ) =

[
1 +

np + k

(1 + λ)T + n+ 1 − (np + k)

]
Σ̄ǫ(θ).

Accordingly, Σ̄ǫ(θ) < Σ̄(c)
ǫ (θ).
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where

c
(
λ, T

)
= exp

(
−n
(
(1 + λ)T + n + 1

)
/2
) [(

1 + λ
)
T + n+ 1

]n((1+λ)T+n+1)/2 ×
π−n(np+k)/22−n(1+λ)T/2π−n(n−1)/4Γn

(
(1 + λ)T − np − k

)−1
.

When evaluating the conditional posterior of (Φ,Σǫ) at the joint mode, we therefore have two
terms that depend on θ and that will influence the determination of the joint posterior mode
for all parameters.

Second, to estimate the mode of θ from the joint posterior of (Φ,Σǫ, θ) we need to multiply
the marginal likelihood of θ in (15.24) by the right hand side of (15.33). The corresponding
concentrated likelihood of θ is given by:

pc
(
y|Y1, θ, λ

)
= c̃
(
λ, T

)
∣∣(1 + λ)T Σ̂ǫ(θ)

∣∣−((1+λ)T+n+1)/2

|λTΓYY (θ)|−n/2 |λTΣǫ(θ)|−(λT−np−k)/2
, (15.34)

where

c̃
(
λ, T

)
= exp

(
−n
(
(1 + λ)T + n + 1

)
/2
) [(

1 + λ
)
T + n+ 1

]n((1+λ)T+n+1)/2 ×
π−n(T+np+k)/22−n(1+λ)T/2π−n(n−1)/4Γn

(
λT − np − k

)−1
.

Finally, with m being the dimension of φ the last step is to solve the following numerical
problem

φ̄ = arg max
φ∈Rm

(
pc
(
y
∣∣Y1, g

−1(φ), λ
)
p
(
φ
))

, (15.35)

while θ̂ = g−1(φ̄) gives us the joint posterior estimate of θ. It may be noted that when we
compare the marginal likelihood function of θ in (15.24) to the concentrated likelihood function
in (15.34) it can be seen that when multiplied by the prior, the resulting marginal posterior and
concentrated posterior will have approximately the same mode once T is large enough.

Alternatively, the joint posterior mode of of the original parameters may be obtained from

θ̄ = arg max
θ∈Θ

(
pc
(
y |Y1, θ, λ

)
p
(
θ
))

, (15.36)

while the posterior estimate of the transformed parameters is given by φ̂ = g(θ̄).
The Hessian matrix of the joint log posterior, evaluated at the mode, can either be determined

numerically, or by using a combination of numerical and analytical results. Since the dimension
of this matrix can be great, the latter approach is in practise recommended, especially since the
matrix may need to be inverted. The joint log posterior can be expressed as:

lnp
(
Φ,Σǫ, φ|y, Y1, λ

)
= ln c∗(λ, T) +

n

2
ln
(
|ΓYY (θ)|

)
+
λT − np − k

2
ln
(
|Σǫ(θ)|

)

(1 + λ)T + n + 1

2
ln
(
|Σǫ|
)

+ lnp
(
φ
)
− lnp

(
y|Y1, λ

)
− (1 + λ)T

2
tr
[
Σ−1
ǫ Σ̂ǫ(θ)

]

− T

2
tr
[
Σ−1
ǫ

(
Φ − Φ̂(θ)

) (
λΓYY (θ) + Γ̂YY

) (
Φ − Φ̂(θ)

)′]
,

(15.37)

where θ = g−1(φ), while c∗(λ, T) is a function that does not affect the Hessian matrix. Using
the tools for matrix differential calculus that are described in Magnus and Neudecker (1988), it
can be shown that:

∂2 lnp
(
Φ,Σǫ, φ|y, Y1, λ

)

∂vec(Φ)∂vec(Φ)′
= −T

[(
λΓYY (θ) + Γ̂YY

)
⊗ Σ̄ǫ(θ)−1

]
, (15.38)

∂2 lnp
(
Φ,Σǫ, φ|y, Y1, λ

)

∂vec(Φ)∂vech(Σǫ)′
= 0, (15.39)

∂2 lnp
(
Φ,Σǫ, φ|y, Y1, λ

)

∂vec(Φ)∂φ′ = T
[(
λΓYY (θ) + Γ̂YY

)
⊗ Σ̄ǫ(θ)−1

]
FΦ(θ), (15.40)
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where vech is the column stacking operator that only takes the elements on and below the

diagonal, and the n(np+k)×m matrix FΦ(θ) = (∂vec(Φ̂(θ))/∂φ′) is given in equation (15.43)
below. Furthermore,

∂2 lnp
(
Φ,Σǫ, φ|y, Y1, λ

)

∂vech(Σǫ)∂vech(Σǫ)′
= −(1 + λ)T + n+ 1

2
D′
n

[
Σ̄ǫ(θ)−1 ⊗ Σ̄ǫ(θ)−1

]
Dn, (15.41)

∂2 lnp
(
Φ,Σǫ, φ|y, Y1, λ

)

∂vech(Σǫ)∂φ′ =

(
1 + λ

)
T

2
D′
n

[
Σ̄ǫ(θ)−1 ⊗ Σ̄ǫ(θ)−1

]
DnFΣǫ(θ), (15.42)

where Dn is the n2 × n(n+ 1)/2 dimensional duplication matrix,126 while the n(n+ 1)/2 ×m

matrix FΣǫ(θ) = (∂vech(Σ̂ǫ(θ))/∂φ′) is provided in equation (15.44) below. Define the matrices
with partial derivatives of the non-central population moments with respect to φ as:

Gyy(θ) =
∂vech

(
Γyy(θ)

)

∂φ′ , GyY (θ) =
∂vec

(
ΓyY (θ)

)

∂φ′ , and GYY (θ) =
∂vech

(
ΓYY (θ)

)

∂φ′ .

These matrices have dimensions (n(n+1)/2)×m, n(np+k)×m, and ((np+k)(np+k+1)/2)×m
and may be calculated numerically. Let D+

n = (D′
nDn)

−1D′
n be the Moore-Penrose inverse of Dn.

It can now be shown that the n(np + k) ×m dimensional matrix FΦ(θ) is given by

∂vec
(
Φ̂(θ)

)

∂φ′ = λ
[(
λΓYY (θ) + Γ̂YY

)−1 ⊗ In

]

×
[
GyY (θ) −

(
Inp+k ⊗ Φ̂(θ)

)
Dnp+kGYY (θ)

]
.

(15.43)

Furthermore, the n(n + 1)/2 ×m matrix FΣǫ(θ) is given by:

∂vech
(
Σ̂ǫ(θ)

)

∂φ′ =
λ

1 + λ

[
Gyy(θ) + D+

n

[
Φ̂(θ) ⊗ Φ̂(θ)

]
Dnp+kGYY (θ)

− 2D+
n

[
Φ̂(θ) ⊗ In

]
GyY (θ)

]
.

(15.44)

For the third term within large brackets on the right hand side, the result DnD
+
n = (1/2)(In2 +

Knn) = Nn has been used (see Magnus and Neudecker, 1988, Theorem 3.12) so that D+
nNn =

D+
n .
The last matrix in the partioned Hessian at the mode is given by

∂2 lnp
(
Φ,Σǫ, φ|y, Y1, λ

)

∂φ∂φ′ = − TFΦ(θ)′
[(
λΓYY (θ) + Γ̂YY

)
⊗ Σ̄ǫ(θ)−1

]
FΦ(θ)

−
(
1 + λ

)
T

2

∂2tr
[
Σ̄ǫ(θ̄)−1Σ̂ǫ(θ)

]

∂φ∂φ′ +
n

2

∂2 ln |ΓYY (θ)|
∂φ∂φ′

+
λT − np − k

2

∂2 ln |Σǫ(θ)|
∂φ∂φ′ +

∂2 lnp(φ)

∂φ∂φ′ .

(15.45)

The last four terms on the right hand side can be computed numerically. Since they are all
m×m matrices, the dimensions are kept down substantially relative to a numerical Hessian for
the joint log posterior. It may be noted that for the second term on the right hand side, the

matrix Σ̄ǫ(θ̄) is kept fixed at θ = θ̄, while the matrix Σ̂ǫ(θ) varies with θ.
For the inverse Hessian at the mode it is recommended to make use of results for partioned

matrices and inverses of Kronecker products. Let the Hessian be described by the matrix

H =



HΦ,Φ 0 HΦ,φ

0 HΣ,Σ HΣ,φ

H′
Φ,φ H′

Σ,φ Hφ,φ


 ,

126 The duplication matrix is defined from the relationship vec(A) = Dnvech(A) for a symmetric n × n matrix A,

where vech is the column stacking operator that only takes the elements on and below the diagonal.
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where
HΦ,Φ =

[(
ΓYY (θ) + (1/λ)Γ̂YY

)
⊗ Σ̄ǫ(θ)−1

]
,

i.e., we have multiplied equation (15.38) with −1/λT . The inverse of this matrix is simply

H−1
Φ,Φ =

[(
ΓYY (θ) + (1/λ)Γ̂YY

)−1 ⊗ Σ̄ǫ(θ)
]
.

Similarly,

HΣ,Σ =
(1 + λ)T + n+ 1

2λT
D′
n

[
Σ̄ǫ(θ)−1 ⊗ Σ̄ǫ(θ)−1

]
Dn,

where the inverse is given by

H−1
Σ,Σ =

2λT

(1 + λ)T + n + 1
D+
n

[
Σ̄ǫ(θ) ⊗ Σ̄ǫ(θ)

]
D+′
n .

The remaining partions ofH follow from equations (15.40), (15.42), and (15.45), remembering
that they should also be multiplied by −1/λT . Now, define the matrix:

H+
φ,φ

=
(
Hφ,φ −H′

Σ,φH
−1
Σ,ΣHΣ,φ −H′

Φ,φH
−1
Φ,ΦHΦ,φ

)−1

.

The inverse matrix on the right hand side exists and is positive definite if H is positive definite.
The inverse of H can now be expressed as:

H−1 =




H+
Φ,Φ H+

Φ,Σ H+
Φ,φ

H+′
Φ,Σ H+

Σ,Σ H+
Σ,φ

H+′
Φ,φ H+′

Σ,φ H+
φ,φ


 ,

where the m ×m H+
φ,φ

matrix has already been determined. The remaining 5 partitions of the

inverse of H are given by:

H+
Φ,Φ = H−1

Φ,Φ +H−1
Φ,ΦHΦ,φH

+
φ,φ
H′

Φ,φH
−1
Φ,Φ,

H+
Σ,Σ = H−1

Σ,Σ +H−1
Σ,ΣHΣ,φH

+
φ,φ
H′

Σ,φH
−1
Σ,Σ,

H+
Φ,Σ = H−1

Φ,ΦHΦ,φH
+
φ,φ
H′

Σ,φH
−1
Σ,Σ,

H+
Φ,φ = −H−1

Φ,ΦHΦ,φH
+
φ,φ
,

H+
Σ,φ = −H−1

Σ,ΣHΣ,φH
+
φ,φ
.

Finally, the inverse Hessian at the mode is obtained by multiplying H−1 by (1/λT); see, e.g.,
Magnus and Neudecker (1988, Theorem 1.3) for the inverse of the partioned matrix H.

It is noteworthy that if the inverse Hessian is computed by combining these analytical results
with numerical derivatives we find that the dimensions of the matrices that need to be inverted
are np + k, n, and m, while the dimension of the inverse Hessian itself is n(np + k) + n(n +
1)/2 +m. For medium size DSGE models we can therefore expect that numerical precision can
be greatly improved by using the above procedure and that the computation time itself is also
shortened.

15.8. Identifying Structural Shocks of the DSGE-VAR

To undertake counterfactual exercises that require the identification of structural shocks, we
need to be able to identify these shocks to the DSGE-VAR. Suppose that υt ∼ Nn(0, In) are these
shocks and that they are related to the VAR residuals ǫt through

ǫt = A0υt. (15.46)

The non-singular A0 matrix is of dimension n × n and each column is equal to the contempo-
raneous response in yt from a unit impulse to the corresponding element of υt. To be exactly
identified we need to impose n(n − 1)/2 identifying restrictions in addition to the n(n + 1)/2
that have already been implicitly imposed through the assumed covariance matrix of υt. The
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matrix A0 can always be decomposed such that:

A0 = Σ1/2
ǫ Υ, (15.47)

where Σ1/2
ǫ is the lower triangular Choleski decomposition of Σǫ, while Υ is an orthogonal

matrix (ΥΥ′ = In) that cannot be identified from the likelihood function of ǫt. The identification
problem therefore boils down to selecting an Υ matrix.

Del Negro and Schorfheide (2004) suggests that Υ can be determined from the DSGE model.
Specifically, from equation (11.18) we know that the contemporaneous response in yt from unit
impulses to ηt are

A0(θ) = H′B0. (15.48)

It is possible to determine an n × n matrix Υ(θ) from A0(θ) if q = n, i.e., the number of
economic shocks in the DSGE model is equal to the number of observed variables. Del Negro
and Schorfheide suggest using a Q-R factorization of A0(θ); see, e.g., Golub and van Loan

(1983) for details on the Q-R factorization.127 That is, they let

A0(θ) = Σ1/2
ǫ (θ)Υ(θ), (15.49)

where Σ1/2(θ) is lower triangular and Υ(θ) is orthogonal.128 To determine Υ Del Negro and
Schorfheide (2004) suggests to let it be equal to Υ(θ). This means that the rotation matrix Υ
is chosen such that, in the absense of misspecification, the contemporaneous impulse responses
of the DSGE and the DSGE-VAR are approximately equal for all shocks. When sampling from

the posterior this means that Υ(s) = Υ(θ(s)) for s = 1, . . . , N.

15.9. YADA Code

This section contains information about the YADA functions that compute the marginal and the
joint posterior mode, as well as the functions that handle posterior sampling. The functions are
grouped into those related to computing parameters, such as the prior mean and covariance of
the VAR parameters, those that deal with posterior densities, functions that handle estimation,
and finally functions dealing with sampling.

15.9.1. Parameter Functions

15.9.1.1. DSGEVARPrior

The function DSGEVARPrior takes 11 input variables: A, H, R, F, B0, DetProductMoments, p,
initP, MaxIter, Tolerance, and HSample. The first five variables are simply the matrices in the
state-space representation of the DSGE model. The next variable is a 3D matrix (k× k × p+ 1)

with product moments for the deterministic variables; see equation (15.5) in Section 15.1.129

The lag order is given by p, while the next three input variables determine how the uncondi-
tional state covariance matrix Σξ is calculated and are discussed in Section 5.17.1 for the Kalman
filter implementations in YADA. Finally, the vector HSample determines the sample to use for a
time-varying H matrix.

The output variables are given by Gammayy, GammaYY, GammayY, and PriorStatus. The three
gamma variables concern the Γyy(θ), ΓYY (θ), and ΓyY (θ) matrices that are needed to param-
eterize the prior of the DSGE-VAR. The last variable, PriorStatus, is a boolean variable that
takes the value 1 if GammaYY is invertible and 0 otherwise.

127 If the H matrix is time-varying we may replace it with its sample average.

128 The Q-R factorization of an n × n matrix A of rank n is given by A = QR. In practise, the n × n matrix Q

is orthogonal, while the n × n matrix R is upper triangular; see, e.g., Golub and van Loan (1983, p. 147) or the

qr function in Matlab. Hence, to obtain the matrices in (15.49) we instead compute the Q-R factorization for

A0(θ)′. Moreover, since some diagonal elements of R may be negative it is necessary to premultiply this matrix

with a diagonal n × n matrix S, whose diagonal entries are 1 (−1) when the corresponding diagonal elements of

R are positive (negative). The resulting matrix SR is upper triangular with only positive diagonal elements and is

therefore a suitable candicate for Σ1/2(θ)′. Furthermore, we need to postmultiply Q with S. Since S is orthogonal it

follows that QS is also orthogonal and may be used as Υ(θ)′.
129 These moments are calculated by the function CalcDeterministicProductMoments.
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15.9.1.2. GetDSGEVARPriorParameters

The function GetDSGEVARPriorParameters needs 8 input variables: theta, thetaPositions,
ModelParameters, PriorDist, thetaDist, LowerBound, DSGEModel, and CurrINI. These are
needed to solve the DSGE model and provide the state-space form at the value θ of the original
DSGE model parameters; see Section 11.17.

As output the function returns 11 variables. First of all, the matrices Phi and SigmaEpsilon

with the prior parameters in equations (15.13) and (15.14). The following 5 output variables
are the matrices from the state-space representation of the DSGE model, A, H, R, F, and B0.
Next, the variable AIMData is given, which is followed by DetProductMoments and HSample that
are input variables for DSGEVARPrior above. Finally, the function provides a boolean Status

variables which is unity if the prior parameters could be computed and 0 otherwise.

15.9.1.3. DSGEVARParameters

The function DSGEVARParameters requires 15 input variables: A, H, R, F, B0, lambda, GammaHatyy,
GammaHatyY, GammaHatYY, DetProductMoments, p, initP, MaxIter, Tolerance, and HSample.
Most of these variables are discussed above for the DSGEVARPrior function. The variable lambda

is equal to the λ hyperparameter that determines how closely the DSGE-VAR model is to the VAR
approximation of the DSGE model. The variables GammaHatyy, GammaHatyY and GammaHatYY are

simply the non-central sample product moment matrices Γ̂yy, Γ̂yY , and Γ̂YY .
The function provides 6 output variables: Phi, SigmaEpsilon, Gammayy, GammaYY, GammayY,

and Status. The first two matrices are equal to Φ̂(θ) and Σ̂ǫ(θ) in equations (15.20) and
(15.21), while the next three output variables are given by the DSGEVARPrior function. The
final output, Status, is optional and takes the value 1 if all the calculations could be performed,
and 0 otherwise.

15.9.1.4. DSGEVARIdentifyShocks

The function DSGEVARIdentifyShocks need 5 input variables to perform its task. They are:
SigmaEpsilon, H, B0, DSGEVARShocks, and HSample. The first variable is a value for the residual
covariance matrix Σǫ, while the H and B0 matrices determine the contemporaneous response of
the observed variables to the shocks in the DSGE model, i.e., the H and B0 matrices discussed
in Section 15.8. The variable DSGEVARShocks is a vector determining which of the DSGE model
shocks that should be used in the DSGE-VAR. The number of shocks to the VAR is equal to the
number of endogenous variables. Since the number of DSGE model shocks can be greater than
the number of observed variables, the vector DSGEVARShocks ensures that only a subset is used.
Finally, the vector HSample determines the sample to use for a time-varying H matrix.

