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A. Learning in DSGE Models

The structural form of a DSGE model is given by:

H−1zt−1 +H0zt +H1Et

[
zt+1

]
= Dηt, (A.1)

where zt is a p-dimensional vector of model or state variables and ηt is a q-dimensional vector of i.i.d.

Gaussian structural shocks with zero mean and identify covariance matrix. Under the assumption

of rational expectations (RE), the solution to this stochastic difference equation is given by

zt = Fzt−1 +Bηt, (A.2)

where F and B satisfies B = (H0 +H1F )
−1D and H−1 +H0F +H1F

2 = 0. This corresponds to

the state equation, while the measurement equation is given by

yt = A′xt +H ′
tzt + wt, (A.3)

where yt is an n-dimensional vector of observable variables, xt a k-dimensional vector of deterministic

variables, while wt is an n-dimensional i.i.d. Gaussian measurement error vector, independent of ηt
and with mean zero and covariance matrix R.

Over the last decades, alternative approaches to modelling expectations have been suggested in the

literature. These include but are not limited to the bounded rationality model of Sargent (1993),

rational inattention as in Sims (2003), the sticky information model of Mankiw and Reis (2002),

partial information as in Svensson and Woodford (2003) and the learning approach of Evans and

Honkapohja (2001). Below we discuss the adaptive learning approach suggested by Slobodyan and

Wouters (2012) to DSGE models.

To relax the strict implications of the RE assumption, Slobodyan and Wouters (2012) assume

that agents forecast the forward looking variables of a model as a reduced form of the lagged state

variables. A special case of this is given by the expression in equation (A.2), but it is also possible
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that the reduced form model differs from the RE solution. First, the parameters of the reduced form

need not satisfy the cross equation restrictions of the RE solution. Second, the reduced form may

involve additional lags of the state variables or include other variables, such as the deterministic

variables xt, which influence the law of motion of the forward looking variables in zt. In the next

section we shall first consider a transformation of the structural form where only the forward looking

variables appear in the expectations term. After we have established such a rewrite of the model,

the so called perceived law of motion (PLM) and updating of its belief parameters through a Kalman

filter are considered.

A.1. A Transformation of the Structural Form

The forward looking variables in the model can be extracted from zt in equation (A.1) by constructing

a 0-1 selection matrix S of dimension p× f and having rank f ≤ p such that

zft = S′zt.

Note that S is made up of f distinct columns of Ip. The remaining p − f columns are denoted by

S⊥ such that the non-forward looking variables are given by

znft = S′
⊥zt.

We can now define the matrix S̃, which we will employed to transform (re-order) the structural

equations and the state variables, as follows:

S̃ =

[
S S⊥

]
,

where S̃−1 = S̃′.

The order of the equations in the DSGE model is arbitary and for the transformation approach

below it is important that the order at least temporarily follows the order in which the forward

looking variables appear in z. Moreover and assuming expectations of exogenous shock processes

have been substituted for, it is required that

rank
[
H1

] ≤ f,

i.e., the rank of H1 provides a lower bound for the number of forward looking variables that are

supported by the model.1

Concerning the reordering of equations, each forward looking variable in the expectation term

should appear in an equation having the same order number as the variable itself has among z. To

1 See, for instance, equation (29) in An and Schorfheide (2007), where two exogenous and backward looking variables
appear in expectation, government consumption and technology. Although a total of four variables have nonzero
elements in the H1 matrix of their formulation of the log-linearized DSGE model and the rank of H1 is two, only
two variables can be forward looking. In their fomulation of the model, the forward looking variables are output and
inflation, but its also possible to rewrite the model and replace output as a forward looking variable with consumption.
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this end, the matrix C is defined as a p × p matrix of rank p containing only unique rows from Ip.

This means that C satisfies C ′C = CC ′ = Ip.2

Premultiplying the system in (A.1) by S̃′C, it can be rewritten as follows

H̃−1z̃t−1 + H̃0z̃t + H̃1Et

[
z̃t+1

]
= D̃ηt, (A.4)

where z̃t = S̃′zt, H̃i = S̃′CHiS̃ for i = −1, 0, 1, and D̃ = S̃′CD. This means that the equations

for the forward looking variables are ordered in the top f equations (rows) and the bottom p − f

equations (rows) are those for the non-forward looking variables. Furthermore, the former variables

are given by the first f elements of z̃t and the latter variables by the bottom p− f elements.