The function provides 2 output variables. The first is A0, the n × n matrix with contempo-
raneous responses in the DSGE-VAR to the n identified shocks. This means that the matrix is

equal to Σ1/2
ǫ Υ(θ), where the latter matrix is given by the factorization in (15.49). The second

output variables is IdentifyStatus, a boolean that takes the value 1 if A0 could be determined
and 0 otherwise.

15.9.2. Density Functions

15.9.2.1. logPosteriorPhiDSGEVAR

The function logPosteriorPhiDSGEVAR computes the log marginal posterior for the transformed
parameters. The function needs 22 variables to achieve this. First, it takes 10 variables needed
to solve DSGE model and compute the value of the prior for the transformed parameters. These
variables are: phi, thetaIndex, UniformBounds, LowerBound, thetaPositions, thetaDist,
PriorDist, ModelParameters, DSGEModel, and AIMData. In addition, the function needs DSGE-
VAR related input variables, i.e, lambda, T, n, p, npk, GammaHatyy, GammaHatyY, GammaHatYY,
DetProductMoments, HSample, logGPR, and OrderQZ. The variable T is the sample size, n the
number of endogenous variables, npk the number of explanatory variables per equation of the
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VAR (np + k). Finally, the variable logGPR is the log of the gamma product ratio in equation
(15.24), i.e., ln Γn((1 + λ)T − np − k) − ln Γn(λT − np − k).

The function provides one required output variable, logPost, i.e., minus the height of the
log posterior density up to the constant determined by the value of the log marginal likelihood.
In addition, the logPosteriorPhiDSGEVAR function also supports the optional logLike output
variable. It is equal to logLikeValue when all computations could be carried out successfully,
and to NaN otherwise.

15.9.2.2. logPosteriorThetaDSGEVAR

The function logPosteriorThetaDSGEVAR computes the log marginal posterior for the original
parameters. Like its counterpart logPosteriorPhiDSGEVAR it needs 22 input variables and, with
the exception of phi and UniformBounds, they are identical. Specifically, these two variables are
replaced with theta and ParameterBounds. The first is the vector of original parameters, while
the second is a matrix with the lower and upper bounds for the parameters in the columns.

The output variables are identical to those provided by logPosteriorPhiDSGEVAR.

15.9.2.3. logLikelihoodDSGEVAR

The function logLikelihoodDSGEVAR computes the value of the log of the marginal likeli-
hood in equation (15.24) for finite values of λ. To accomplish this it needs 15 input vari-
ables: ModelParameters, DSGEModel, AIMData, lambda, T, n, p, npk, GammaHatyy, GammaHatyY,
GammaHatYY, DetProductMoments, HSample, logGPR, and OrderQZ. These variables have already
been discussed above as well as in Section 15.9.1 and in Section 7.4.

The function provides 4 output variables. The first is logLikeValue, the value of the log
marginal likelihood at the given of θ, the DSGE model parameter. Next, it provides Solution, a
structure with fields giving the different matrices from the solution to the DSGE model, mcode to
indicate if the DSGE model has a unique convergent solutions at θ. Finally, it gives PriorStatus,
a boolean variable that is 1 if the log-likelihood could be calculated and 0 otherwise.

15.9.2.4. logLikelihoodDSGEVARInf

The function logLikelihoodDSGEVARInf computes the value of the log marginal likelihood in
equation (15.26) for λ = ∞. The function needs 12 input variables to achieve this. Namely, the
same variables as logLikelihoodDSGEVAR except lambda, npk, and logGPR. The output variables
are the same as logLikelihoodDSGEVAR.

15.9.2.5. logConcPosteriorPhiDSGEVAR

The function logConcPosteriorPhiDSGEVAR computes the value of the concentrated log poste-
rior for the transformed parameters using the concentrated likelihood in (15.34). The function
takes the same 22 input variables as logPosteriorPhiDSGEVAR, except for logGPR being re-
placed with logCLC, the log of the constant term for the concentrated likelihood. The latter
variable is determined by DSGEVARLogConcLikelihoodConstant as requires the input variables
lambda, T , n, and npk.

The function provides one required output variable, logPost, i.e., minus the height of the
log of the concentrated posterior density of the transformed parameters up to the constant
determined by the value of the log marginal likelihood. At the posterior mode of the DSGE
model parameters, this value is equal to minus the height of the log of the joint posterior
density up to the constant determined by the value of the log marginal likelihood. An optional
output variable can also be extracted from the function called logLike, which gives the logged
value of the concentrated likelihood.

15.9.2.6. logConcPosteriorThetaDSGEVAR

The function logConcPosteriorThetaDSGEVAR calculates the value of the concentrated log pos-
terior for the original parameters based on the expression on the right hand side of equation
(15.36). The function takes the same 22 input variables as logPosteriorThetaDSGEVAR, except
for logGPR being replaced with logCLC.
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The function only provides one erquired output variable, logPost, i.e., minus the height
of the log of the concentrated posterior density of the original parameters up to the constant
determined by the value of the log marginal likelihood. An optional output variable, logLike,
is available and is identical to the optional output variable of logConcPosteriorPhiDSGEVAR.

15.9.2.7. logConcLikelihoodDSGEVAR

The function logConcLikelihoodDSGEVAR calculates the value of the centrated log-likelihood in
(15.34) for finite λ. It makes use of the same 15 input variables as logLikelihoodDSGEVAR, ex-
cept for logGPR being replaced with logCLC. The function also gives the same 4 output variables
as logLikelihoodDSGEVAR.

15.9.2.8. Additional Density Function

When computing the marginal or joint posterior mode with Marco Ratto’s newrat, the YADA
implementation needs log posteriors and log-likelihoods that have names ending with 4Time

and which provide as a second output variable the time t values of the respective function. For
the log posteriors, these functions have exactly the same input variables as their counterparts,
e.g., logPosteriorPhiDSGEVAR4Time has the same input variables as logPosteriorPhiDSGEVAR.
For the log-likelihood functions, they also require the input variables y and Y with the actual
data on the endogenous and the deterministic and lagged endogenous variables, respectively.

To compute the time t log-likelihood based on the marginal likelihood in (15.24) the code
utilizes a very simple approach. Namely, it takes into account that this likelihood is equal to the
ratio of the likelihood for a sample t observations and t − 1 observation. The log-likelihood for
periods t can thus be computed recursively once the full sample value has been determined. It
should be noted that when λt <= n(p+1)+k−1 then the time t+1 value of the log-likelihood
can no longer be computed since the gamma function is only defined for positive values; see
Section 4.2.2. Furthermore, the same approach is used when time t values for the concertrated
likelihood function are computed based on equation (15.34).

15.9.3. Estimation Functions

15.9.3.1. DSGEVARMargPosteriorModeEstimation

The function DSGEVARMargPosteriorModeEstimation can estimate the marginal posterior mode
of either the transformed DSGE model parameters or the original parameters through the lens
of the DSGE-VAR for each λ value that is determined in the data construction file; see Sec-
tion 17.5.5. The function therefore works in much the same way as PosteriorModeEstimation
which deals with posterior mode estimation of these parameters for the DSGE model; see Sec-
tion 7.4. The input variables of these two functions are identical.

In contrast to PosteriorModeEstimation, the DSGE-VAR marginal posterior mode estimation
routine provides one output variable. Namely, the vector MarginalLambda which holds the
positions in the vector Lambda of the λ values the user selected to use. This makes it possible to
consider different λ values for the marginal and the joint posterior mode estimation. Moreover,
it allows the user to estimate the posterior mode in suitable batches.

Apart from computing the posterior mode of φ following the procedure laid out in posterior
mode estimation function for the DSGE model, the function plugs these values into the posterior
mode expressions for the VAR parameters in equations (15.31) and (15.32) and compares the
log marginal likelihood across the λ values to determine which λ gives the DSGE-VAR has
the largest posterior probability. The marginal likelihood is here computed using the Laplace

approximation in (10.2), where lnL(Y ; g−1(φ̃)) is replaced with lnL(y|Y1, g
−1(φ̃), λ) for each

λ ∈ Λ. These log marginal likelihood values are thereafter plotted and, if available, compared
with the log marginal likelihood value for the DSGE model. Again, the Laplace approximation
is used and this value is available if the posterior mode estimation has been completed for the
DSGE model.
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15.9.3.2. DSGEVARPosteriorModeEstimation

The function DSGEVARPosteriorModeEstimation estimates the joint posterior mode of the VAR
parameters (Φ and Σǫ) and either the transformed DSGE model parameters (φ) or the original
parameters (θ). It operates is the same manner as the function that computes the marginal
posterior mode in DSGEVARMargPosteriorModeEstimation. The input variables are the same
and the type of output that is produced is similar, except that it refers to the joint posterior
mode. In particular, the output variable is given by JointLambda, a vector with the positions in
the vector Lambda that the user selected to use for joint posterior mode estimation.

15.9.3.3. DSGEVARJointPosteriorInvHessian

The function DSGEVARJointPosteriorInvHessian attempts to compute the inverse Hessian at
the posterior mode of the joint posterior distribution of all the DSGE-VAR parameters using a
combination of analytical results and numerical approximations; see Section 15.7. The function
takes the same 21 input variables as logConcPosteriorPhiDSGEVAR, except for logCLC being
replaced with StepLength. The latter variable determines the step length when computing nu-

merical approximations of the matrices with second partial derivatives in equation (15.45).130

15.9.4. Sampling Functions

15.9.4.1. DSGEVARPriorSampling

The function DSGEVARPriorSampling computes a sample of draws from the prior distribu-
tion of the DSGE (θ) and VAR (Φ,Σǫ) parameters. To achieve its objective it requires 9 in-
put variables: theta, thetaPositions, ModelParameters, PriorDist, thetaDist, LowerBound,
NumPriorDraws, DSGEModel, and CurrINI. All these variables are familiar with the exception of
NumPriorDraws, which is an integer determining to total number of draws from the joint prior
distribution p(Φ,Σǫ, θ|λ). The function computes the prior draws for all λ ∈ Λ and saves them
to disk.

15.9.4.2. DSGEVARRWMPosteriorSampling & DSGEVARFixedBlockingRWMPosteriorSampling &
DSGEVARRandomBlockingRWMPosteriorSampling

The functions DSGEVARRWMPosteriorSampling and DSGEVARRWMStudentPosteriorSampling for
the full parameter vector, the functions DSGEVARFixedBlockingRWMPosteriorSampling and
DSGEVARFixedBlockingRWMStudentPosteriorSampling for a fixed number of blocks of the pa-
rameters, and the functions DSGEVARRandomBlockingRWMPosteriorSampling (for a normal pro-
posal) and DSGEVARRandomBlockingRWMStudentPosteriorSampling (for a Student-t proposal)
for randomly drawn number of parameter blocks operate in much the same way as the cor-
responding RWM sampling functions for the DSGE model; see Section 8.6.2. In addition to
the input variables accepted by the function DSGERWMPosteriorSampling and its siblings, the
DSGE-VAR versions require the maingui and controls input variables. The first variable is
the handle to the YADA dialog, typically taking the value 1, while the second is the structure
with handles to all the controls on the YADA dialog. Optionally, these functions also accept the
SelectedMode and lambdai input variables. The former takes the values 1, 2, or 3, representing
the DSGE model posterior mode, the DSGE-VAR marginal posterior mode, and the DSGE-VAR
joint posterior mode, respectively. In addition, the second optional input variable is simply the
value of the λ parameter. The optional input variables are only used when sequential estimation
is performed.

Corresponding to the two optional input variables, the DSGE-VAR posterior samplers also
accept two optional output variables, called SelMode and Sellambdai. Although the names
differ slightly, these variables typically match the two optional input variables.

130 The matrices with second partial derivatives are computed as in Abramowitz and Stegun (1964, equations 25.3.24

and 25.3.27, p. 884). This classic book is also hosted online: see, for instance, the homepage of Colin Macdonald

at the University of Oxford. The Hessian is thereafter examined and, if needed, corrected with the approach in Gill

and King (2004).
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Posterior sampling of the DSGE model parameters (θ) through the lens of the VAR model is
always performed for a certain value of the λ hyperparameter. When determining the location
and scale parameters of the proposal density for the RWM algorithm, the function checks which
posterior mode results exist on disk. The function can make use of the posterior mode results
for the DSGE model, the marginal or the joint posterior mode results for the DSGE-VAR.

The functions can compute the marginal likelihood for the DSGE-VAR using either one of
the modified harmonic mean approaches (Section 10.2) or the Chib and Jeliazkov marginal
likelihood identity based estimator (Section 10.3). In addition, the functions can compute the
conditional marginal likelihood of the DSGE model when draws from the posterior distribution
of the DSGE model exist on disk by using a training sampling with minimum length p.

The calculation of the conditional marginal likelihood for the DSGE model is performed
by the function CondMargLikeModifiedHarmonic for the modified harmonic mean estimator,
and by CondMargLikeChibJeliazkov for the Chib and Jeliazkov estimator. In addition, when
the latter estimator is used to compute the marginal likelihood for the DSGE-VAR, the func-
tion MargLikeChibJeliazkovDSGEVAR is employed. This function is identical to the function
employed by the DSGE model (MargLikeChibJeliazkov) except that it calls the log posterior
of the DSGE-VAR (logPosteriorPhiDSGEVAR) instead of the log posterior of the DSGE model
(logPosteriorPhiDSGE) to evaluate the α function; see the denominator in equation (10.20).

15.9.4.3. DSGEVARSlicePosteriorSampling

The function DSGEVARSlicePosteriorSampling performs posterior sampling with the slice sam-
pling algorithm. It uses the same input variables as DSGEVARRWMPosteriorSampling and be-
haves in essentially the same way as the RWM function except for the actual sampling part.
Moreover, while the RWM keeps track of the acceptance rate, the slice sampler counts the num-
ber of times the log posterior is evaluated. Moreover, when the posterior draws are obtained
through the slice sampler, YADA will only compute the log marginal likelihood of the DSGE-VAR
as well as of the DSGE model with the modified harmonic mean estimator.

15.9.4.4. DSGEVARSMCLikelihoodTemperingPosteriorSampling

The function DSGEVARSMCLikelihoodTemperingPosteriorSampling runs the sequential Monte
Carlo with likelihood tempering posterior sampler for a DSGE-VAR model. It behaves similarly
as the DSGE model equivalent DSGESMCLikelihoodTemperingPosteriorSampling. It uses the
same input variables as the above DSGE-VAR posterior samplers, and provides the same optional
output variables.

15.9.4.5. DSGEVARPosteriorSampling

The function DSGEVARPosteriorSampling performs posterior sampling of the VAR parameters.
It takes the same input variables as the posterior samplers for the DSGE model parameters and
computes draws from the conditional posteriors of Σǫ and Φ; cf. equations (15.18) and (15.19)
in Section 15.4. Since the dimensions of the VAR parameter matrices can be huge, posterior
sampling of the VAR parameters can use a fraction of the θ parameters. The size of the subset
is determined by the “percentage use of posterior draws for impulse responses, etc” option on
the Posterior Sampling frame on the Options tab; see Figure 4.
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16. Analysing the Properties of a DSGE-VAR

This section turns to analyses of the properties of the observed variables from the DSGE model
when studied through the DSGE-VAR. We shall first turn to matters such as estimation of the
structural shocks, impulse response functions, forecast error variance decompositions, and ob-
served variable decompositions. All these analytical tools require that the structural shocks in
the model can be identified, i.e., that the number of economic shocks in the DSGE model, q, is
equal to or greater than the number of observed variables, n.

Finally, we shall discuss forecasting within the DSGE-VAR framework. The discussion largely
relies on the results already presented in Section 12 concerning the Bayesian VAR and we shall
cover both unconditional and conditional forecasts.

16.1. Estimation of the Economic Shocks in the DSGE-VAR

Identification of the economic shocks in the DSGE-VAR was discussed above in Section 15.8.
Provided that the number of economic shocks in the DSGE model, q, is at least equal to the
number of observed variables, it is possible to select a subset of these shocks and estimate them
through the DSGE-VAR. Let υt be the selected subset from ηt, while we stick to denoting B0 as
the matrix of parameters on υt in the DSGE model.

By substituting for ǫt in equation (15.9) using (15.46), inverting A0 and rearranging terms,
the economic shocks are determined by:

υt = A−1
0 yt −

p∑

j=1

A−1
0 Φjyt−j −A−1

0 Φ0xt, t = 1, . . . , T, (16.1)

where A−1
0 = Υ′Σ−1/2

ǫ . These estimates may be compared to either the update estimates of
shocks in ηt that are included in υt or to the smooth estimates.

16.2. Impulse Response Functions

Provided that the structural shocks, υt, are uniquely identified, it is straightforward to compute
the responses in the endogenous variables from impulses to these shocks. Let us first rewrite
the VAR in (15.9), taking (15.46) into account, in first order form:

Yt = JpΦ0xt + ΨYt−1 + JpA0υt, (16.2)

where Yt = [y′
t · · ·y′

t−p+1
]′ is now an np × 1 dimensional vector. The matrix Jp has dimension

np × n with In on top and zeros below such that yt = J ′pYt. The np × np matrix Ψ is given by

Ψ =




Φ1 · · · Φp−1 Φp

In 0 0
. . .

0 In 0



. (16.3)

Suppose that υt = ej and zero thereafter, with ej being the j:th column of In. That is, we
shall consider a one standard deviation impulse for the j:th structural shock. From equation
(16.2) it now follows that the responses of the endogenous variables are:

resp
(
yt+h

∣∣υt = ej
)

= J ′pΨhJpA0ej , h ≥ 0. (16.4)

Provided that yt is covariance stationary, the responses of the endogenous variables tend to
zero as the response horizon h increases.

When some of the endogenous variables are expressed in first differences, we can also com-
pute the levels responses of all observed variables. As in Section 11.17.2, let C be an n × n
diagonal matrix with 0 (1) in diagonal element i if endogenous variable i is measured in levels
(first differences). This means that the levels responses to the shock υt = ej are given by:

resp
(
yL
t+h

∣∣ υt = ej
)

= C · resp
(
yL
t+h−1

∣∣ υt = ej

)
+ J ′pΨhJpA0ej , h ≥ 1, (16.5)
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with resp(yLt |υt = ej) = A0ej . The matrix C acts as an indicator for the variables where an
accumulation of the responses in (16.4) gives the responses in the levels.