The matrices H̃i can be expressed in matrix blocks as follows

H̃i =

⎡
⎢⎣S′CHiS S′CHiS⊥

S′
⊥CHiS S′

⊥CHiS⊥

⎤
⎥⎦ , i = −1, 0, 1.

In the case of H̃1, the f×f sub-matrix S′CH1S has full rank f , while the sub-matrix S′
⊥CH1S⊥ = 0.

These results follow directly from the assumptions that zft is forward looking and that znft is non-

forward looking. For the sub-matrix in the bottom right corner of H̃1 to be zero, we find that either

CH1S⊥ = 0 or S′
⊥CH1 = 0.

For the case when CH1S⊥ = 0, we find that the final p− f columns of H̃1 are zero and that only

the expected next period values of the forward looking variables appear in the p equations. There

is therefore no need for any further transformation of the DSGE model as

H̃1Et

[
z̃t+1

]
= H̃1,fEt

[
zft+1

]
.

Based on this we can replace the expectations with the adaptive learning mechanism for the forward

looking variables when we solve the model.

The second case with S′
⊥CH1 = 0 is somewhat more complicated as we need to transform the

system by substituting for the expectations of the non-forward looking variables in the top f equa-

tions. To accomplish this, we note that the bottom p − f equations in (A.4) do not involve any

expectations, but only contemporaneous and lagged variables. Under the assumption that the model

has a solution, it follows that

rank
(
S′

⊥CH0S⊥
)
= p− f.

Accordingly, the solution of the DSGE model includes the following representation for the non-

forward looking variables

znft = −(
S′

⊥CH0S⊥
)−1

S′
⊥CH0Sz

f
t − (

S′
⊥CH0S⊥

)−1
[
S′

⊥CH−1S S′
⊥CH−1S⊥

]
z̃t−1

+
(
S′

⊥CH0S⊥
)−1

S′
⊥Dηt.

2 Let ιf denote an f dimensional vector with integers giving the position of each forward looking variable in z.
Similarly, let ιe be an f dimensional vector with positions of the rows in H1 that are non-zero. This vector need
not be unique as more rows than f may contain non-zero elements. For such situations, it is only required that the
sub-matrix formed from H1 using the rows ιe and the columns ιf has rank f . Provided that this condition is met, C
is constructed by first setting it to Ip. Next, the rows ιe in C are replaced with the rows ιf from Ip. Last, the rows
ιf of C are replaced with ιe of Ip.
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From this equation we see that the unbiased expectation of the non-forward looking variables at

t+ 1 based on information at t is

Et

[
znft+1

]
= −(

S′
⊥CH0S⊥

)−1
S′

⊥CH0SEt

[
zft+1

] − (
S′

⊥CH0S⊥
)−1

[
S′

⊥CH−1S S′
⊥CH−1S⊥

]
z̃t.

Substituting this into equation (A.4), making use of S′
⊥CH1 = 0 and collecting terms, we obtain

H̄−1z̃t−1 + H̄0z̃t + H̄1Et

[
z̃t+1

]
= D̃ηt, (A.5)

where H̄−1 = H̃−1,

H̄0 = H̃0 −

⎡
⎢⎣S′CH1S⊥

(
S′

⊥CH0S⊥
)−1

S′
⊥CH−1S S′CH1S⊥

(
S′

⊥CH0S⊥
)−1

S′
⊥CH−1S⊥

0 0

⎤
⎥⎦ ,

while

H̄1 =

⎡
⎢⎣S′CH1S − S′CH1S⊥

(
S′

⊥CH0S⊥
)−1

S′
⊥CH0S 0

0 0

⎤
⎥⎦ .

For this transformation we find that

H̄1Et

[
z̃t+1

]
= H̄1,fEt

[
zft+1

]
.

At this stage, it is useful to premultiply the structural form by C ′S̃ and replace z̃t and z̃t−1 with

zt and zt−1, respectively, while the expectations term is kept. This provides us with

H∗
−1zt−1 +H∗

0zt +H∗
1,fEt

[
zft+1

]
= Dηt. (A.6)

The structural form matrices are now given by H∗−1 = H−1,

H∗
0 =

⎧⎪⎪⎨
⎪⎪⎩
C ′S̃H̃0S̃

′ = H0 if CH1S⊥ = 0,

C ′S̃H̄0S̃
′ if S′

⊥CH1 = 0,

and

H∗
1,f =

⎧⎪⎪⎨
⎪⎪⎩
C ′S̃H̃1,f = H1S if CH1S⊥ = 0,

C ′S̃H̄1,f if S′
⊥CH1 = 0.