16.3. Forecast Error Variance Decompositions

Forecast error variance decomposition in DSGE-VAR models can be performed just like in any
other VAR model. From Section 11.4 we know that the conditional variance decompositions of
the DSGE model function in a similar way. Let

Ri = J ′pΨiJpA0,

be the n× n matrix with all impulse responses in y for period i, the h-step ahead forecast error
variance decomposition can be expressed as the n× n matrix vh given in equation (11.24) with
q = n.

The variance decompositions for the levels (or the accumulation of the observed variables)
can also be computed as in Section 11.4. Moreover, the long-run forecast error variance decom-
position for the levels is given by equation (11.30) with

Rlr =
∞∑

i=0

J ′pΨiJpA0 = J ′p
(
Inp − Ψ

)−1
JpA0.

16.4. Historical Decomposition of the Endogenous Variables

Given the estimates of the structural shocks in equation (16.1) we can compute a historical
decomposition of the endogenous variables. By substituting for Yt−i recursively in (16.2) it can
be shown that

yt =
t−1∑

i=0

J ′pΨiJpΦ0xt−i + J ′pΨtY0 +
t−1∑

i=0

J ′pΨiJpA0υt−i, t = 1, . . . , T. (16.6)

The endogenous variables can thus be decomposed into three terms given by (i) the determin-
istic variables, (ii) the impact of the initial value (Y0), and (iii) the structural shocks. This is
analogous to the historical observed variable decomposition in (11.57); cf. Section 11.8.

When xt = 1 for all t, the above can be developed further. Specifically, we then know that
the VAR based population mean of yt conditional on the parameters is given by

µy = J ′p
(
Inp − Ψ

)−1

JpΦ0. (16.7)

The decomposition in (16.6) can now be expressed as

yt = µy + J ′pΨt
(
Y0 −

[
ıp ⊗ In

]
µy
)

+
t−1∑

i=0

J ′pΨiJpA0υt−i, t = 1, . . . , T, (16.8)

where ıp is a p × 1 vector with ones. The historical decomposition of the endogenous variables
is now given by (i) its population mean, (ii) the initial value in deviation from its population
mean, and (iii) the structural shocks.

The decompositions can be generalized into decompositions for all possible subsamples {t0 +
1, . . . , T}, where t0 = 0,1, . . . , T − 1. For arbitrary point of initialization, t0, the decomposition
in (16.6) gives us

yt = J ′pΨt−t0Yt0 +
t−t0−1∑

i=0

J ′pΨiJpΦ0xt−i +
t−t0−1∑

i=0

J ′pΨiJpA0υt−i, t = t0 + 1, . . . , T, (16.9)

while (16.8) can be generalized as

yt = µy + J ′pΨt−t0 (Yt0 −
[
ıp ⊗ In

]
µy
)

+
t−t0−1∑

i=0

J ′pΨiJpA0υt−i, t = t0 + 1, . . . , T. (16.10)

We now find that the endogenous variables are decomposed into (i) deterministic variables,
(ii) the history of the endogenous variables until period t0, and (iii) the structural shocks from
period t0 until period t.
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16.5. Observed Variable Correlations

Let µyt = E[yt|Φ,Σǫ] be the population mean of the endogenous variables conditional on the
parameters (Φ,Σǫ) and the exogenous variables. In case xt = 1 this vector is equal to µy in
equation (16.7). Defining zt = yt − µyt , the stacked DSGE-VAR in equation (16.2) can be
rewritten as

Zt = ΨZt−1 + Jpǫt, (16.11)

where ǫt = A0υt has been utilized. Let Σy(h) = E[ztz
′
t−h|Φ,Σǫ] be the population covariance

matrix of the endogenous variables, while the np × np contemporaneous covariance matrix of
Zt is given by

ΣZ =




Σy(0) Σy(1) · · · Σy(p − 1)

Σy(1)′ Σy(0) Σy(p − 2)
...

. . .
...

Σy(p − 1)′ Σy(p − 2)′ · · · Σy(0)



. (16.12)

It follows from (16.11) that this covariance matrix satisfies the Lyapunov equation

ΣZ = ΨΣZΨ′ + JpΣǫJ
′
p. (16.13)

From this expression we can determine Σy(j) for j = 0, . . . , p− 1. For all other autocovariances
we have that

Σy(j) =
p∑

i=1

ΦiΣy(j − i), j = p, p + 1, . . . .

Rather than calculating population based autocovariances, we can instead simulate data from
the DSGE-VAR and compute sample based estimates of the autocovariances from this data.
Since ǫt ∼ N(0,Σǫ) we simulate a path for the endogenous variables by drawing T values for

ǫ
(s)
t from its distribution and letting

Z
(s)
t = ΨZ(s)

t−1
+ Jpǫ

(s)
t , t = 1, . . . , T.

In case xt = 1 we may draw Z
(s)
0 from N(0,ΣZ), while a time varying mean can be handled by

simply letting Z
(s)
0 = Z0. Finally, we use the relationship between yt and Zt such that

y
(s)
t = µyt + J ′pZ

(s)
t , t = 1, . . . , T.

The autocovariances can now be estimated directly from the simulated data, taking only the
deterministic variables xt into account. By repeating this S times, we obtain a sample based
distribution of the autocovariances for a given (Φ,Σǫ).

16.6. Conditional Correlations and Correlation Decompositions

The calculation of conditional correlations from a (log-linearized) DSGE model via its state-
space representation were discussed in Section 11.7. Below we shall address how such correla-
tions can be computed from a DSGE-VAR model.

The conditional correlations are based on letting all structural shocks be zero except for

shock j. With A0j being the j:th column of A0, the conditional covariance matrix Σ
(j)
y (0) can

be computed from Σ
(j)
Z in (16.12) using (16.13) where Σǫ has been replaced with A0jA

′
0j .

From these population-based conditional covariances we may compute the correlation de-
compositions for the DSGE-VAR using the same tools as in Section 11.7. Relative to equation
(11.54), the only change is that the (conditional) covariance matrices of the DSGE-VAR are used
instead of the (conditional) covariance matrices of the DSGE model.

Instead of computing such population-based conditional central second moments, we can
make use of simulation methods to obtain estimates of the sample moments. Since υt ∼ N(0, In)
we can simulate a path for Z conditional on only shock j being non-zero by drawing T values
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for υ
(s)
j,t from a standard normal and letting

Z
(s)
t = ΨZ(s)

t−1
+ JpA0jυ

(s)
j,t
, t = 1, . . . , T. (16.14)

In case xt = 1 we may draw Z
(s)
0 from N(0,Σ

(j)
Z ), while a time varying mean can be handled

by simply letting Z
(s)
0 = Z0. Like for the autocovariances, we may take the simulation one step

further. Namely, we let y
(s)
t = µyt + J ′pZ

(s)
t and then estimate Z

(s)
t by regressing y

(s)
t on xt

and stacking it. With Ẑ
(s)
t denoting the estimated stacked vector, the sample estimate of the

conditional covariance matrix for simulation s is given by

Σ̂
(j,s)
Z =

1

T

T∑

t=1

Ẑ
(s)
t Ẑ

(s)′
t , s = 1, . . . , S. (16.15)

By repeating the simulations S times we can estimate the distribution of the conditional sample
correlations for a given (Φ, A0) for a DSGE-VAR.

16.7. Spectral Decomposition

The spectral decomposition of the DSGE model was discussed in Section 13.2. A similar decom-
position can also be determined for DSGE-VARs. The population spectrum of the latter is given
by

sy(ω) =
1

2π
Φ
(
exp(−iω)

)−1
Σǫ
(

Φ
(
exp(iω)

)′)−1

, ω ∈ [−π, π], (16.16)

where Φ(z) = In −
∑p

l=1
Φlz

l. When the structural shocks, υt, can be identified we know that

Σǫ = A0A
′
0. Letting A0j be the j:th column of A0 it follows that

sy(ω) =
n∑

j=1

s
(j)
y (ω) =

n∑

j=1

1

2π
Φ
(
exp(−iω)

)−1
A0jA

′
0j

(
Φ
(
exp(iω)

)′)−1

. (16.17)

The contemporaneous population covariance matrix of the endogenous variables conditional on

the parameters satisfies equation (13.4). Let Σ
(j)
y (0) be the covariance matrix of the endogenous

variables conditional on the parameters and on all shocks of the DSGE-VAR being zero except
for υj ; cf. Section 16.6. We then find that

Σ
(j)
y (0) =

∫ π

−π
s

(j)
y (ω)dω. (16.18)

That is, the conditional contemporanoues covariance matrix of the endogenous variables based
on only υj being non-zero is equal to the integral of the spectral decomposition based on this
shock.

16.8. Unconditional Forecasting

It is straightforward to apply the sampling the future procedure of Thompson and Miller (1986)
to a DSGE-VAR model; cf. Section 14.5. For a given draw (Φ,Σǫ) from the posterior distribution
of a DSGE-VAR we first simulate residuals ǫT+1, . . . , ǫT+h from a normal distribution with mean
zero and covariance matrix Σǫ. Next, we simulate a path for yT+1, . . . , yT+h by feeding the
residuals into the VAR system in equation (15.9). Repeating this P times for the given (Φ,Σǫ)
yields P sample paths conditional on the parameters. By taking S draws of (Φ,Σǫ) from its
posterior we end up with PS paths of yT+1, . . . , yT+h from its predictive density.

The VAR system can be conveniently rewritten for a forecasting exercise. Starting from equa-
tion (16.9) we set t = T + i and t0 = T such that

yT+i =
i−1∑

j=0

J ′pΨjJpΦ0xT+i−j + J ′pΨiYT +
i−1∑

j=0

J ′pΨjJpǫT+i−j , i = 1, . . . , h. (16.19)

Compared with calculating forecast paths from equation (16.2) premultiplied by J ′p, the expres-

sion in (16.19) has the advantage that the lagged endogenous variables are fixed at the same
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value for all i. At the same time the terms capturing the influence of the exogenous variables
and the innovations involve sums of weighted current and past values and therefore appear to
be more complex than those in (16.2). To simplify these two terms, let

x̄T+i = JpΦ0xT+i + Ψx̄T+i−1, (16.20)

ǭT+i = JpǫT+i + ΨǭT+i−1, i = 1, . . . , h, (16.21)

where these np-dimensional vectors are initialized through x̄T = ǭT = 0. We can then express
the value of the endogenous variables at T + i as

yT+i = J ′px̄T+i + J ′pΨiYT + J ′pǭT+i, i = 1, . . . , h. (16.22)

This equation makes it straightforward to compute a path for the endogenous variables over the
forecast sample since it is not necessary to loop over j = 0,1, . . . , i − 1.

We can decompose the prediction uncertainty for the DSGE-VAR into two components, resid-
ual or shock uncertainty and parameter uncertainty. That is,

C
(
yT+i|YT

)
= ET

[
C
(
yT+i|YT ; Φ,Σǫ

)]
+ CT

[
E
(
yT+i|YT ; Φ,Σǫ

)]
, (16.23)

where ET and CT denotes the expectation and covariance with respect to the posterior of
(Φ,Σǫ) at time T and where, for notational simplicity, the sequence of exogenous variables
xT+1, . . . , xT+h has been suppressed from the expressions.

To develop a simple expression for the first term on the right hand side of (16.23), let Σ̄(i)
Y be

defined from the difference equation

Σ̄(i)
Y = JpΣǫJ

′
p + ΨΣ̄(i−1)

Y Ψ′, i = 1, . . . , h, (16.24)

with the np × np matrix Σ̄(0)
Y = 0. This means that

J ′pΣ̄(i)
Y Jp =

i−1∑

j=0

J ′pΨjJpΣǫJ
′
p

(
Ψj
)′
Jp.

It now follows that the residual uncertainty term is:

ET
[
C
(
yT+i|YT ; Φ,Σǫ

)]
= ET

[
J ′pΣ̄(i)

Y Jp

]
, i = 1, . . . , h, (16.25)

while from (16.22) we find that the parameter uncertainty term is given by:

CT
[
E
(
yT+i|YT ; Φ,Σǫ

)]
= CT

[
J ′px̄T+i + J ′pΨiYT

]
i = 1, . . . , h. (16.26)

16.9. Conditional Forecasting

Conditional forecasting with the DSGE-VAR can be performed in the same spirit as for the
state-space model in Section 12.2 and the BVAR in Section 14.6. The conditioning assumptions
are, as in the case of the state-space model, given by equation (12.6) and we shall consider
both direct control of the structural shocks and control of the distribution of the shocks. The
former method requires an identified DSGE-VAR since we need to be able to control individual
shocks, while the latter method can be directly applied to the reduced form of the model; cf.
Section 14.6.

16.9.1. Direct Control of the Shocks

As noted above, the direct control method requires that we have identified the structural shocks,
i.e., that the number of shocks in the DSGE model is at least as great as the number of observed
variables (q ≥ n). To ensure that the qm conditioning assumptions zT+i are satisfied for i =
1, . . . , g we choose a subset of the structural shocks which takes numerical values such that the
conditioning assumptions in (12.6) are satisfied.

To this end, letM be an n×qm full column rank matrix (n ≥ qm) which is used to select the qm
shocks that will be manipulated, while M⊥ is an n×(n−qm) full column rank orthogonal matrix
(M′

⊥M = 0) that selects the free or non-manipulated shocks. The n × n matrix N = [M⊥ M]

is therefore n × n and has full rank n. With M̄ = M(M′M)−1 and M̄⊥ = M⊥(M′
⊥M⊥)−1 this
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means that
υt = M̄⊥υ

(n−qm)
t + M̄υ

(qm)
t , (16.27)

where υ
(n−qm)
t = M′

⊥υt is the (n − qm) dimensional vector with the free shocks, while υ
(qm)
t =

M′υt is the qm dimensional vector with the manipulated (or controlled) shocks. The VAR model
in (16.19) can therefore be rewritten as

yT+i = Φ0xT+i + J ′pΨỸT+i−1 +A0M̄⊥υ
(n−qm)
T+i +A0M̄υ

(qm)
T+i , i = 1, . . . , g, (16.28)

where ỸT+i−1 is the np-dimensional vector [y′
T+i−1

· · · y′
T+i−p]′. It here replaces YT+i−1 from

the previous Section to allow us to use the Y -vector in the same format as for the DSGE model.
As in Section 12.2 for the state-space model, it is straightforward to show that a necessary

and sufficient condition for υ
(qm)
T+i to be uniquely determined from the conditioning assumptions,

the history of the observed variables, and the shocks υ
(n−qm)
T+i is that the qm × qm matrix K′

1A0M̄
has full rank. With this in mind, we find that

υ
(qm)
T+i =

(
K′

1A0M̄
)−1

[
zT+i −K′

1Φ0xT+i −K′
1J

′
pΨỸ

(qm)
T+i−1

+

− K′
1A0M̄⊥υ

(n−qm)
T+i −

i−1∑

j=1

K′
2jy

(qm)
T+i−j − uT

]
, i = 1, . . . , g

(16.29)

where the np × 1 vector Ỹ
(qm)
T+i−1

= [y
(qm)′
T+i−1

· · · y(qm)′
T+1 y′

T · · · y′
T+i−p]′, while

y
(qm)
T+i = Φ0xT+i + J ′pΨỸ

(qm)
T+i−1

+A0υT+i, i = 1, . . . , g, (16.30)

where υT+i satisfies equation (16.27) with υ
(qm)
T+i determined by (16.29), and where the shocks

υ
(n−qm)
T+i ∼ N(0,M′

⊥M⊥).
For i > g there are not any conditioning assumptions to take into account and υT+i ∼ N(0, In)

when applying the sampling the future procedure.
In order to derive moments from the predictive distribution of the conditional forecasts we

begin by stacking the system in (16.19) for T + 1, . . . , T + g, and using equation (16.20) along
with the relationship ǫt = A0υt. This gives us




yT+g

yT+g−1
...

yT+1




=




J ′px̄T+g

J ′px̄T+g−1

...

J ′px̄T+1




+




J ′pΨg

J ′pΨg−1

...

J ′pΨ



ỸT+

+




In J ′pΨJp · · · J ′pΨg−1Jp

0 In J ′pΨg−2Jp
...

. . .
...

0 0 In




(
Ig ⊗A0

)




υT+g

υT+g−1
...

υT+1




or
YT+g = XT+g + GỸT + D

(
Ig ⊗A0

)
ΥT+g . (16.31)

Furthermore, based on equation (16.27) we can decompose the shocks such that


υT+g

...

υT+1


 =



M̄⊥ 0

. . .

0 M̄⊥







υ
(n−qm)
T+g

...

υ
(n−qm)
T+1


+



M̄ 0

. . .

0 M̄







υ
(qm)
T+g
...

υ
(qm)
T+1


 ,

or
ΥT+g =

(
Ig ⊗ M̄⊥

)
Υ

(n−qm)
T+g +

(
Ig ⊗ M̄

)
Υ

(qm)
T+g . (16.32)
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The stacked conditioning assumptions are given by equation (12.15). Subsituting for YT+g

from equation (16.31), using (16.32) and rearranging we find that

K′D
(
Ig ⊗A0M̄

)
Υ

(qm)
T+g = ZT+g − UT −K′ (XT+g + GỸT

)
−K′D

(
Ig ⊗A0M̄⊥

)
Υ

(n−qm)
T+g .

The matrix expression on the left hand side is invertible when the qm × qm matrix K′
1A0M̄ has

full rank. In that case we obtain a stacked version of equation (16.29) where the manipulated
shocks are given as a function of the conditioning assumptions, the exogenous variables, the

historical data on the observed variables, and the freely determined structural shocks Υ
(n−qm)
T+g ∼

N(0, [Ig ⊗M′
⊥M⊥]).

With these results in mind it can be shown that

Υ
(qm)
T+g = µ

(qm)
Υ,T+g −

[
K′D

(
Ig ⊗ A0M̄

)]−1 [
K′D

(
Ig ⊗A0M̄⊥

)]
Υ

(n−qm)
T+g , (16.33)

where the population mean of the manipulated shocks is

µ
(qm)
Υ,T+g =

[
K′D

(
Ig ⊗A0M̄

)]−1 [
ZT+g − UT −K′ (XT+g + GỸT

)]
.

The conditional population mean of the conditionally predicted observed variables for fixed
parameters is therefore given by

E
[
YT+g |YT , ZT+g ; Φ, A0

]
= XT+g + GỸT + D

(
Ig ⊗A0M̄

)
µ

(qm)
Υ,T+g . (16.34)

Notice that the expectation is here also taken with respect to M, i.e., the selection of shocks
used the ensure that the conditioning assumptions are satisfied. For notational convenience,
however, it has been left out of the conditioning information. Premultiplication of both sides
by K′ we find that the right hand side is equal to ZT+g − UT and, hence, the conditional mean
predictions satisfy the conditioning assumptions.

Moreover, the population covariance matrix of the conditional predictions is given by

C
(
YT+g |YT , ZT+g ; Φ, A0

)
= D

(
Ig ⊗A0

)
D̃
(
Ig ⊗ M̄⊥M

′
⊥
)
D̃′(Ig ⊗A′

0

)
D′, (16.35)

where

D̃ = Ing −
(
Ig ⊗ M̄

) [
K′D

(
Ig ⊗A0M̄

)]−1
K′D

(
Ig ⊗A0

)
.

Premultiplication of the covariance matrix in (16.35) by K′ or postmultiplication by K yields a
zero matrix. Hence, the conditional predictive distribution of the observed variables satisfies

the conditioning assumptions.131

For forecast horizons i beyond the conditioning horizon g it can be shown that

yT+i = J ′px̄T+i + J ′pΨiỸT +
i−g−1∑

j=0

J ′pΨjJpǫT+i−j + J ′pΨi−gΨ̃
(
Ig ⊗A0

)
ΥT+g , (16.36)

for i = g + 1, . . . , h, and where the np × ng matrix

Ψ̃ =
[
Jp ΨJp · · · Ψg−1Jp

]
.

The mean of the predictive distribution is therefore given by

E
[
yT+i|YT , ZT+g ; Φ, A0

]
= J ′px̄T+i + J ′pΨiỸT + J ′pΨi−gΨ̃

(
Ig ⊗A0M̄

)
µ

(qm)
Υ,T+g . (16.37)

Moreover, the covariance matrix of the forecast error is

C
(
yT+i|YT , ZT+g ; Φ, A0

)
=
i−g−1∑

j=0

J ′pΨjJpA0A
′
0J

′
p

(
Ψ′)jJp + J ′pΨi−gΨ̃

(
Ig ⊗A0

)
×

× D̃
(
Ig ⊗ M̄⊥M

′
⊥
)
D̃′(Ig ⊗A′

0

)
Ψ̃′(Ψ′)i−gJp.

(16.38)

Provided that all the eigenvalues of Ψ are less than unity in absolute terms, the conditional
predictions approaches the mean of the observed variables as i → ∞, while the covariance
matrix of the forecast error converges to the unconditional covariance matrix of the variables.

131 This can also be seen by noting that the forecast errors YT+g − E
[
YT+g |YT , ZT+g; Φ,Σǫ

]
are orthogonal to K′.
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From the moments of the conditional predictive distribution for fixed parameter values, we
may determine the mean and covariance of the predictive distribution once the influence of
the model parameters has been integrated out. As in equation (12.24), the corresponding
expression for the covariance matrix of the DSGE-VAR is

C
(
yT+i|YT , ZT+g

)
= ET

[
C
(
yT+i|YT , ZT+g ; Φ, A0

)]
+ CT

[
E
(
yT+i|YT , ZT+g ; Φ, A0

)]
,

for i = 1, . . . , h, and where ET and CT denote the expectation and covariance with respect to the
posterior of (Φ, A0) at time T . The first and the second term on the right hand side represent
shock and parameters uncertainty, respectively.

16.9.2. Control of the Distribution of the Shocks

The Waggoner and Zha (1999) approach can be implemented for the DSGE-VAR in the same
basic way as for the BVAR considered in Section 14.6. The conditioning assumptions, however,
are expressed as in equation (12.6) or in the stacked version (12.15).

Unlike the case when particular shocks of the DSGE-VAR are manipulated to ensure that the
conditioning assumptions are met, the Waggoner and Zha approach does not require identifica-
tion of the structural shocks. Hence, we may consider a variant of the stacked system (16.31)
where ǫt is used instead of υt. That is,

YT+g = XT+g + GỸT + DET+g , (16.39)

where ET+g = [ǫ′T+g · · · ǫ′T+1]′. The restrictions that the ng dimensional vector of innovations

needs to satisfy can therefore be expressed as

K′DET+g = kT+g , (16.40)

where the qmg × 1 vector

kT+g = ZT+g − UT −K′(XT+g + GỸT
)
.

Like in Section 14.6 it can now be shown that if ET+g ∼ N(µE,T+g ,ΣE,T+g) then the restrictions
in (16.40) are satisfied for all values of ET+g . The moments of the distribution are here given by

µE,T+g =
(
Ig ⊗ Σǫ

)
D′K

[
K′D

(
Ig ⊗ Σǫ

)
D′K

]−1
kT+g ,

ΣE,T+g =
(
Ig ⊗ Σǫ

)
−
(
Ig ⊗ Σǫ

)
D′K

[
K′D

(
Ig ⊗ Σǫ

)
D′K

]−1
K′D

(
Ig ⊗ Σǫ

)
.

(16.41)

The properties of the conditional predictive distribution can now be derived without much
ado. First of all, the mean of the distribution for fixed values of the parameters (Φ,Σǫ) is

E
[
YT+g |YT , ZT+g ; Φ,Σǫ

]
= XT+g + GỸT + DµE,T+g , (16.42)

while the covariance matrix is

C
(
YT+g |YT , ZT+g ; Φ,Σǫ

)
= DΣE,T+gD

′. (16.43)

Premultiplication of both sides of equation (16.42) by K′ we find that the left hand side is
equal to ZT+g − UT and, hence, that the conditioning assumptions are satisfied by the mean
predictions. Moreover, premultiplication of the covariance matrix in (16.43) by K′ or postmul-
tiplication by K yields a zero matrix.

For forecast horizons i beyond the conditioning horizon g we may use a minor rewrite of
equation (16.36). Specifically, we let

yT+i = J ′px̄T+i + J ′pΨiỸT +
i−g−1∑

j=0

J ′pΨjJpǫT+i−j + J ′pΨi−gΨ̃ET+g ,

for i = g + 1, . . . , h. From this it is straightforward to infer that

E
[
yT+i|YT , ZT+g ; Φ,Σǫ

]
= J ′px̄T+i + J ′pΨiỸT + J ′pΨi−gΨ̃µE,T+g , (16.44)

while the covariance matrix is

C
(
yT+i|YT , ZT+g ; Φ,Σǫ

)
=

i−g−1∑

j=0

J ′pΨjJpΣǫJ
′
p

(
Ψ′)jJp + J ′pΨi−gΨ̃ΣE,T+gΨ̃

′(Ψ′)i−gJp. (16.45)
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Given that the eigenvalues of Ψ are less than unity in aboslute term, both these moments con-
verge to the unconditional moments of the observed variables when i → ∞. A decomposition
of the overall predictive uncertainty can now be obtained as in the end of Section 16.9.1. This
provides us with the overall share of the predictive uncertainty under the conditioning assump-
tions which is due to uncertainty about the shocks and the share which is due to the uncertainty
about the parameters.

16.9.3. Control of the Distribution of a Subset of the Shocks

The previous two conditioning approaches may be viewed as special cases of a generalized
conditioning method where a subset of the shocks is selected to have a distribution which
guarantees that the conditioning assumptions are fultilled, while the remaining shocks are free.
However, this implicitly depends on the assumptions that the shocks are structural and can be
identified, i.e., that A0 is uniquely determined from Σǫ.

With this in mind, letM is an n×qr matrix with rank qr such that υ
(qr)
t = M′υt for qm ≤ qr ≤ n,

while the n× (n− qr) matrix M⊥ is selected such that M′
⊥M = 0 and υ

(n−qr )
t = M′

⊥υt. As above,

we define the matrices M̄ and M̄⊥ and let

υt = M̄υ
(qr)
t + M̄⊥υ

(n−qr )
t . (16.46)

For the stacked system of shocks ΥT+g we then have that

ΥT+g =
(
Ig ⊗ M̄

)
Υ

(qr)
T+g +

(
Ig ⊗ M̄⊥

)
Υ

(n−qr)
T+g , (16.47)

where
Υ

(n−qr)
T+g ∼ N

(
0,
(
Ig ⊗M′

⊥M⊥
))
,

are the free shocks over the conditioning horizon. The conditioning problem is now one of

determining the distribution of Υ
(qr)
T+g |Υ

(n−qr)
T+g such that the conditioning assumptions in (12.15)

are satisfied.
The restrictions that the shocks Υ

(qr)
T+g have to satisfy can here be expressed as

K′D
(
Ig ⊗A0M̄

)
Υ

(qr)
T+g = k

(qr)
T+g , (16.48)

where

k
(qr)
T+g = ZT+g − UT −K′

(
XT+g + GỸT + D

(
Ig ⊗A0M̄⊥

)
Υ

(n−qr)
T+g

)
.

The distribution of Υ
(qr)
T+g conditional on Υ

(n−qr)
T+g can now be shown to be normal with mean and

covariance matrix given by

µ
(qr)
Υ,T+g =

(
Ig ⊗ M̄′A′

0

)
D′K

[
K′D

(
Ig ⊗A0M̄M̄′A′

0

)
D′K

]−1
k

(qr)
T+g ,

Σ
(qr)
Υ,T+g = Iqrg −

(
Ig ⊗ M̄′A′

0

)
D′K

[
K′D

(
Ig ⊗A0M̄M̄′A′

0

)
D′K

]−1
K′D

(
Ig ⊗A0M̄

)
.

(16.49)

The mean of the conditional predictive distribution for fixed parameters is now given by

E
[
YT+g |YT , ZT+g ; Φ,Σǫ

]
= XT+g + GỸT + D

(
Ig ⊗A0M̄

)
µ̄

(qr)
Υ,T+g , (16.50)

where

µ̄
(qr)
Υ,T+g =

(
Ig ⊗ M̄′A′

0

)
D′K

[
K′D

(
Ig ⊗A0M̄M̄′A′

0

)
D′K

]−1
k̄

(qr)
T+g ,

k̄
(qr)
T+g = ZT+g − UT −K′(XT+g + GỸT

)
.

Furthermore, the covariance matrix of the distribution can be expressed as

C
(
YT+g |YT , ZT+g ; Φ,Σǫ

)
= D

(
Ig ⊗ A0

)[
D̄
(
Ig ⊗ M̄⊥M

′
⊥
)
D̄′+

+
(
Ig ⊗ M̄

)
Σ

(qr)
Υ,T+g

(
Ig ⊗ M̄′)

](
Ig ⊗A′

0

)
D′,

(16.51)
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where

D̄ = Ing −
(
Ig ⊗ M̄M̄′A′

0

)
D′K

[
K′D

(
Ig ⊗A0M̄M̄′A′

0

)
D′K

]−1
K′D

(
Ig ⊗A0

)
.

It is now straightforward to show that the predictive distribution of YT+g satisfies the condi-
tioning assumptions. Premultiplication of the conditional mean in (16.50) by K′ we find that
the right hand side is equal to ZT+g − UT . Furthermore, premultiplication of the covariance in
(16.51) by K′ and postmultiplication by K gives us a zero matrix.

In the event that qr = qm we find that the covariance matrix Σ
(qr)
Υ,T+g is zero since the qmg×qmg

matrix K′D(Ig ⊗A0M̄) is invertible. As a consequence, the subset of shocks Υ
(qr)
T+g = µ

(qr)
Υ,T+g and

is also equal to Υ
(qm)
T+g in equation (16.33). Hence, the distribution of a subset of shocks method

is identical to the direct control of shocks method. Furthermore, with qr = q we may let
M = In. With Σǫ = A0A

′
0 we now find that the mean and the covariance matrix of the predictive

distribution in (16.50) and (16.51) are identical to those in (16.42) and (16.43). Hence, the
distribution of a subset of the shocks conditioning method is identical to the distribution of the
shocks method from Section 16.9.2 when qr = q and the structural shocks of the DSGE-VAR
can be identified.

For forecast horizons beyond the conditioning horizon it is straightforward to show that

E
[
yT+i|YT , ZT+g ; Φ,Σǫ

]
= J ′px̄T+i + J ′pΨiỸT + J ′pΨi−gΨ̃

(
Ig ⊗A0M̄

)
µ̄

(qr)
Υ,T+g , (16.52)

for i = g + 1, . . . , h, while the covariance matrix is given by

C
(
yT+i|YT , ZT+g ; Φ,Σǫ

)
=

i−g−1∑

j=0

J ′pΨjJpΣǫJ
′
p

(
Ψ′)jJp + J ′pΨi−gΨ̃

(
Ig ⊗A0

)
×

[
D̄
(
Ig ⊗ M̄⊥M

′
⊥
)
D̄′ +

(
Ig ⊗ M̄

)
Σ

(qr)
Υ,T+g

(
Ig ⊗ M̄′)

](
Ig ⊗A′

0

)
Ψ̃′(Ψ′)i−gJp.

(16.53)

Provided that the eigenvalues of Ψ are less than unity in aboslute term, the moments in
(16.52) and (16.53) converge to the unconditional moments of the observed variables when
i → ∞. A decomposition of the overall predictive uncertainty can now be obtained as in the
end of Section 16.9.1. This provides us with the overall share of the predictive uncertainty
under the conditioning assumptions which is due to uncertainty about the shocks and the share
which is due to the uncertainty about the parameters.

16.9.4. Modesty Statistics for the DSGE-VAR

Modesty statistics for conditional forecasts from the DSGE model were discussed in Section 12.3
while similar statistics were considered for conditional forecasts from the BVAR in Section 14.6.
With these results in mind, the introduction of such tests of the likelihood that the agents of
the economy would detect that the conditioning information included paths of future values for
some of the endogenous variables in the DSGE-VAR framework is fairly straightforward.

Beginning with the case when we use direct control of certain structural shocks to ensure that
the conditioning assumptions are satisfied, the difference between a path for the conditional
forecast and the unconditional mean forecast is given by

ΦT,g

(
ῩT+g

)
= J ′p

[
Jp ΨJp · · · Ψg−1Jp

] (
Ig ⊗A0

)
ῩT+g = J ′pΨ̃

(
Ig ⊗A0

)
ῩT+g , (16.54)

where ῩT+g is a draw of the identified shocks such that Ῡ
(n−qm)
T+g ∼ N(0, [Ig ⊗M′

⊥M⊥]), while

the manipulated shocks Ῡ
(qm)
T+g satisfy equation (16.33). Since the covariance matrix of the

unconditional forecasts is given by J ′pΣ̄
(g)
Y Jp, where Σ̄

(g)
Y is determined by equation (16.24), a

multivariate modesty statistic based on the ideas in Adolfson et al. (2005) may be expressed as

MT,g

(
ῩT+g

)
= ΦT,g

(
ῩT+g

)′ [
J ′pΣ̄

(g)
Y Jp

]−1

ΦT,g

(
ῩT+g

)
. (16.55)
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Provided that the manipulated shocks are modest, i.e., {υ(qm)
t }T+g

t=T+1 can be regarded as being

drawn from a multivariate normal distribution with mean zero and covariance matrix M′M, the
statistic in (16.55) is χ2(n). Alternatively, a reference distribution for the statistics may be simu-
lated by feeding a sequence of standard normal shocks ΥT+g into the statistic in (16.55), denoted

by MT,g(ΥT+g), and thereafter computing the tail probability Pr[MT,g(ΥT+g) ≥ MT,g(ῩT+g)] to
determine if the conditioning assumptions are modest or not.

A set of univariate statistics based on these ideas may also be considered. Following Adolfson
et al. (2005) we here consider

M(i)
T,g

(
ῩT+g

)
=

Φ(i)
T,g

(
ῩT+g

)
√
e′iJ

′
pΣ̄

(g)
Y Jpei

, i = 1, . . . , n, (16.56)

where the numerator is element i of the vector in (16.54), and ei is the i:th column of In. This
statistic has a standard normal distribution under the assumption that the manipulated shocks
are modest.

The third modesty statistic for the case of direct control of the structural shocks is the Leeper-
Zha inspired statistic. All shocks are here set to zero except for the manipulated ones. This
means that we require the covariance matrix based on using only the manipulated shocks

Σ̃(i)
Y = JpA0M̄M′A′

0J
′
p + ΨΣ̃(i−1)

Y Ψ′, i = 1, . . . , g,

where Σ̃(0)
Y = 0, and replace Σ̄

(g)
Y in equation (16.56) with Σ̃

(g)
Y . Moreover, the numerator is

evaluated at
ῩT+g = (Ig ⊗ M̄)µ

(qm)
Υ,T+g .

Under the Waggoner and Zha approach we replace the forecast difference in equation (16.54)
with

ΦT,g

(
ĒT+g

)
= J ′pΨ̃ĒT+g ,

where ĒT+g is a draw from N(µE,T+g ,ΣE,T+g). The multivariate modesty statistic in (16.55) is
therefore given by

MT,g

(
ĒT+g

)
= ΦT,g

(
ĒT+g

)′ [
J ′pΣ̄

(g)
Y Jp

]−1

ΦT,g

(
ĒT+g

)
.

The univariate statistics in (16.56) is likewise computed with element i from ΦT,g(ĒT+g) rather

than this element from ΦT,g(ῩT+g). The denominator is unaffected by the choice of conditioning
method.

For the Leeper-Zha approach we use element i from ΦT,g(µE,T+g) in the numerator of the test

statistic, while the covariance matrix Σ̄
(g)
Y is replaced with Σ

(g)
Y , where

Σ(i)
Y = JpΣǫK1

(
K′

1ΣǫK1

)−1
K′

1ΣǫJ
′
p + ΨΣ(i−1)

Y Ψ′, i = 1, . . . , g,

and where Σ(0)
Y = 0.

Finally, under the distribution for a subset of the shocks method discussed in Section 16.9.3,
the multivariate and univariate modesty statistics based on the Adolfson, Laséen, Lindé, and
Villani approach are calculated as in the case of direct control of the shocks, i.e., based on
the structural shocks rather than on the VAR residuals. For the univariate Leeper-Zha based
modesty statistic, however, the covariance matrix is calculated as under the Waggoner and Zha
approach, except that Σǫ is replaced with A0M̄M′A′

0. When qr = qm we find that K′
1A0M̄ is

invertible and, hence, that the Leeper-Zha covariance matrix is equal to the one determined
under direct control of the shocks method. When qr = q we likewise find that M = In while
Σǫ = A0A

′
0 so that the Leeper-Zha covariance matrix is identical to the one obtained under the

Waggoner and Zha method.