These conditions and transformations are simple to apply once the forward looking variables have

been established. The case when all columns of H1 that are multiplied by a non-forward looking

variable are zero is very easy to spot and require hardly any rewrite of the DSGE model. The second

case when all rows of H1 in the equations for the non-forward looking variables are zero, require a

little bit more work, but is swiftly dealt with by computer code.

Finally, the requirement that f is at least equal to the rank of H1 hints at a deeper issue concerning

the uniqueness of solutions under adaptive learning. Different but equivalent formulations of a DSGE

model from a rational expectations perspective can all have the same unique solution, but this is

not necessarily the case when rational expectations are replaced with adaptive learning. Rather,
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the choice of forward looking variables has a direct implication for the solution. How different

the solutions are for the various possibilities is an empirical question, but it needs to be recognized.

Furthermore, the matrix H1 has rank 5 in the Smets and Wouters (2007) model studied by Slobodyan

and Wouters (2012) while the number of nonzero columns of this matrix is 7. This means that we

may choose between five and seven forward looking variables. At the same time, not all of the seven

candidates can be selected if we set f = 5. For any valid selection of five forward looking variables,

the matrix H1S must have rank f = 5.

A.2. The Perceived Law of Motion and Kalman Filtering

When applying adaptive learning to a DSGE model, it is important to make sure that all the forward

looking variables are endogenous, i.e., that some of them are not specified as being backward looking,

such as a shock processes. This would clearly lead to an inconsistent system since we cannot have

two separate backward looking equations for the same variable.

Slobodyan and Wouters (2012) assume that each forward looking variable, zft,j , is determined by

a limited number of variables, denoted by qt−1,j and having dimension gj , through the PLM

zft,j = q′
t−1,jβt−1,j + ut,j , j = 1, . . . , f. (A.7)

In their benchmark case, qt−1,j is given by a constant and two lags of zft,j . Below we consider a

general expression for the PLM, with the only restriction that it can only contain z variables and

deterministic variables.

Stacking the forecasting model in equation (A.7) in SURE form yields

zft = q′
t−1βt−1 + ut, (A.8)

where ut is i.i.d. Gaussian with zero mean and covariance matrix

E
[
utu

′
t

]
= Σu,

an f × f positive definite matrix. Furthermore, we have that

qt−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

qt−1,1 0 · · · 0

0 qt−1,2 0

...
...

. . .
...

0 0 qt−1,f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

is a g × f matrix with g =
∑f

j=1 gj . Consequently, βt is a time-varying vector of dimension g,

capturing how the PLM changes over time.

The βt vector is estimated with a Kalman filter which treats (A.8) as a measurement equation.

The state equation is assumed to be

βt = β + Γ
(
βt−1 − β

)
+ εt, (A.9)
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where β is the initial belief (steady-state) for the unobserved βt-process. The g × g matrix Γ is

assumed to be a diagonal matrix with

Γ = ρIg,

where the scalar parameter 0 ≤ ρ ≤ 1. The g-dimensional vector of errors εt is assumed to be i.i.d.

Gaussian with mean zero, independent of ut, and with

E
[
εtε

′
t

]
= Σε,

a g × g positive definite matrix.

The Kalman filter updating and forecasting equations for the belief coefficients and their covari-

ance matrices are given by

βt|t = βt|t−1 +Rt|t−1qt−1

(
q′
t−1Rt|t−1qt−1 +Σu

)−1 (
zft − q′

t−1βt−1|t−1

)
, (A.10)

βt+1|t = β + Γ
(
βt|t − β

)
, (A.11)

Rt|t = Rt|t−1 −Rt|t−1qt−1

(
q′
t−1Rt|t−1qt−1 +Σu

)−1
q′
t−1Rt|t−1, (A.12)

Rt+1|t = ΓRt|tΓ′ +Σε. (A.13)

Notice that q′
t−1βt−1|t−1 is the one-step-ahead forecast of zft , while q′

t−1Rt|t−1qt−1+Σu is the forecast

error covariance matrix.