16.10. The Predictive Likelihood for DSGE-VARs

The general expressions for estimating the predictive likelihood that were presented in Sec-
tion 12.6 are also valid for DSGE-VAR models. In this regard it is important to keep in mind
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that the DSGE-VAR has parameters beyond θ, except for the case when λ = ∞, and that the
VAR parameters need to be dealt with when computing the marginal likelihood for the sam-
ple (y∗

t+h,Yt). The simplified expressions for the Laplace approximation in equation (12.65)
can also be used in the DSGE-VAR framework, where we only need to provide formulas for
yt+h|t and Σy,t+h|t. This is easily achieved through results in Section 16.8 regarding the popula-
tion moments of the marginal predictive distribution, but again the caveat about taking all the
DSGE-VAR parameters when computing the marginal likelihood for the sample (y∗

t+h,Yt) needs
to be taken into account.

We can directly make use of equations (16.22) and (16.24) to determine yt+h|t and Σy,t+h|t.
That is, setting ǭt+h to zero

yt+h|t = J ′px̄t+h + J ′pΨhYt,

Σy,t+h|t = J ′pΣ̄(h)
Y Jp, h = 1, . . . , H,

where the (Φ,Σǫ, θ) parameters are evaluated at the posterior mode. Based on the joint condi-
tional posterior density of the VAR parameters, the joint posterior mode of the VAR parameters
conditional on θ is given by equations (15.31) and (15.32).

The joint predictive likelihood for a subset of variables can be derived from the Kalman filter
equations in Section 5.2. The conditional likelihood is given by equation (12.66), where the
period t+i term is shown in (12.67). It therefore remains to provide expressions for the forecast
of y∗

t+i and the corresponding covariance matrix conditional on the information Y∗
t+i−1

,Yt. This

means that

y∗
t+i|t+i−1

= K′J ′pYt+i|t+i−1,

Σ∗
y,t+i|t+i−1

= K′J ′pΩt+i|t+i−1JpK, i = 1, . . . , h,

where K is an n × n∗ known selection matrix such that y∗
t = K′yt. The 1-step-ahead forecasts

of the Yt+i vector are

Yt+i|t+i−1 =




JpΦ0xt+i + ΨYt+i−1|t+i−2 + Gt+i−1

(
y∗
t+i−1

− y∗
t+i−1|t+i−2

)
, if i ≥ 2,

JpΦ0xt+1 + ΨYt, if i = 1.

The Kalman gain matrix

Gt+i−1 = ΨΩt+i−1JpKΣ∗−1
y,t+i−1|t+i−2

, i ≥ 2,

while the 1-step-ahead covariance matrix is

Ωt+i|t+i−1 =





(
Ψ − Gt+i−1K

′J ′p
)

Ωt+i|t+i−1

(
Ψ − Gt+i−1K

′J ′p
)′

+ JpΣǫJ ′p, if i ≥ 2,

JpΣǫJ ′p, if i = 1.

Posterior mode estimation of θ via a DSGE-VAR model can, as discussed in Section 15.7, be
conducted in at least two different ways. That is, we may either use the marginal likelihood
in equation (15.24) or the concentrated likelihood in equation (15.34) when λ is finite, and
the likelihood in equation (15.26) when λ = ∞. When combined with the prior of θ (or φ)
the first gives us a marginal posterior mode estimate of θ, while the second gives us a joint
posterior mode estimate. The case when λ = ∞ means that the marginal and the joint mode
are equal. Given any such estimate, the corresponding posterior mode of the VAR parameters is
obtained by plugging the value of the estimated DSGE model parameters into equations (15.31)
and (15.32). Both these approaches yield legitimate candidate estimates of the posterior mode
when computing the height of the predictive density in (12.65).

A peculiar property of the DSGE-VAR model is that its prior in equations (15.16) and (15.17)
depends on T . That is, the prior changes as the number of observation in the likelihood in-
creases. Specifically, when going from T to T + 1 observations on yt, the change of the prior of
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the VAR parameters is given by:

∆ lnp
(
Φ,Σǫ|θ, λ

)
=
nTλ

2
ln(1 + T−1) +

nλ

2
ln((T + 1)λ/2) − ln Γn((T + 1)λ− np − k)

+ ln Γn(Tλ− np − k) +
λ

2
ln |Σǫ(θ)| − λ

2
ln |Σǫ| −

λ

2
tr
[
Σ−1
ǫ Σǫ(θ)

]
.

If the predictive likelihood for, say, yT+1|YT is calculated using the marginal likelihood values
from the Laplace approximations for periods T+1 and T it follows that the predictive likelihood
is directly influenced by this feature of the prior. In additional, the three terms involving Σǫ and
Σǫ(θ) imply that the link between the Hessian matrices in equation (12.71) is not valid. Both
these effects from the DSGE-VAR prior being dependent on T are clearly unfortunate when using
such models in a forecast comparison exercise.

If we instead make use of the more reasonable assumption that the prior remains unchanged
when evaluating forecasts, i.e., we fix T at T∗ in the prior, and compute the Laplace approxi-

mation through (12.70), the Hessian matrix Σ̃t is available through equations (15.38)–(15.45).

Furthermore, equation (12.71) is now valid with the effect that the Hessian matrix Σ̃t+h is equal

to sum of Σ̃t and Ω̃t+h|t. For the DSGE-VAR models with finite λ it follows that

Ω̃t+h|t =




−
∂2 lnL

(
y∗
t+h|y, Y1; Φ̃, Σ̃ǫ

)

∂vec(Φ)vec(Φ)′
−
∂2 lnL

(
y∗
t+h|y, Y1; Φ̃, Σ̃ǫ

)

∂vec(Φ)vech(Σǫ)′
0

−
∂2 lnL

(
y∗
t+h|y, Y1; Φ̃, Σ̃ǫ

)

∂vech(Σǫ)vec(Φ)′
−
∂2 lnL

(
y∗
t+h|y, Y1; Φ̃, Σ̃ǫ

)

∂vech(Σǫ)vech(Σǫ)′
0

0 0 0



. (16.57)

The zeros are due to the fact that the conditional likelihood is invariant to the DSGE model
parameters and we have assumed that the prior of the VAR parameters is fixed, with t = t∗ for
the forecast horizon t + h with h = 1, . . . , H.

By contrast, for the DSGE-VAR models with λ = ∞, the VAR parameters are functions of the

DSGE model parameters. To determine Ω̃t+h|t we may then apply the chain rule to the partial

derivatives. Letting the nonzero matrices in (16.57) be denoted by ΩΦ,Φ, ΩΦ,Σ = Ω′
Σ,Φ, and

ΩΣ,Σ, respectively, it follows that

Ω̃(λ=∞)
t+h|t =

(
∂vec(Φ(θ))

∂φ′

)′
ΩΦ,Φ

∂vec(Φ(θ))

∂φ′ +

(
∂vec(Φ(θ))

∂φ′

)′
ΩΦ,Σ

∂vech(Σǫ(θ))

∂φ′

+

(
∂vech(Σǫ(θ))

∂φ′

)′
ΩΣ,Φ

∂vec(Φ(θ))

∂φ′ +

(
∂vech(Σǫ(θ))

∂φ′

)
ΩΣ,Σ

∂vech(Σǫ(θ))

∂φ′ .

The partial derivatives of Φ(θ) and Σǫ(θ) with respect to φ are:

∂vec
(
Φ(θ)

)

∂φ′ =
[
Γ−1
YY (θ) ⊗ In

]
GyY (θ) −

[
Γ−1
YY (θ) ⊗ Φ(θ)

]
Dnp+kGYY (θ),

and

∂vech
(
Σǫ(θ)

)

∂φ′ = Gyy(θ) + D+
n

[
Φ(θ) ⊗ Φ(θ)

]
Dnp+kGYY (θ) − 2D+

n

[
Φ(θ) ⊗ In

]
GyY (θ),

and the G matrices are given in Section 15.7.
It remains the provide analytical expressions of the Ωi,j matrices. After making considerable

use of the matrix differential calculus tricks in Magnus and Neudecker (1988) it can be shown
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that the following monster appears for h = 1,2, . . . , H:

ΩΦ,Φ =
1

2

(
∂vec(Σ̄(h)

Y )

∂vec(Φ)′

)′ [
JpKΣ−1

K,h
K′J ′p ⊗ JpK

(
2Σ−1

K,h
ε∗
h
ε∗′
h
− In∗

)

×Σ−1
K,h
K′J ′p

] ∂vec(Σ̄(h)
Y )

∂vec(Φ)′
+

h−2∑

i=0

{
M′
[
Σ̄(h−1−i)
Y ⊗ Gi,h

]
M

+

(
∂vec(Σ̄(h−1−i)

Y )

∂vec(Φ)′

)′ [
Inp ⊗ Ψ′Gi,h

]
M +M′ [Inp ⊗ Gi,hΨ

]

×
∂vec(Σ̄(h−1−i)

Y )

∂vec(Φ)′
+

(
∂x̄t+h−1−i
∂vec(Φ)′

)′ [
Inp ⊗ ε∗′

h
Σ−1
K,h
K′J ′pΨi

]
M

+M′
[
Inp ⊗ (Ψ′)iJpKΣ−1

K,h
ε∗
h

] ∂x̄t+h−1−i
∂vec(Φ)′

+

(
∂vec(Ψh−1−i)
∂vec(Φ)′

)′

×
[
Inp ⊗ JpKΣ−1

K,h
ε∗
h
Y ′
t(Ψ′)i

]
CnpM +M′C′

np

[
Inp ⊗ ΨiYtε

∗′
h

× Σ−1
K,h
K′J ′p

]∂vec(Ψh−1−i)
∂vec(Φ)′

}
+

(
∂ε∗
h

∂vec(Φ)′

)′
Σ−1
K,h

∂ε∗
h

∂vec(Φ)′

− 1

2

(
∂ε∗
h

∂vec(Φ)′

)′ [
Σ−1
K,h
K′J ′p ⊗ ε∗′

h
Σ−1
K,h
K′J ′p

] ∂vec(Σ̄(h)
Y )

∂vec(Φ)′

− 1

2

(
∂vec(Σ̄(h)

Y )

∂vec(Φ)′

)′ [
JpKΣ−1

K,h
⊗ JpKΣ−1

K,h
ε∗
h

] ∂ε∗
h

∂vec(Φ)′
.

(16.58)

Furthermore,

ΩΦ,Σ =
1

2

(
∂vec(Σ̄(h)

Y )

∂vec(Φ)′

)′ [
JpKΣ−1

K,h
K′J ′p ⊗ JpK

(
2Σ−1

K,h
ε∗
h
ε∗′
h
− In∗

)

×Σ−1
K,h
K′J ′p

] ∂vec(Σ̄(h)
Y )

∂vech(Σǫ)′
+

h−2∑

i=0

M′ [Inp ⊗ Gi,hΨ
] ∂vec(Σ̄(h−1−i)

Y )

∂vech(Σǫ)′

− 1

2

(
∂ε∗
h

∂vec(Φ)′

)′ [
Σ−1
K,h
K′J ′p ⊗ ε∗′

h
Σ−1
K,h
K′J ′p

] ∂vec(Σ̄(h)
Y )

∂vech(Σǫ)′
,

(16.59)

and

ΩΣ,Σ =
1

2

(
∂vec(Σ̄(h)

Y )

∂vech(Σǫ)′

)′ [
JpKΣ−1

K,h
K′J ′p ⊗ JpK

(
2Σ−1

K,h
ε∗
h
ε∗′
h
− In∗

)

×Σ−1
K,h
K′J ′p

] ∂vec(Σ̄(h)
Y )

∂vech(Σǫ)′
.

(16.60)

These expression are evaluated at the posterior mode and rely on the following:

ε∗
h

= K′
(
yt+h − J ′px̄t+h − JpΨhYt

)
,

Gi,h =
(
Ψ′)iJpK

(
In∗ − Σ−1

K,h
ε∗
h
ε∗′
h

)
Σ−1
K,h
K′J ′pΨi, i = 0,1, . . . , h− 2,

ΣK,h = K′J ′pΣ̄(h)
Y JpK,

∂vec
(
Σ̄(h)
Y

)

∂vec
(
Φ
)′ =

(
In2p2 + Cnp

) [
ΨΣ̄(h−1)

Y ⊗ Inp

]
M + [Ψ ⊗ Ψ]

∂vec
(
Σ̄(h−1)
Y

)

∂vec
(
Φ
)′ , h = 1,2, . . . , H,
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where Σ̄(0)
Y = 0, ∂vec(Σ̄(0)

Y )/∂vec(Φ)′ = 0, and Cnp is the n2p2 ×n2p2 commutation matrix such
that Cnpvec(Ψ) = vec(Ψ′). Moreover,

∂vec
(
Σ̄(h)
Y

)

∂vech
(
Σǫ
)′ =

[
Jp ⊗ Jp

]
Dn + [Ψ ⊗ Ψ]

∂vec
(
Σ̄(h−1)
Y

)

∂vech
(
Σǫ
)′ , h = 1,2, . . . , H,

where again ∂vec(Σ̄(0)
Y )/∂vech(Σǫ)′ = 0. Next,

∂x̄t+h

∂vec
(
Φ
)′ = JpN +

[
x̄′
t+h−1

⊗ Inp

]
M + Ψ

∂x̄t+h−1

∂vec
(
Φ
)′ , h = 1,2, . . . , H,

where x̄t = 0 and ∂x̄t/∂vec(Φ)′. Furthermore,

∂vec
(
Ψh
)

∂vec
(
Φ
)′ =

[
Inp ⊗ Ψh−1

]
M +

[
Ψ′ ⊗ Inp

] ∂vec
(
Ψh−1

)

∂vec
(
Φ
)′ , h = 1,2, . . . , H,

where ∂vec(Ψ0)/∂vec(Φ)′ = 0. Finally,

∂ε∗
h

∂vec
(
Φ
)′ = −K′J ′p

∂x̄t+h

∂vec
(
Φ
)′ −

[
Y ′
t ⊗K′J ′p

] ∂vec
(
Ψh
)

∂vec
(
Φ
)′ , h = 1,2, . . . , H,

and the n2p2 × n(np + k) and nk × n(np + k) matrices

M =
[
0n2p2×nk

(
Inp ⊗ Jp

)]
, N =

[
Ink 0nk×n2p

]
.

Notice that dvec(Ψ) = Mdvec(Φ) and vec(Φ0) = Nvec(Φ).
It is also possible to derive similar analytical results for the Laplace approximation of the joint

predictive likelihood. For large models (large n and/or p), it is noteworthy that the calculation
of Hessian can be extremely time consuming and for such models it seems reasonable to instead
use a Monte Carlo integration based method, such as the importance sampling estimator in
(12.64).

16.11. YADA Code

This section contains information about the functions that are used to compute the different
tools discussed above.

16.11.1. DSGEVARImpulseResponses

The function DSGEVARImpulseResponses computes DSGE-VAR based impulse responses for orig-
inal, annualized, and levels data. A total of 8 input variables are required for this purpose: Phi,
A0, p, h, IRType, levels, annual, and annualscale. The first is the Φ matrix in equation
(15.10), except that the parameters on the exogenous variables, Φ0, have been removed. The
second is the identified A0 matrix, while p and h are the lag order and response horizon, re-
spectively. The 5th input variable is an indicator such that the value 1 means that original
impulse responses should be calculated, 2 that annualized impulse responses are needed, while
3 results in levels responses. The levels variable is a vector of length equal to the number of
endogenous variables (n), where 1 indicates that the variable is measured as a levels variable,
and 0 that it is measured as a first differenced variable. The final 2 input variables, annual
and annualscale, are vector of the length n and are used to annualize the original impulse re-
sponses. If an element in the vector annual is unity the variable is already annualized, 4 means
that it is measured as quarterly first differences and, hence, that annualization is achieved by
summing the current and previous 3 values of the variable. An entry equal to 12 means that it is
measured as monthly first differences and that adding the current and previous 11 values gives
the annualization. Finally, the vector annualscale contains scale constants that are multiplied
by the variables.

The function only returns one output variable: IRF. This matrix is of dimension n×n×(h+1),
where the responses in the endogenous variables are found in the rows, while the columns
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represent the n structural shocks of the DSGE-VAR. The third dimension gives the horizon for
the responses, where the first concerns the contemporaneous responses.

16.11.2. DSGEVARVarianceDecompositions

The function DSGEVARVarianceDecompositions computes DSGE-VAR based variance decompo-
sitions for the original or the levels data. It requires 6 input variables to achieve its task: Phi, A0,
p, h, VDType, and levels. All variables except VDType are used by DSGEVARImpulseResponses

discussed above. The VDType input is an integer that takes the value 1 if the forecast errors
concern the original data and 2 if they refer to the levels data.

The three output variables from the function are called FEVDs, LRVD and VarShares. The
first is a matrix of dimension n × n × h with the forecast error variance decompositions for the
n endogenous variables in the rows, the n structural shocks in the columns, and the forecast
horizon in the third dimension, with h being the maximum horizon. The second output variable,
LRVD, is an n × n matrix with the long-run variance decompositions. For the original data, the
long-run is determined by the maximum of h and 200, and for levels data it is computed via
the matrix Rlr in Section 16.3 along with the expression in equation (11.30). The final output
variable is given by VarShares, which measures the convergence to the long-run by dividing the
h-step ahead forecast error variances with the long-run variances. Values close to unity suggest
convergence, while small values indicates the model has not yet converged to the long run.

16.11.3. DSGEVARObsVarDecomp

The function DSGEVARObsVarDecomp calculates the observed variable decompositions from a
DSGE-VAR model. It takes 7 input variables: Phi, A0, p, k, y, Y, and IsConstant. The first 4
variables have been discussed above, but it may be noted that Phi includes the parameters on
the exogenous variables. The input variable y is an n×T matrix with the data on the endogenous
variables, while Y is an np+k×T matrix with the data on the exogenous and lagged endogenous
variables. Finally, the variable IsConstant is a boolean variable that is unity if xt = 1 for all t
and zero otherwise. The decomposition in (16.6) is used in the latter case, while (16.8) is used
in the former.