The estimation of βt is based on all variables in the PLM being observable. In practise, however,

we observe yt, a smaller dimensional vector such that zft and qt−1 need to be replaced with zft|t
and qt−1|t−1, respectively. We return to the details in Section A.5.2 where we introduce the full

algorithm. In addition, the parameters β, Σu, Σε, as well as the initial values for β1|0 and R1|0 need

to be determined. We turn to this problem next.

A.3. Initial Values for the Beliefs

The benchmark approach suggested by Slobodyan and Wouters (2012) is to use population moments

to determine the initial values for the belief parameters. Specifically, they let

β1|0 = β = E
[
qt−1q

′
t−1; θ

]−1
E

[
qt−1z

f
t ; θ

]

where θ is the parameter vector of the DSGE model under RE. Similarly, the covariance matrix of

the expectation errors is given by

Σu = E
[(
zft − q′

t−1β
)(
zft − q′

t−1β
)′
; θ

]
.

Finally, they let

R1|0 = σr

(
E

[
qt−1Σ

−1
u q′

t−1; θ
])−1

,

Σε = σε

(
E

[
qt−1Σ

−1
u q′

t−1; θ
])−1

,

where σr and σε are positive scalars, while the g × g matrix appearing in R1|0 and Σε is called

the “GLS” matrix below. The determination of parametric expressions for the population moments
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conditional on θ and based on the RE version of the DSGE model is the target for the discussion

below. However, it may first be noted that the learning dynamics involves three unknown parameters

in addition to θ. Namely, the scale parameters σr and σε as well as the autocorrelation parameter

ρ. Slobodyan and Wouters (2012) estimate the latter parameter while the scale parameters are

calibrated.3

A.3.1. The β Vector

The population covariances for the model variables zt based on RE can be computed from (A.2) and

are given by

E
[
ztz

′
t−j ; θ

]
= F jΣξ, j = 0, 1, 2, . . . , (A.14)

where Σξ satisfies Σξ = FΣξF
′+BB′. Consequently, we also have that E[zft z

′
t−j ; θ] = S′E[ztz

′
t−j ; θ],

E[ztx
′
t; θ] = 0, while Σ

(0)
x = (1/T )

∑T
t=1 xtx

′
t. Let Zt−1 be a (k + pm)-dimensional vector such that

Zt−1 =

[
x′
t z′

t−1 · · · z′
t−m

]′
,

while Gj is a (k + pm) × gj selection matrix such that

qt−1,j = G′
jZt−1, j = 1, . . . , f.

In other words, m is the maximum number of lags of the model variables that appear in qt−1,j for

all f forward looking variables. The benchmark case in Slobodyan and Wouters (2012) is based on

m = 2, with Gj selecting the first and the second lag of zft,j as well as a constant from xt for all j.

To obtain an analytical expression for β (and β1|0) based on the RE version of the DSGE model,

we proceed by noting that E[qt−1q
′
t−1; θ] is a g× g block diagonal matrix with typical block element

E
[
qt−1,jq

′
t−1,j ; θ

]
= G′

jE
[
Zt−1Z

′
t−1; θ

]
Gj = G′

jΣZGj , j = 1, . . . , f.

The (k+ pm)× (k+ pm) matrix ΣZ is obtained from equation (A.14) as well as from the properties

with the deterministic variables such that

ΣZ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ
(0)
x 0 0 · · · 0

0 Σξ FΣξ · · · Fm−1Σξ

0 ΣξF
′ Σξ · · · Fm−2Σξ

...
...

...
. . .

0 Σξ(F
′)m−1 Σξ(F

′)m−2 Σξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This matrix is positive semidefinite, but need not be positive definite. For example, zt may include

a contemporaneous entry for a variable and the first lag of the same variable. For this case, zt and

zt−1 share a variable and the covariance matrix for Zt is therefore singular when m > 1.

3 In their empirical application, Slobodyan and Wouters (2012) set the scale parameters to σr = 0.03 and σε = 0.003,
respectively, while ρ is provided with a standard uniform prior.
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Let Sj denote column j of S such that zft,j = S′
jz

f
t , Furthermore, let J be a (k + pm) × p matrix

such that

J ′ =
[
0p×k Ip 0p×p(m−1)

]
.

It can now be shown that

E
[
qt−1z

f
t ; θ

]
=

⎡
⎢⎢⎢⎢⎣
G′

1ΣZJF
′S1

...

G′
fΣZJF

′Sf

⎤
⎥⎥⎥⎥⎦ .

It therefore follows that

β =

⎡
⎢⎢⎢⎢⎢⎣

(
G′

1ΣZG1

)−1
G′

1ΣZJF
′S1

...(
G′

fΣZGf

)−1
G′

fΣZJF
′Sf

⎤
⎥⎥⎥⎥⎥⎦
, (A.15)

a vector of equation-by-equation estimates of βj for j = 1, . . . , f .

A.3.2. The Σu Matrix

The derive an analytical expression of Σu, note that

q′
t−1β =

(
β′ ⊗ If

)
vec

(
q′
t−1

)
.

Since qt−1 is a g × f matrix, we know from Magnus and Neudecker (1988) that

vec
(
q′
t−1

)
= Kgfvec

(
qt−1

)
,

where Kgf is a gf × gf commutation matrix. Hence,

q′
t−1β =

(
β′ ⊗ If

)
Kgfvec

(
qt−1

)
.

Next, define the g × f(k + pm) matrix G such that

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

G′
1 0 · · · 0

0 G′
2 0

...
. . .

0 0 G′
f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
G̃1 · · · G̃f

]
,

where G̃j is g×(k+pm) containing columns (k+pm)(j−1)+1 until (k+pm)j of G for j = 1, . . . , f .

Furthemore, let G̃ be a gf × (k + pm) matrix with

G̃ =

⎡
⎢⎢⎢⎢⎣
G̃1

...

G̃f

⎤
⎥⎥⎥⎥⎦ .

It then holds that

vec
(
qt−1

)
= G̃Zt−1.
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Accordingly,

q′
t−1β =

(
β′ ⊗ If

)
Kgf G̃Zt−1 = β̃Zt−1. (A.16)

With this result in mind it follows that

E
[
zft z

f ′
t ; θ

]
= S′ΣξS = S′J ′ΣZJS, (A.17)

E
[
q′
t−1βz

f ′
t ; θ

]
= β̃ΣZJF

′S, (A.18)

E
[
q′
t−1ββ

′qt−1; θ
]
= β̃ΣZ β̃

′. (A.19)

Accordingly, an analytical expression of Σu is obtained from

Σu = S′J ′ΣZJS − β̃ΣZJF
′S − S′FJ ′ΣZ β̃

′ + β̃ΣZ β̃
′. (A.20)

A.3.3. The GLS Matrix

Let the inverse of the Σu matrix be expressed as

Σ−1
u =

⎡
⎢⎢⎢⎢⎣
ω11 · · · ω1f

...
...

ω1f · · · ωff .

⎤
⎥⎥⎥⎥⎦

It is then straightforward to show that the g × g inverse of the GLS matrix is given by:

E
[
qt−1Σ

−1
u q′

t−1; θ
]
=

⎡
⎢⎢⎢⎢⎣
ω11G

′
1ΣZG1 · · · ω1fG

′
1ΣZGf

...
...

ω1fG
′
fΣZG1 · · · ωffG

′
fΣZGf

⎤
⎥⎥⎥⎥⎦ . (A.21)

A.4. The Actual Law Of Motion

To determine the actual law of motion (ALM) of all variables in zt we first solve for the expectations

in equation (A.1). The derivations employed to obtain equation (A.16) can be used to show that

q′
tβt = β̃tZt,

where

β̃t =
(
β′
t ⊗ If

)
Kgf G̃.

This means that

Et

[
zft+1

]
= β̃t|tZt, (A.22)

where β̃t|t is determined in Section A.2. It is useful to decompose β̃t such that

β̃t =

[
β̃t,0 β̃t,1 · · · β̃t,m

]
, (A.23)

where β̃t,0 is an f × k matrix and β̃t,i is an f × p matrix for i = 1, . . . ,m.

– 9 –



Before we turn to the general solution, let us assume that m = 2 and xt = 1 as in Slobodyan and

Wouters (2012). This means that

Et

[
zft+1

]
= β̃t|t,0 + β̃t|t,1zt + β̃t|t,2zt−1.

Making use of (A.6) and the above expression for the projected forward looking variables, provides

us with the following structural form of the DSGE model
[
H∗

0 +H∗
1,f β̃t|t,1

]
zt +

[
H∗

−1 +H∗
1,f β̃t|t,2

]
zt−1 +H∗

1,f β̃t|t,0 = Dηt. (A.24)

It now follows that the ALM is given by

zt = μ̃t + F̃t,1zt−1 + B̃t,0ηt, (A.25)

where

μ̃t = −
[
H∗

0 +H∗
1,f β̃t|t,1

]−1
H∗

1,f β̃t|t,0,

F̃t,1 = −
[
H∗

0 +H∗
1,f β̃t|t,1

]−1[
H∗

−1 +H∗
1,f β̃t|t,2

]
,

B̃t,0 =
[
H∗

0 +H∗
1,f β̃t|t,1

]−1
D.