The three output variables are given by yMean, yInitial, and yShocks. The first is an n × T
matrix with the population mean of the data given the parameters (and the exogenous variables
term when IsConstant is zero). Similarly, the variable yInitial is an n × T matrix with the
initial value term in the decomposition. The last output variable is yShocks, an n×T ×n matrix
with the decomposition of the endogenous variables (rows) for each time period (columns) due
to the n structural shocks (third dimension).

16.11.4. DSGEVARCorrelationParam

The function DSGEVARCorrelationParam requires only three input variables: Phi, SigmaEpsilon
and DSGEModel. The matrix Phi is of dimension n× np+ k are thus includes the parameters on
the exogenous variables as well as those on lagged endougenous. The matrix SigmaEpsilon is
the residual covariance matrix, while the last input variable is well known.

The output variable is called SVEs and is a structure with 7 fields. The DSGE-VAR model
population mean matrix of dimension n × k is stored in the field Mean. To get the actual
population mean, this matrix needs to be multiplied by xt for each time period. The population
mean computation is based on the approximation

µ̃yt = J ′p
(
Inp − Ψ

)−1

JpΦ0xt,

i.e., an expression which is correct for xt = 1. The actual population mean is given by

µyt =
∞∑

j=0

J ′pΨjJpΦ0xt−j .
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To get an idea about the approximation error, YADA computes µyt through the recursion

µyt = Φ0xt +
p∑

i=1

Φiµyt−i,

based on the initial values µyτ = µ̃yτ for τ = 0, . . . ,1−p. The maximum (absolute) approxima-
tion error for µ̃yt − µyt is stored in the field meanerror, a vector of dimension n.

Furthermore, the field AutoCovHorizon is a vector with integer values ranging from −h to h,
with h being the largest autocovariance horizon. The field Cov contains the contemporaneous
covariance matrix, and Std the vector of standard deviations. The autocorrelations are available
in the field Corr, a matrix with dimensions n(n + 1)/2 × 2h+ 1.

In addition to the population moments, the structure SVEs also has a field called Data with
the data moments. This field is itself a structure with fields Mean, Cov, Std, and Corr.

16.11.5. DSGEVARCorrelationSimulationParam

The function DSGEVARCorrelationSimulationParam computes sample-based moments from a
DSGE-VAR by simulating data from the model. The function requires the 7 input variables: Phi,
SigmaEpsilon, NumPaths, lambda, EstStr, DSGEModel, and CurrINI. The first two variables
are identical to those in DSGEVARCorrelationParam, while the last two are well known. The
NumPaths variable is an integer with the number of paths to simulate for the observed variables.
The lambda variable is the usual λ hyperparameter for the DSGE-VARs, while EstStr is a string
vector that reflects the type of parameter estimates that are used by the function.

The output variable is the structure SVEs, which has the same field entries as the same named
output variable of DSGEVARCorrelationParam, except that the field meanerror is not used.

16.11.6. DSGEVARCorrDecompParam

The function DSGEVARCorrDecompParam computes the correlation decompositions of a DSGE-
VAR for fixed parameter values. This task is achieved through 5 input variables: Phi, A0, EstStr,
DSGEModel, and CurrINI. The first input variable is the n × np matrix obtained from Φ in
equation (15.10) by excluding the parameters on exogenous variables (Φ0). All other input
variables have been discussed above.

As output the function provides the structure CorrDec. The fields are nearly identifical to
the fields of this structure provided by the DSGE model correlation decomposition function
DSGECorrelationDecompTheta; cf. Section 11.17.7. The exceptions concern the fields Xi, which
is missing, and the field Y, which here has the dimension n × (2h + 1) × n, reflecting that the
number of shocks of the DSGE-VAR is n rather than q and that there is no measurement error.

16.11.7. DSGEVARConditionalCorrsParam

The function DSGEVARConditionalCorrsParam computes either sample-based or population-
based conditional correlations for fixed parameter values. To deal with its task it takes 8 input
variables: Phi, A0, lambda, ShockNames, NumPaths, EstStr, DSGEModel, and CurrINI. The ma-
trix Phi here includes parameters on the deterministic variables and therefore has dimension
n × (np + k). Apart from ShockNames, a string matrix with the names of the structural shocks
in the rows, the remaining variables have been discussed above.

The conditional correlations results are provided in the vector structure CondCorr, whose
length is equal to the number of structural shocks, i.e., n. For each element of this vector
structure the fields are given by Mean and possibly Quantiles. The latter fields is included when
sample-based conditional correlations have been calculated. Furthermore, the first element of
CondCorr also contains the field ShockNames.

16.11.8. DSGEVARCoherenceParam

The function DSGEVARCoherenceParam computes the coherence using the population spectrum
of a DSGE-VAR for fixed parameter values. To this end the function takes 6 input variables: Phi,
SigmaEpsilon, lambda, EstStr, DSGEModel, and CurrINI. The first input variable is the n × np
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matrix obtained from Φ in equation (15.10) by excluding the parameters on exogenous variables
(Φ0). All other variables are shared with DSGEVARCorrelationSimulationParam above.

Two output variables are provided, SOmega and Omega. The first is an n(n − 1)/2 × f ma-
trix with the unique coherence values for pairs of observed variables across the f frequencies,
obtained from the vector Omega. Like for all other spectral density functions in YADA, the in-
teger f = 300, while the entries in Omega are given by ωj = π(j − 1)/299; see, e.g., the
DSGECoherenceTheta function in Section 13.9.3.

16.11.9. DSGEVARSpectralDecomposition

The function DSGEVARSpectralDecomposition requires 6 input variables: Phi, A0, lambda,
EstStr, DSGEModel, and CurrINI. The Phi matrix does not include parameters on the deter-
ministic variables and is therefore setup in the same way as for the function that computes the
forecast error variance decomposition; cf. DSGEVARVarianceDecompositions above. The scalar
lambda gives the λ hyperparameter, while EstStr is a string that provides information about
which values of the VAR parameters that are used, i.e., the initial values, the marginal or the
joint posterior mode values. The structures DSGEModel and CurrINI are by now well known.

The output variables from the function are first of all given by SyOmega and SyOmegaAnnual.

The first variable is an n×f cell array of n×n matrices with the spectral decompositions s
(j)
y (ω)

for shock j and frequencyω; see equation (16.17). The second variable is the annualized version
of the conditional population spectrum; see Section 13.5. Next, the vectors OriginalVariance
and AnnualVariance are given as output. These hold the model-based population variances of
the endogenous variables and of the annualized endogenous variables, respectively. The fifth
and last output variable is Omega, an f-dimensional vector with the 300 frequencies that are
considered, i.e., ω = 0, π/299,2π/299, . . . , π.

16.11.10. DSGEVARPredictionPathsParam

The function DSGEVARPredictionPathsParam computes unconditional forecasts of the endoge-
nous variables for fixed values of the parameters. To achieve this objective, 12 input vari-
ables are needed: Phi0, Phi, SigmaEpsilon, X, LastPeriod, h, lambda, NumPaths, EstStr,
ForecastType, DSGEModel, and CurrINI. The matrix Phi0 contains the parameters on the exoge-
nous variables, while Phi are the parameters on lagged endogenous variables and the residual
covariance matrix is given by SigmaEpsilon. Data over the forecast sample on the exogenous
variables are located in the k × h matrix X, while the integer LastPeriod gives the position in
the full sample of the last period that is viewed as observed. This means that yT is located in
position LastPeriod of the matrix DSGEModel.Y. The integer h is the maximum forecast hori-
zon, while lambda is the usual λ hyperparameter that defines the weight on the prior for the
DSGE-VAR. The integer NumPaths is equal to the number of forecast paths to calculate, EstStr
is a string that indicates if initial values, marginal or joint posterior mode values are used for
the computations. The integer ForecastType is equal to 1 if the original data format of the en-
dogenous variables is forecasted, 2 if annualized data is forecasted, and 3 if the function should
forecast transformed data. The last two input variables are familiar.

The number of output variables provided by the function is 4. They are given by PredPaths,
PredData, PredEventData, and YObsEventData. These variables are nearly the same as those
supplied by the unconditional forecasting function, DSGEPredictionPathsTheta, for the DSGE
model. Specifically, the fields of PredData differ somewhat. The DSGE-VAR forecasting func-
tion has the following fields: PredMean, epsShocks, epsMean, Shocks, KernelX, and KernelY.
The PredMean field gives the n × h matrix with population mean forecasts of the endogenous
variables. The field epsShocks is an n × h matrix with the population mean of the residuals
over the forecast horizon, i.e., a zero matrix, while epsMean is the sample mean of the simulated
residuals. The paths for all residuals are stored in the matrix Shocks, with dimensions n×h×P
(with P being the number of simulated paths). The last two fields of the PredData structure give
the horizontal and vertical axes values for kernel density estimates of the marginal predictive
densities. These matrices have dimensions n × 28 × h.
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16.11.11. DSGEVARPredictionPaths

The function DSGEVARPredictionPaths needs 16 input variables. The prior or posterior draws
of the parameters of the VAR are given by PhiDraws and SigmaDraws. The matrices have di-
mensions d×n(np+k) and d×n(n+ 1)/2, respectively, where d is the number of draws from
the corresponding parameter distribution. Each row of the PhiDraws matrix is given by the
transpose of the column vectorization of Φ, while the rows of SigmaDraws contains the draws
of vech(Σǫ)′. The following two input variables are given by PhiMode and SigmaModeEpsilon,
fixed parameter values of Φ and Σǫ which are used as backup values for the VAR parameters.
For the prior distribution these matrices are equal to the mode values given the initial values
of the DSGE model parameters, and for the posterior by the mode values given the posterior
mode values of the DSGE model parameters. The latter parameter vector depends on how the
posterior sampler was parameterized.

The next four input variables are directly related to forecasting. They are: X, LastPeriod, h,
and ForecastType and are identical to the variables with the same names in the unconditional
forecast function for fixed parameter values discussed above (DSGEVARPredictionPathsParam).
Thereafter we have 5 input variables related to sampling of the distribution for the DSGE-
VAR model: CurrChain, IsPosterior, PME, lambda, and NumPaths. The first is an integer that
denotes the number of the selected Markov chain; for the prior distribution this variable can be
empty. The following is a boolean variable which is unity if draws from the posterior distribution
are provided to the function and 0 if they stem from the prior. Next, PME is an integer that is
1 if the posterior mode estimator of the DSGE model parameters used by the posterior sampler
of the DSGE-VAR is taken from the DSGE model, 2 if it was given by the marginal posterior
mode estimator from the DSGE-VAR model of θ, and 3 if was the joint posterior mode from the
DSGE-VAR. The following variable simply gives the λ hyperparameter of the DSGE-VAR, while
the number of paths per parameter value is NumPaths. The last 3 input variables are DSGEModel,
CurrINI and controls, all being documented above.

As output the function provides 4 variables. The first is the boolean DoneCalc that indicates if
the computations were completed or not. The next is the matrix PredEventData with prediction
event results. The last two variables give the decomposition of the prediction uncertainty into
the residual/shock uncertainty and parameter uncertainty terms; see (16.25) and (16.26). Both
these variables are 3D matrices with dimensions n×n×h. The actual prediction paths are stored
in mat-files on disk and are not provided as output variables from the function.

16.11.12. DSGEVARCondPredictionPathsParam(WZ/Mixed)

The function DSGEVARCondPredictionPathsParam computes conditional forecasts of the ob-
served variables for fixed values of the parameters using the direct control of the shocks method
discussed in Section 16.9.1, DSGEVARCondPredictionPathsParamWZ makes use of the Waggoner
and Zha approach discussed in Section 16.9.2, while DSGEVARCondPredictionPathsParamMixed

is based on the distribution of a subset of the shocks method in Section 16.9.3. In addition
to the 12 variable required by the function DSGEVARPredictionPathsParam for unconditional
predictions, the conditional forecasting functions both require two further variables: Z and U.
The former holds the conditioning data, while the latter takes care of initial conditions (uT
in equation (12.6)). It should also be noted that since DSGEVARCondPredictionPathsParam

uses the direct control of shocks method it needs the matrix A0, which is multiplied by the
structural shocks, instead of the residual covariance matrix Σǫ. Hence, the input variable A0

replaces SigmaEpsilon in this case. Moreover, this function also needs the input variable
DSGEVARShocks, a vector with integer values determining the positions among the shocks in
the DSGE model of the shocks used in the DSGE-VAR model. This variable is not needed by the
DSGEVARCondPredictionPathsParamWZ function since it does not require structural shocks.

Both function provide seven output variables. The first four are identical to the outputs
given by DSGEVARPredictionPathsParam. The final three variables are the modesty statistics
called MultiModestyStat, UniModestyStat, and UniModestyStatLZ, and they are only calcu-
lated when ForecastType is unity. When this condition is met, MultiModestyStat is a matrix
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of dimension NumPaths times 2, where the first columns holds the values of MT,g(ῩT+g), while
the second column gives MT,g(ΥT+g) under the direct control of the shocks method; see equa-

tion (16.55); the shock processes ῩT+g and ΥT+g are replaced with ĒT+g and ET+g , respectively,
when the Waggoner and Zha approach is applied. The matrix UniModestyStat has dimension
NumPaths times n and gives the univariate modesty statistics, while UniModestyStatLZ is a
vector with the n values of the univariate Leeper-Zha related modesty statistic.

16.11.13. DSGEVARCondPredictionPaths(WZ/Mixed)

The function DSGEVARCondPredictionPaths computes conditional forecasts of the observed
variables for a sample of parameters from the prior or the posterior distribution using the direct
control of shocks method; see Section 16.9.1. Similarly, DSGEVARCondPredictionPathsWZ per-
forms the same task using the Waggoner and Zha method that was discussed in Section 16.9.2
and the function DSGEVARCondPredictionPathsMixed is based on the distribution of a subset of
the shocks method in Section 16.9.3. Both functions need a total of 18 input variables. To begin
with, 16 input variables are shared with the function DSGEVARPredictionPaths. Since the direct
control of shocks method requires the structural form of the DSGE-VAR, the matrix SigmaDraws

is replaced with A0Draws and the covariance matrix SigmaModeEpsilon with A0Mode. The re-
maining two input variables are given by Z and U, which contains the conditioning assumptions;
see the last Section above.

Both functions provide 6 output variables, 4 of which are shared with unconditional fore-
casting function DSGEVARPredictionPaths. In addition, the conditional forecasting functions
provide the variables ShockMean and ShockNames. The former variable is a matrix of dimension
n × h with the population mean over the prediction horizon of the residuals needed to ensure
that the conditioning assumptions are satisfied. The population mean is estimated as the av-
erage over the used VAR parameter draws of the population mean of the resisuals for a fixed
value of these parameters. Finally, the ShockNames output variable is a string matrix with the
names of the structural shocks used by the DSGE-VAR.

16.11.14. DSGEVARPredictiveLikelihoodParam

The function DSGEVARPredictiveLikelihoodParam calculates the joint and marginal predictive
likelihood of a DSGE-VAR model for fixed parameter values using the Laplace approximation.
The function needs 28 input variables to achieve this: theta, thetaPositions, thetaIndex,
thetaDist, PriorDist, LowerBound, UniformBounds, ModelParameters, AIMData, lambda, T, n,
p, npk, GammaHatyy, GammaHatyY, GammaHatYY, DetProductMoments, HSample, logGPR, YData,
X, IsOriginal, IsPlugin, ModeValue, StepLength, DSGEModel, and CurrINI. ModeValue is an
integer that takes the value 1 if posterior mode value from the DSGE model or the initial values
are supplied, the value 2 when marginal posterior mode values are given, and 3 if joint posterior
mode values are provided. In the latter case, the value of logGPR is interpreted as logCPC, the
constant term in the concentrated likelihood function if the DSGE-VAR.

The six output variables are JointPDH, MargPDH, LaplaceMargLike, PredVars, MargPlugin,
and JointPlugin. All these variables have been discussed in Section 12.8.10 in connection with
the function DSGEPredictiveLikelihoodTheta.
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17. Required Input for YADA

In order to estimate a DSGE model YADA needs input from the user on the observed data, the
measurement equation, the prior distribution, parameters that are defined from other param-
eters (such as the steady state), and the DSGE model. This section discusses all these topics
through the example in Section 2.1. The DSGE Data tab in YADA is shown in Figure 8 indicat-
ing the various input files that are used to estimate the parameters of the An and Schorfheide
model.

17.1. Construction of the AiM Model File

The AiM model file is simply a text file that is written using a syntax that the AiM parser can
interpret. The code used for the An and Schorfheide model is listed in Table 1. In this case,
the model has 6 state variables (cf. equation (2.1)), but an additional state variable has been
included to account for the need of ŷt−1 in the measurement equation for ∆Yt in (2.2). Hence,
r = 7 is the dimension of ξt. The model also has q = 3 shocks (the ηi,t variables) which are

Figure 8. The DSGE Data tab on the YADA window.
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listed among the variables, and one constant. The total number of variables (and equations) is
therefore NumEq = 11. The names of the variables given in Table 1 will also appear in the string
matrix that will be sent as input to the measurement equation function, i.e., the string matrix
StateVarNames. Similarly, the names of the equations, e.g., EQ1Euler, will also show up in a
string matrix that can be used to help YADA determine exactly which are the state equations of
the structural form.

Table 1. The AiM model file code for the An and Schorfheide example in equa-
tion (2.1).

MODEL> ASmodel

ENDOG>

yhat _NOTD

pihat _NOTD

chat _NOTD

rhat _NOTD

ghat _NOTD

zhat _NOTD

yhatlag _NOTD

one _DTRM

etaR _NOTD

etaG _NOTD

etaZ _NOTD

EQUATION> EQ1Euler

EQTYPE> IMPOSED

EQ> yhat = LEAD(yhat,1) + ghat - LEAD(ghat,1) - (1/tau)*rhat

+ (1/tau)*LEAD(pihat,1) + (1/tau)*LEAD(zhat,1)

EQUATION> EQ2Phillips

EQTYPE> IMPOSED

EQ> pihat = beta*LEAD(pihat,1) + kappa*yhat

- kappa*ghat

EQUATION> EQ3Consumption

EQTYPE> IMPOSED

EQ> chat = yhat - ghat

EQUATION> EQ4MonPolicyRule

EQTYPE> IMPOSED

EQ> rhat = rhoR*LAG(rhat,1) + (1-rhoR)*psi1*pihat + (1-rhoR)*psi2*yhat

- (1-rhoR)*psi2*ghat + sigmaR*etaR

EQUATION> EQ5GovConsumption

EQTYPE> IMPOSED

EQ> ghat = rhoG*LAG(ghat,1) + sigmaG*etaG

EQUATION> EQ6Technology

EQTYPE> IMPOSED

EQ> zhat = rhoZ*LAG(zhat,1) + sigmaZ*etaZ

EQUATION> EQ7YLag

EQTYPE> IMPOSED

EQ> yhatlag = LAG(yhat,1)

EQUATION> EQ8OneDef

EQTYPE> IMPOSED

EQ> one = 0*LAG(one,1)

EQUATION> EQ9MonPolShock

EQTYPE> IMPOSED

EQ> etaR = 0*one

EQUATION> EQ10GovConsShock

EQTYPE> IMPOSED

EQ> etaG = 0*one

EQUATION> EQ11TechShock

EQTYPE> IMPOSED

EQ> etaZ = 0*one

END

It may be noted that the first and the third equation in Table 1 are written exactly as in An and
Schorfheide (2007, equations 29 and 31) and not as in (2.1). These two ways of writing the log-
linearized consumption Euler equation and the aggregate resource constraint are equivalent for
this model. Furthermore, the use of the constant one is a simple trick which allows us to ensure
that the iid shocks are indeed exogenous. Regarding the AiM notation used in the Table, _NOTD

– 276 –



Table 2. An example of the required and optional data for the prior distribution file.

Model parameter Status Initial value Prior type Prior parameter 1 Prior parameter 2 Lower bound Upper bound

tau estimated 1.87500 gamma 2.000 0.50 1.000

kappa estimated 0.15000 gamma 0.200 0.10 0.000

psi1 estimated 1.45830 gamma 1.500 0.25 0.000

psi2 estimated 0.37500 gamma 0.500 0.25 0.000

rhoR estimated 0.50000 beta 0.500 0.20 0 1

rhoG estimated 0.84620 beta 0.800 0.10 0 1

rhoZ estimated 0.70590 beta 0.660 0.15 0 1

rA estimated 0.50000 gamma 0.500 0.50 0.000

piA estimated 6.42860 gamma 7.000 2.00 0.000

gammaQ estimated 0.40000 normal 0.400 0.20

sigmaR estimated 0.00358 invgamma 0.004 4.00 0.000

sigmaG estimated 0.00859 invgamma 0.010 4.00 0.000

sigmaZ estimated 0.00447 invgamma 0.005 4.00 0.000

refers to not data, meaning that AiM treats the variable as an unobserved variable. Similarly,
_DTRM means that the variable is deterministic. For more information, see, e.g., Zagaglia (2005,
Section 4.1).

The AiM code in Table 1 is also found in the file AnSchorfheideModel.aim located in the
sub-directory example\AnSchorfheide. The file can be parsed by AiM and, as mentioned in
Section 3.5, this is handled by the function AiMInitialize. Similar aim files exist for the Lubik
and Schorfheide (2007a) and the Smets and Wouters (2007) examples in sub-directories of the
example directory in YADA.

17.2. Specification of the Prior Distribution

The file with the prior distribution data must be given by either a Lotus 1-2-3 spreadsheet (file
extension .wk1) or an Excel spreadsheet (extension .xls). The An and Schorfheide example
comes with a number of such prior distribution files, e.g., AnSchorfheidePrior.wk1. In addi-
tion, if the user wishes to make use of a system prior it needs to be setup as a matlab function,
as discussed below in Section 17.2.10; see also Section 4.4 for a more theoretical discussion on
system priors.

The prior distribution file should list all the parameters that are going to be estimated. It

may also list parameters that are calibrated.132 The 7 required column headers in this file are
given by model parameter, status, initial value, prior type, prior parameter 1, prior
parameter 2, and lower bound. The entries under the lower bound header are in fact ignored
unless the prior distribution is gamma, inverted gamma, or left truncated normal. Furthermore,
all the headers are case insensitive in YADA.

YADA also supports two optional headers: upper bound and prior parameter 3. The upper

bound header is used for the beta distribution only. When YADA locates this header it will also
take the lower bound for beta distributed parameters into account. If the header is missing
YADA assumes that any beta distributed parameters have lower bound 0 and upper bound
1. The prior parameter 3 header is used by the Student-t distribution and should contain a
positive interger, the number of degrees of freedom in (4.23). If this header is missing, then
YADA will set the degrees of freedom parameter to unity for the Student-t prior.

17.2.1. The Model Parameter Header

The names of all the parameters that need to be estimated should be specified under this header.
It is important that the names are exactly the same as in other input files, e.g., the AiM model

132 In Section 17.3, we discuss alternative and more flexible ways of specifying additional parameters that YADA

needs to know about in order to solve the DSGE model.
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file (see, Section 17.1). Since Matlab is case sensitive regarding variable and field names, the
parameter names are case sensitive.

17.2.2. The Status Header

The status header reports if a parameter should be estimated or is to be viewed as calibrated.
The valid entries are thus es(timated) and calibrated. In fact, as long as the status string is
not empty, the parameter will be regarded as calibrated unless the first two letters of the status
string are es. This entry is case insensitive.

17.2.3. The Initial Value Header

The initial value must be a scalar and it should be in the support of the prior distribution
assigned to the parameter. Natural candidates as an initial value is either the mean or the mode
of the prior distribution (if they exist).

17.2.4. The Prior Type Header

The prior type header determines the prior distribution of the parameter. The entry should be
one of the following: gamma, beta, invgamma, normal, truncnormal, uniform, student, cauchy,
logistic, gumbel, or pareto. This entry is case insensitive.

17.2.5. The Prior Parameter 1 Header

The prior parameter 1 header reports the first parameter for the prior distribution. This param-
eter is assumed to be the mean of the gamma, beta, normal, logistic, and Gumbel distributions,
the location paremeter s for the inverted gamma distribution (see equation (4.11)), the loca-
tion parameter µ for the left truncated normal (see equation (4.20)), the Student-t and Cauchy
distributions, the shape parameter a for the Pareto distribution (see equation (4.34)), and the
lower bound of the uniform distribution.

17.2.6. The Prior Parameter 2 Header

The prior parameter 2 header reports the second parameters for the prior distribution. This
parameter is assumed to be the standard deviation of the gamma, beta, normal, logistic, and
Gumbel distributions. For the inverted gamma distribution it is the q (degrees of freedom)
parameter, for the left truncated normal, the Student-t and the Cauchy the scale paremeter σ,
the location parameter b for the Pareto, and the upper bound for the uniform distribution.

17.2.7. The Lower Bound Header

The lower bound header is primarily used if the distribution is gamma, inverted gamma, and
left truncated normal. For the left truncated normal the lower bound is, as in Section 4.2.7, the
c parameter. The entries can for the other prior distributions be either empty or real numbers.

17.2.8. The Upper Bound Header

The upper bound header is optional and, when present, is only used by the beta distribution.
If the upper bound header is missing or the lower bound is not specified, then the beta prior
is assumed to have lower bound 0 and upper bound 1. When the header is present it will be
ignored for parameters that do not have a beta prior.

17.2.9. The Prior Parameter 3 Header

The prior parameter 3 header is optional and, when present, used by the Student-t, the lo-
gistic, and the Pareto distributions. In the first case it measures the number of degrees of
freedom, in the second the shape parameter, and in the the last case the origin parameter c;
cf. Section 4.2.13. If this header is either missing or has no value, then YADA assumes that
the corresponding Student-t prior has 1 degree of freedom, i.e., a Cauchy prior, that the shape
parameter is 1 for the logistic, while the origin parameter for the Pareto is zero by default.
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17.2.10. System Prior File

The system prior file is a matlab function which takes six required input variables and provides
one required output variable. It computes the log height of the system prior density, where the
latter is denoted by p(Φω|θ, h) in Section 4.4.

The six input variables are given by: theta, thetaPositions, ModelParameters, AIMData,
DSGEModel, and CurrINI. These inputs are sufficient to solve the DSGE model, in the event that
this is needed. An instructive example is provided in the YADA distribution by the function
SystemPriorFile.m, located in the subdirectory example\AnSchorfheide. YADA often sends
the model solution to the system prior file through the DSGEModel field Solution, thereby mak-
ing it possible to avoid solving the model too many times. It should be noted that, in principle,
the system prior file has access to all YADA functions, such as the distribution functions in the
directory dist. For example, the system prior file SystemPriorFile.m makes use of the inverted
Gamma density (logInvertedGammaPDF) for the standard deviation of inflation.

Finally, the required output variable is given by the natural logarithm of the height (value)
of the system prior density at the parameter value given by theta.

17.3. Defining Additional Parameters

Additional parameters can optionally be included as input for YADA. These can be parameters
that are calibrated but not specified in the prior distribution file. They can also be parameters,
such as β in (2.1), that are defined from other parameters, e.g., steady state parameters. YADA
allows for input of two different types of additional parameters. The first is a function that only
specifies parameters that should be initialized, while the second is a function with parameters
that should be updated along with the estimated parameters. The β example concerns the latter
type of additional parameters function.

For both types of additional parameters functions, YADA requires that the function takes as
input the structure with model parameters, e.g., ModelParameters whose fields have the same
names as the names specified in the prior distribution file and the AiM model file. As output,
the function must also give the structure with model parameters. In the β example, the AiM
code uses a parameter beta. Since this is a parameter updated when rA receives a new value,
the function with parameters to update should include a line such as:

ModelParameters.beta = 1/(1+(ModelParameters.rA/400)).

See the file MoreAsParameters.m in the sub-directory example\AnSchorfheide for more details.
There are four names that may not be used for the parameters. They are: YADA, YADAg,

YADAh, and UserVariables. The first is used internally to store the state equations matrices,
F and B0, through the field names ModelParameters.YADA.F and ModelParameters.YADA.B0,
respectively. This means that these matrices are available inside the measurement equation
file (discussed in Section 17.4). The next two are used internally to allow for parameters with
the names g and h, respectively. The last is a reserved name that allows the user to pass
on information from the parameter function. That information can be reused by the function
itself, such as holding initial values for some numerical problem that the function solves (e.g.,
steady-state calculations). The field ModelParameters.UserVariables is viewed as a structure
where the user can select his or her own field names. YADA, for its part, simply ignores the
UserVariables field when dealing with parameters. YADA stores ModelParameters, along with
a number of other variables, in a mat-file when it has finished the posterior mode estimation
routine. The user can therefore access data in ModelParameters.UserVariables via that file.
To find it, simply look in the mode directory that the posterior mode estimation routine creates.

Any additional parameters files that you have specified are always checked for internal con-
sistency before executing, e.g., the actual posterior mode estimation functions.

In Section 4.2 a number of prior distributions were discussed where the function with pa-
rameters that need to be updated can be utilized to support additional priors. For example,
suppose that we have a parameter α whose prior should be a Weibull distribution with scale pa-
rameter a = 3 and shape parameter b = 2; cf. Section 4.2.3. We may then define the auxiliary
parameter αG with prior distribution G(1,1). The code
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ModelParameters.alpha = 3*ModelParameters.alphaG^(1/2)

in the file with parameters to update ensures that the parameter α has a W(3,2) prior distribu-
tion. Other changes to the prior may, for instance, reflect a mirror image prior by multiplying
the value of an auxiliary parameter by −1.

17.4. Setting up the Measurement Equation

The measurement equation is specified as a function in a Matlab m-file. This file takes 7 input
arguments. The first is the structure ModelParameters, whose fields have names given by the
parameter names. Hence, if the model has a parameter called rA, then the ModelParameters

structure has a field ModelParameters.rA. If rA is specified in the prior distribution file, then
this field is automatically generated by YADA. If you need to refer to this parameter in the mea-
surement equation file, then the syntax should follow this example. Note, that ModelParameters
can take any name you wish in the measurement equation file since the name of the structure
is local to the function.

As noted in Section 17.3, the state equation matrices F and B0 can be accessed via the
ModelParameters structure in the measurement equation file. Specifically, the following code
inside the measurement equation file retrieves the current values for F and B0

F = ModelParameters.YADA.F;

B0 = ModelParameters.YADA.B0;

These parameter matrices can, for instance, be useful when, as in Del Negro and Eusepi (2011),
observed data on expectations are linked to the corresponding model variables.

A second input argument for this function is the string matrix called, e.g., StateVarNames.
This matrix contains a name in each row that is equal to the name obtained from parsing the
AiM model file. That is, it is equal to the endog_ output from the compute_aim_data function
that the AiM parser creates.

The third and fourth input variables for the measurement equation function are the string
matrices VariableNames and XVariableNames. The rows of these matrices provide the names
of the observed and the exogenous variables, respectively.

The last three input arguments for the measurement equation function are n, r, and k. These
are equal to the dimension variables n, r, and k in (5.1).

The output from this function should be the three matrices A, H, and R; see, equation (5.1).
The dimensions of these matrices should be exactly as they are specified in Section 5. That is,
A is k × n if k > 0 and an empty matrix otherwise, H is typically an r × n matrix, while R is an
n × n matrix with measurement error covariances. If there are no measurement errors in your
model then R = 0.

The measurement equation from the An and Schorfheide model (cf. equation (2.2)), is spec-
ified in the file MeasurementEqFile in the sub-directory example\AnSchorfheide. This file
shows how these matrices can be determined from the 7 input arguments to the function as
well as using the loc function for locating the position of variables within the StateVarNames,
VariableNames, and XVariableNames string matrices. It may be noted that of the 7 input argu-
ments only the first is always likely to be useful since it includes all the parameter values. The
other 6 inputs are provided primarily for convenience. When you write your own measurement
equation m-file, you have to make sure that all the 7 inputs are accepted. Whether you then
make use of them or not in the function is, of course, up to you.

It is possible to let the measurement matrix H be time-varying. YADA handles this case
by letting the H matrix exported from the measurement equation file be 3-dimensional, i.e.,
an r × n × TH matrix, where TH is large enough for the estimation sample to be covered.
YADA assumes that H(:,:,t) measures the same time period t as column t in the n × T matrix
StructureForData.Y.data; cf. Section 17.5.

It is important to note that if there are many calls to, say, the loc function for setting values
to the correct entries of the A, H, and R matrices, this may slow down both the posterior
mode estimation phase and, even more importantly, when draws are taken from the posterior
distribution via the random walk Metropolis algorithm. For smaller models, the additional time
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occupied by these calls may be negligible, but in larger models this may affect the computation
time considerably. Hence, I would suggest that the loc function is used only for testing purposes
in such cases, and that the entry numbers are hand-coded into the measurement equation file
later on.

The measurement equation file is always checked for internal consistency before commencing
with, e.g., posterior mode estimation.

17.5. Reading Observed Data into YADA

To estimate θ with YADA the data on yt = [∆Yt Πt It]′ and xt = 1 needs to be read from a
file. Since the user may wish to transform the raw data prior to defining yt by, e.g., taking logs,
YADA requires that the construction of data is handled in a Matlab m-file.

As an example, consider the data construction file DataConstFile.m that is located in the
sub-directory example\AnSchorfheide. It assumes that there are no inputs for the function.
The requirements on its setup concerns the structuring of the output. Specifically, the data
construction file should return a structure, named e.g., StructureForData. The actual name of
the structure is not important as it is a local variable to the function. The fields of this structure,
however, have required names and setup. The matrix with observed data should appear as
StructureForData.Y.data. It should preferably be of dimension n × T with n < T ; if not,
YADA will take its transpose.

If you need to transform your data prior to using them for estimation, you can always do
so in your data construction file. For instance, you may want to take natural logarithms of
some of the variables in your data input file, you may wish to rescale some variables, take first
differences, remove a linear trend, etc. All Matlab functions located on the matlabpath can be
used for this purpose. It is important to note, however, that any files you instruct YADA to read
data from should be specified in the data construction file with their full path. The reason is
that YADA copies all the Matlab m-files that you specify on the DSGE Data tab (see Figure 8)
to the directory tmp and executes them from there. That way, YADA avoids having to deal with
temporary changes to the path. At the same time, a data file located in, e.g., the same directory
as your data construction file will not be copied to the tmp directory. Hence, a command like

wk1read([’data\AnSchorfheideData.wk1’]),

will not work unless you manually create a directory data below YADA’s working directory and
copy the file AnSchorfheideData.wk1 to this directory.

The working directory for YADA is always given by pwd, i.e., the directory where YADA.m is
located. Hence, if you store your data file in a sub-directory to YADA’s working directory, e.g.,
example\AnSchorfheide\data you can use the command pwd to set the root for the path where
your data file is located. In this case,

wk1read([pwd ’\example\AnSchorfheide\data\AnSchorfheideData.wk1’]).

When you exit YADA, all files found in the tmp directory are automatically deleted.
The names of the observed variables should appear in the field StructureForData.Y.names.

It should be given as a cell array with n string elements. In DataConstFile.m, n = 3 while

StructureForData.Y.names = {’YGR’ ’INFL’ ’INT’}.

The data for any exogenous variables should be given by StructureForData.X.data, a ma-
trix of dimension k × T , e.g., a vector with ones for a constant term. Similarly, the cell ar-
ray StructureForData.X.names provides the names of these variables, e.g., being given by
{’const’}. If the model has no exogenous variables, then these two fields should be empty.

Given that the model has exogenous variables, it is possible to add extra data on these vari-
ables to the entry StructureForData.X.extradata. This is an optional entry that if used should
either be an empty matrix or a k× Th matrix. YADA views this data on the exogenous variables
as having been observed after the data in StructureForData.X.data. Hence, the extra data
can be used in, for instance, out-of-sample forecasting exercises where it will be regarded as
observations T + 1 until T + Th.

Next, the field StructureForData.sample should contain a 4 dimensional vector with entries
giving the start year, start period, end year and end period. For instance,
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StructureForData.sample = [1980 1 2004 4].

This sample data refers to the data in the matrix StructureForData.Y.data for the observed
variables and the matrix StructureForData.X.data for the exogenous variables. The sample
used for estimation can be changed on the Settings tab in YADA.

YADA requires that the data frequency is specified as a string. Valid string entries are
quarterly, monthly, and annual. The first letter of these strings are also permitted. The
name of the field for the data frequency is simply StructureForData.frequency.