The condition for a unique solution at t is therefore that the matrix premultiplied by zt in equation

(A.24) is invertible. The ALM in (A.25) with ξt = zt is now the state equation for the DSGE model

with adaptive learning and it can be used together with the measurement equation in (A.3) to form

the state-space representation. It should also be noted that premultiplying zt in (A.25) with S′ gives

the ALM for the forward looking variables zft and the corresponding equation differs from the PLM

in equation (A.8). In other words, expectations are typically not model consistent.4

For the general case of a finite m and deterministic variables xt, substitution of the PLM into the

structural form and rearranging terms gives us[
H∗

0 +H∗
1,f β̃t|t,1

]
zt +

[
H∗

−1 +H∗
1,f β̃t|t,2

]
zt−1

+H∗
1,f

m−1∑
j=2

β̃t|t,j+1zt−j +H∗
1,f β̃t|t,0xt = Dηt.

(A.26)

It follows that a unique solution at t exists under the same conditions as when m = 2 and it is given

by

zt = μ̃txt +

m∗∑
j=1

F̃t,jzt−j + B̃t,0ηt, (A.27)

where m∗ = max{m− 1, 1}, while μ̃t and B̃t,0 are given by the expressions below equation (A.25),

while

F̃t,j =

⎧⎪⎪⎨
⎪⎪⎩

−
[
H∗

0 +H∗
1,f β̃t|t,1

]−1[
H∗−1 +H∗

1,f β̃t|t,2
]
, if j = 1,

−
[
H∗

0 +H∗
1,f β̃t|t,1

]−1
H∗

1,f β̃t|t,j+1, if j = 2, . . . ,m− 1.

4 In principle, it is possible that expectations are model consistent when βt = β for all t and when qt−1,j has been
selected to exactly match the variables that appear in the RE solution for all forward looking variables.
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Notice that m = 1 implies that β̃t|t,2 = 0 for all t since zt−1 no longer appears in Zt, the vector of

variables in the PLM.

Finally, it should be noted that when m ≥ 3, the state equation for the Kalman filter of the DSGE

model is given by
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zt

zt−1

zt−2

...

zt−m+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ̃t

0

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xt +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F̃t,1 F̃t,2 · · · F̃t,m−2 F̃t,m−1

Ip 0 · · · 0 0

0 Ip 0 0

...
. . .

...

0 0 Ip 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zt−1

zt−2

zt−3

...

zt−m+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B̃t,0

0

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ηt, (A.28)

or more compactly

ξt = M̃txt + F̃tξt−1 + B̃tηt. (A.29)

The vector ξt is r-dimensional with r = pm∗. In case m = 1, a unique solution is given by equation

(A.25) with β̃t|t,2 = 0 in the expression for F̃t,1. The general expression in (A.29) is employed for all

m cases below.

A.5. A Kalman Filter for the DSGE Model with Adaptive Learning

Before we discuss the filtering and updating equations, it is useful to take a step back and consider

which information is available at time t and how that can be used. First, the Kalman filter for the

belief coefficients in Section A.2 is based on having observed zft at t or having an update estimate

zft|t based on yt. With this information, the filter and update equations can be executed, yielding

βt|t which can then be used to form the solution matrices M̃t, F̃t and B̃t, representing the state

equation for the DSGE model under adaptive learning in (A.29). But to run the Kalman filter using

this state equation requires that the values for these matrices are known at t− 1, which is not the

case.

There are now two options: Since the only unknown component of the state equation matrices

is βt|t, we may either replace it with βt|t−1 or with βt−1|t−1. Formally, the first option seems like a

natural choice since the belief coefficients in period t should be used when forming the expectations

for period t + 1 in the structural form. However, βt−1|t−1 will be used below since the standard

treatment in the learning literature is to assume that beliefs formed today are taken as given and

that agents do not take into account that they will update their beliefs in the future. This is indeed

the approach taken by Slobodyan and Wouters (2012).