An optional field to StructureForData.Y with data is called actuals. This vector structure has
the subfields data and title. These two fields provide the data and a data name for alternative
actuals of the observed variables. These actuals may be used when computing the predictive
likelihood and are thus relevant in the context of forecasting with real-time data; see, e.g.,
Croushore and Stark (2001) and Croushore (2011a,b).

Suppose that two alternative datasets of the observed variables have been loaded by the data
construction file with at least as many observations as in the original data matrix. We may
denote these two matrices as DataMatrix1 and DataMatrix2, with dimensions n × T1 and n ×
T2, respectively, where T1, T2 ≥ T , the number of observations in StructureForData.Y.data.
These data may then be added as actuals for a forecasting exercise by the following commands

StructureForData.Y.actuals(1).data = DataMatrix1;

StructureForData.Y.actuals(1).title = ’First release’;

StructureForData.Y.actuals(2).data = DataMatrix2;

StructureForData.Y.actuals(2).title = ’Annual revision’;

The first set of actuals has here been given the name “first release”, which indicates that in this
example these data are the first release numbers of the observed variables. The second set of
actuals has instead been given the name “annual revision”, suggesting that they contain the
numbers of the observed variables for the sample dates which were revised one year after the
first release. The original data can, of course, also be used as actuals when forecasting and
are in fact the default data for such exercises. Finally, notice that the first observation in both
DataMatrix1 and DataMatrix2 is assumed to be taken from the same time period as the first
observation in StructureForData.Y.data.

17.5.1. Transformations of the Data

It is possible to transform the data on the observed variables (StructureForData.Y.data)
through YADA. Such transformations, however, will not be applied to the data for estimation
purposes. Rather, in certain situations, such as forecasting, it may be interesting to trans-
form the data based on user defined functions. The information YADA needs for such data
transformations is assumed to be provided via the data construction file, through the sub-field
StructureForData.Y.transformation. This field is not mandatory, but if it is missing then
YADA will not be able to transform the observed variables.

The transformations are performed on a variable-by-variable basis. For this reason YADA as-
sumes that the name of an observed variable provides a sub-field in the structure. For instance,
in the DataConstFile.m there is a field StructureForData.Y.transformation.YGR for GDP
growth. For each variable specific sub-field there are 6 sub-sub-fields that are needed. These
are: fcn, partial, annualizefcn, annualizepartial, initial, and x. In addition, there are
3 sub-sub-fields for inverting the transformation. These are: invertfcn, invertinitial, and
invertx. Finally, YADA also has 5 sub-sub-fields for dealing with exporting of data: exportfcn,
exportinitial, exportx, exporttitle, and exportname.

The fields fcn and annualizefcn hold string vectors for transforming the data. The inline

function is used by YADA and for the string vector to be operational it is therefore required
that it holds valid Matlab syntax. The field fcn holds the general transformation function,
while annualizefcn, as the name suggests, holds a particular function that is used when the
transformation is assumed to provide an annualization of the data.

The fields partial and annualizepartial hold the first order partial derivatives of the func-
tions in the fcn and annualizefcn string vectors with respect to the variable that should be
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transformed times a part of the variable in question. That is, this string vector should include
the full first order Taylor expansion term for the variable to be transformed ((∂f(x)/∂x)xj ,
where x = x1 + . . . + xn and j = 1, . . . , n). Since the partial and the variable are both vec-
tors, the element-by-element product operator (.*) should be used. If the partial is a constant,
then the partial should take into account that x is the variable to be transformed and xj is a
part of this variable. The partial string vector must have exactly as many variables as the
fcn string vector plus one additional variable, which must be the last variable in the string
vector. Apart from the last term all other variables in fcn and partial must appear in the
same order. This means that if the fcn string is ’4*(S-MeanS)’, then partial should be, e.g.,
’(4-(0*(S-MeanS))).*PartS’. The same rule holds for the annualizepartial string vector.

The field initial holds a vector of initial values for the variable that is to be transformed.
These values will be prepended to the vector of data on the variable prior to it being trans-
formed. The dating of the initial values is assumed to be the periods just before to the start of
the full sample for the observed variables.

The field x holds a matrix with data on any additional variables required by the transforma-
tion. The dimension of this matrix should be dx × Tx, where dx is the number of additional
variables. Since it is possible that certain transformation functions require different dimensions
of the various additional variables, YADA will look for NaN entries at the beginning of each row
of x and remove such entries on a variable-by-variable basis before executing the transforma-
tion.

To illustrate these features, suppose that the transformation function for a variable YGR is:

cumsum(YGR)+0.2*TREND

and that one initial value is given for YGR. Data for the variable TREND is stored in x. Since one
observation is prepended to the vector of data for YGR, the dimension of the data for TREND must
match the dimension for YGR, i.e., Tx = T + 1. This means that x is a 1 × (T + 1) vector with
data on TREND. For instance, this may be the vector [0 1 · · · T].

Suppose we instead consider the following transformation function:

YGR-diff(N)+0.2*TREND

and that the variable N is located in the first row of x and TREND in the second row. In this case,
N needs to have one more element than YGR once initial values for latter have been taken into
account. At the same time TREND should have the same number of elements as YGR. By letting
the first element in the second row of x be NaN (while the first element of the first row is a real
number), this transformation can be achieved.

Since the inline function in Matlab, when executed with one input argument, creates a func-
tion with an input ordering of the variables that follows the order in which the variables appear
in the string vector provided to inline, YADA requires that the variable to be transformed ap-
pears first in the function string, and all the additional variables thereafter. The ordering of the
additional variables is assumed to match the ordering of these variables in the matrix x.

Assuming that the transformation has been performed successfully, YADA checks if the di-
mension of the transformed variable is greater than that of the original variable. Should this be
the case, data at the beginning of the variable created by the transformation are removed such
that the dimensions match. In the event that the dimension of the variable created is smaller
than the original, then YADA assumes that the transformation used up data at the beginning
from a time perspective. This would, for example, be the case if the transformation uses the
diff function and no initial values are made available.

The field invertfcn holds a string that describes how the function in the field fcn should
be inverted. In analogy with the fcn field, the fields invertinitial and invertx hold initial
values and data on all additional variables that are needed by the inversion function. Similarly,
the function for exporting data is stored in the field exportfcn. Likewise, the information about
initial values and additional variables required for the export transformation are located in the
fields exportinitial and exportx. Finally, the fields exporttitle and exportname hold string
vectors that makes it possible to use a different name of the variable in the file with exported
data. The exporttitle string is written to the line above the exportname string.
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The following example for GDP growth is found in the file DataConstFile.m:

StructureForData.Y.transformation.YGR.fcn = ’100*(exp(YGR/100)-1)’;

StructureForData.Y.transformation.YGR.partial = ’exp(YGR/100).*PartYGR’;

StructureForData.Y.transformation.YGR.annualizefcn = ...

’100*(exp((1/100)*(YGR(4:length(YGR))+YGR(3:length(YGR)-1)+...

YGR(2:length(YGR)-2)+YGR(1:length(YGR)-3)))-1)’;

StructureForData.Y.transformation.YGR.annualizepartial = ...

’exp((1/100)*(YGR(4:length(YGR))+YGR(3:length(YGR)-1)+...

YGR(2:length(YGR)-2)+YGR(1:length(YGR)-3))).*...

(PartYGR(4:length(PartYGR))+PartYGR(3:length(PartYGR)-1)+...

PartYGR(2:length(PartYGR)-2)+PartYGR(1:length(PartYGR)-3))’;

StructureForData.Y.transformation.YGR.initial = [];

StructureForData.Y.transformation.YGR.x = [];

StructureForData.Y.transformation.YGR.invertfcn = ...

’100*log(1+(YGR/100))’;

StructureForData.Y.transformation.YGR.invertinitial = [];

StructureForData.Y.transformation.YGR.invertx = [];

StructureForData.Y.transformation.YGR.exportfcn = ...

’100*(exp(cumsum(YGR)/100))’;

StructureForData.Y.transformation.YGR.exportinitial = 0;

StructureForData.Y.transformation.YGR.exportx = [];

StructureForData.Y.transformation.YGR.exporttitle = ’Real GDP’;

StructureForData.Y.transformation.YGR.exportname = ’DY’;

Since YGR is the log first difference of GDP, the general function in the fcn field calculates the
(quarterly) growth rate of GDP. The annualization function similarly provides the annual growth
rate of GDP, while no initial data are supplied and the computations do not need any additional
variables. The field partial (annualizepartial) is the first order partial derivative of the fcn

(annualizefcn) function times a part of the variable that is transformed. The function is used
when the transformation of the variable is applied to a linear decomposition of the variable,
such as the observed variable decomposition in Section 11.8.

It is also possible to transform the observed variables via linear combinations of the trans-
formations performed by the above setup. With three observed variables the following defines
such a transformation matrix:

StructureForData.Y.TransMatrix = [1 0 0;0 1 0;0 -1 1];

The linear combinations of the individually transformed variables is therefore the first, the
second, and the third minus the second (the real rate). Notice that the TransMatrix matrix will
only be applied to the vector of observed variables after the individual transformation functions
under the field fcn have been utilized. This implies that linear transformations of the observed
variables can only be performed when the transformation functions have been properly setup
for all observed variables.

The field invertfcn inverts the calculation in fcn, while the field exportfcn gives the ex-
pression for calculating the levels data for YGR based on a constant initial value for the variable.
The variables INFL and INT have their own transformation functions; see DataConstFile.m for
details.

17.5.2. Levels or First Differences

To inform YADA about which variables appear in levels (like the interest rate) and which ap-
pear in first differences (output and inflation), the field levels should contain a vector whose
elements are either 0 (first difference) or 1 (level). In our example this means that

StructureForData.Y.levels = [0 0 1].

This information makes it possible for YADA to compute, e.g., the levels responses in all ob-
served variables of a certain economic shock. If the levels field is missing from the data con-
struction file, then YADA displays a message box to remind you. The file is, however, regarded
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as valid, with all observed variables in levels. Once you add the field to the data construction
file, YADA will stop nagging you about the missing information.

17.5.3. Simple Annualization

Furthermore, to tell YADA how to “annualize” observed variables, the field annual should con-
tain a vector whose elements are either 0 (do not annualize/is already annualized) or 1 (an-
nualize). YADA annualizes a variable by adding to the current value the previous 3 (11) obser-
vations for quarterly (monthly) data. For instance, the YGR variable measures quarterly logged
GDP (per capita) growth. Summing this variable over 4 consecutive quarters thus gives the
annual logged GDP (per capita) growth. The inflation and interest rate variable are already
assumed to be measured in annual terms. This means that we set:

StructureForData.Y.annual = [1 0 0].

How the data frequency is specified is provided below. It may be noted that the annual field
is optional, with the default being a zero vector, and that YADA does not display a nag screen
when this field is missing.

In some situations you may wish that the annualized data should be multiplied by a con-
stant. For example, the inflation equation in (2.2) “annualizes” quarter-to-quarter inflation by
multiplying the quarterly price changes with 4. The annualized inflation series can therefore be
calculated by adding four consecutive quarters of Πt and dividing the sum with 4. For YADA to
compute such an annualized inflation series field annualscale should be specified. Here, we
may set

StructureForData.Y.annualscale = [1 0.25 1].

Notice that YADA will only use elements of this vector on the variables that you allow YADA
to annualize. This means that the second element of the vector StructureForData.Y.annual
must be unity before YADA will apply the scaling constant 0.25 to inflation. Moreover, the
scaling vector is optional and is by default equal to a unit vector.

17.5.4. Zero Lower Bound

In order to solve a log-linearized DSGE model subject to the zero lower bound, YADA uses
the foward-back shooting algorithm developed by Hebden et al. (2011) and which is discussed
in some detail in Section 3.4. To make use of this feature in YADA, the data construction
file should hold two pieces of information. First, YADA needs to to be told which among the
observed variable is the monetary policy rate. Second, optionally it also needs to have data on
the zero lower bound. This information is optional since by default YADA will assume that the
zero lower bound is indeed zero. However, it may well be that the lower bound is considered to
be a positive or even a negative value. Moreover, it may not be the same for each time period.
Although this may be more flexible than needed, YADA supports such lower bounds since it
doesn not complicate the problem of solving the model in principle.

The field Y has two fields that contain the zero lower bound data (ZLBdata) and the position
of the monetary policy rate among the observed variables (policyrate). For example,

StructureForData.Y.ZLBdata = 0.1;

StructureForData.Y.policyrate = 3;

means that the zero lower bound is set to 0.1, while the third variable in the field Y.names is the
monetary policy rate. Whenever the zero lower bound is time varying, the ZLBdata field needs
to be a vector where each element is measured at the same point in time as the corresponding
row of the field Y.data. Note also that if this vector is too short, then YADA will extend it to be
as long as needed using the value of the last element.

It is possible that a DSGE model has more than one interest rate, such as a short-term mone-
tary policy rate and a long-term bond yield. At this stage, YADA does not allow for a zero lower
bound on more than one interest rate.
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17.5.5. DSGE-VAR

It is possible to estimate a DSGE-VAR model in YADA. Such models are discussed in some detail
in Section 15. The data construction file can include one field which is used for estimating
DSGE-VARs. Namely, the field Lambda, a vector with the possible values for the λ hyperparameter
to use. YADA will use all values given in this field that satisfy the lower bound constraint on
λ, i.e., all values such that λ ≥ λl ≡ (n(p + 1) + k)/T , where n is the number of observed
(endogenous) variables, p is the lag order of the DSGE-VAR, k is the number of exogenous
variables, and T is the effective sample size when estimating the model.

The Lambda field is optional and, when missing, YADA sets the vector equal to:

StructureForData.Lambda = [0.25 0.5 0.75 1 5 Inf],

where the last entry is λ = ∞. In case the data construction file specifies a Lambda which
does not have the Inf entry, then YADA will automatically add this entry to the vector. When
applying the values of the Lambda vector to DSGE-VARs, YADA ensures that the sample size
times the value is rounded to the closest integer.

17.5.6. Bayesian VAR

If you wish to estimate a Bayesian VAR model with YADA you may include one additional field
in the StructureForData.Y structure. This field, denoted by BVAR, should provide the variable
positions in the matrix StructureForData.Y.data. These variable numbers may be ordered
in any way you wish and all observed variables need not appear. In the An and Schorfheide
example we let:

StructureForData.Y.BVAR = [1 2 3].

If the field BVAR is missing, then YADA automatically assumes that all observed variables are to
be included in any Bayesian VAR analysis you wish to perform. Hence, the field BVAR is also
optional and YADA does not display any nag screen to inform you about this. Please note that
Section 14 discussed in some detail the Bayesian VAR models that you can estimate with YADA.

For Bayesian VAR analysis you may also wish to specify which exogenous variables should
be included. You do this in an analogous way to how observed variables are made available as
endogenous variables in the VAR model. That is, you let StructureForData.X.BVAR be equal to
a vector with integer values corresponding to the variable position in the matrix with exogenous
variables, i.e., StructureForData.X.data. Also, you need not include all exogenous variables
that the estimated DSGE model has. This feature is optional and by default YADA will include
all exogenous variables in the Bayesian VAR model when you decide to estimate such a model.

17.5.7. Conditional Forecasting Data

If you wish to perform conditional forecasting you need to set up the entries needed for condi-
tioning. All fields discussed for conditional forecasting are optional, but all are required if you
wish to perform such forecasts. The mathematics behind conditional forecasting is explained in
Section 12.2. Here I shall focus on definitions that can be made in the data construction file.

First, the variables that you wish to condition on are located in the field Z in the structure
StructureForData. As in the case of the observed variables and the exogenous variables, the
subfields data and names holds the data and the names of the conditioning information. It
is important to note that the data subfield should contain an m × Tz matrix with Tz being
the number of available observations of the conditioning information. It is assumed that the
first column of this matrix is measured at the same point in time as the first column of the
matrix with the observed variables. Since the latter has T observation, the value of Tz should
be greater than T if you plan to use all the observed data for estimation and then perform
conditional forecasting for periods T + 1 and onwards until Tz. Furthermore, if Z has some
NaN values, then the corresponding conditioning assumption is skipped by YADA. The subfield
names should hold a cell array with length equal to m, the number of variables to condition on.
Note that you may select a subset of these variables through the YADA GUI.
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Second, the field Z has two subfields that contain matrices K1 and K2 that are needed to map
the observed variables into the conditioning information; cf. equation (12.6). The first matrix is
required to be of full rank m, while the second can be a zero matrix as well as being 3D, where
the third dimension covers the j-dimension for K2j . Their common first and second dimension
should be n×m, where n as before is the number of observed variables and m is the number of
conditioning variables in StructureForData.Z.data.

Since the mapping from the observed variables to the conditioning variables may require
an initial value, YADA also needs data in the field U in the structure StructureForData. This
field should contain the subfield data that provides an m × Tu matrix with initial conditions
in the mapping; cf. (12.6) for details. Again, YADA assumes that the first observation in this
matrix comes from the same time period as the first observation in the matrix with observed
variables. This initial conditions data can be used provided that Tu is at least equal to the last
period used for estimation of the parameters in the DSGE model. Finally, the conditioning
data can also be linked with transformation function and the logic is the same as in the case
of the transformation functions for the observed variable scenario data, i.e., through the field
StructureForData.Z.transformation.

Apart from conditioning assumptions that are mapped into the observed variables, YADA
also allows for conditioning assumptions that restrict the paths for linear combinations of the
state variables over the forecast period. The field zeta covers the information needed to forecast
subject to such assumptions. The data for the state variable assumptions are given by the qz×Tz
matrix StructureForData.zeta.data, while the names of these assumptions are given by the
cell array of strings StructureForData.zeta.names. The zeta field also has the subfield K3

which is an r × qz matrix which maps the current value of the r state variables into the current
value of the qz state variable assumptions; see Section 12.4 for details.

17.5.8. Percentiles for Distributions

It is possible to control the percentiles that are used for plotting confidence bands for certain
distributions. This is currently handled by StructureForData.percentiles. This optional
entry should be a vector with integer values greater than 0 and less than 100. If there are
at least 2 valid entries YADA will make use of them. For instance, we may write

StructureForData.percentiles = [85 50 15 5 95].

Unless the values are already expressed in ascending order YADA will sort them. Moreover, if
the vector has an odd number of entries then the middle entry is ignored. In the above example
we thus have that YADA would treat the 5 dimensional vector as equal to

StructureForData.percentiles = [5 15 85 95].

YADA then assumes that the first and the last element may be used to construct the outer
confidence band, while the second and the third are used for an inner confidence band.
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