The one-step-ahead forecast of yt is given by

yt|t−1 = A′xt +H ′
tξt|t−1, (A.30)

while the covariance matrix of the observed variable forecast is

Σy,t|t−1 = H ′
tPt|t−1Ht +R. (A.31)
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The update equation for the state variables is

ξt|t = ξt|t−1 + Pt|t−1HtΣ
−1
y,t|t−1

(
yt − yt|t−1

)
, (A.32)

while the update covariance matrix is

Pt|t = Pt|t−1 − Pt|t−1HtΣ
−1
y,t|t−1H

′
tPt|t−1. (A.33)

Finally, the state variables are projected forward

ξt+1|t = M̃t−1xt+1 + F̃t−1ξt|t. (A.34)

The covariance matrix of the state variable forecast is here given by

Pt+1|t = F̃t−1Pt|tF̃
′
t−1 + B̃t−1B̃

′
t−1. (A.35)

Notice that the solution matrices from t−1 are used at t when projecting the state variables forward.

A.5.1. Initial Values for the Filter

To initialize this filter we first note that the matrices M̃t−1, F̃t−1 and B̃t−1 are time-varing only due

to βt−1|t−1. We may therefore consider replacing the Kalman filter estimate from the belief equation

with the population moment based on the RE version of the DSGE model, i.e., β in equation (A.15).

It follows that

μ̃ = −
[
H∗

0 +H∗
1,f β̃1

]−1
β̃0,

B̃∗ =
[
H∗

0 +H∗
1,f β̃1

]−1
D,

F̃j =

⎧⎪⎪⎨
⎪⎪⎩

−
[
H∗

0 +H∗
1,f β̃1

]−1[
H∗−1 +H∗

1,f β̃2

]
, if j = 1,

−
[
H∗

0 +H∗
1,f β̃1

]−1
H∗

1,f β̃j+1, if j = 2, . . . ,m− 1.

where β̃i is obtained from a decomposition of β̃ analogous to the one of β̃t in (A.23). From these

matrices we can initialize the vector of state variables ξ1|0 = μξ with

μξ =
(
Ir − F̃

)−1
M̃ x̄,

where x̄ is given by a unit element for the constant and, for instance, zeros for non-constant de-

terministic variables. In case xt = 1, the vector μ̃ = 0 with the effect that μξ = 0. Similarly, we

may let P1|0 be initialized through the steady-state covariance matrix conditional on the parameters

satisfying the Lyapunov equation:

Σξ = F̃ΣξF̃
′ + B̃B̃′,

where B̃ is constructed from B̃∗ as in equation (A.28). The Lyapunov equation can, technically, be

solved by vectorization, but in practise it is usually better to rely on a fast numerical method, such

as the doubling algorithm; see, e.g., Warne (2023, Section 5.3).
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A.5.2. A Joint Kalman Filter Algorithm for Computing the State Variables and

Belief Coefficients

The two Kalman filters for βt and ξt can be combined with the solution method in a straightforward

manner. As initial values the algorithm requires β, Σu, Σε, β1|0, R1|0, M̃ , F̃ , B̃, μξ, Σξ, ξ1|0 and

P1|0, whose determination has been discussed above. We also let M̃0 = M̃ , F̃0 = F̃ and B̃0 = B̃.

The algorithm runs forward over iterations t = 1, . . . , T :

(1) Compute yt|t−1 and Σy,t|t−1 using equations (A.30)–(A.31). The log-likelihood function for

period t is given by

log p
(
yt

∣∣xt,Yt−1; θ
)
= − n

2
ln(2π) − 1

2
ln

∣∣Σy,t|t−1

∣∣+
− 1

2

(
yt − yt|t−1

)′
Σ−1
y,t|t−1

(
yt − yt|t−1

)
.

(2) Compute ξt|t and Pt|t from (A.32) and (A.33);

(3) Compute ξt+1|t, Pt+1|t from (A.34) and (A.35) if t < T ;

(4) Compute the belief coefficients and the covariance matrices using equations (A.10)–(A.13),

with zft|t = S′ξt|t from iteration t and zt−j|t−1, j = 1, . . . ,m, from iteration t−1; if t ≤ m, then

zt−j|t−1 = 0 for j ≥ t. The new solution matrices M̃t, F̃t and B̃t are thereafter determined

using βt|t.

Notice that the algorithm requires smoothing whenever m ≥ 2 since Zt−1|t−1 is required by the

Kalman filter part of the belief equation. Smooth estimates are also more generally of interest when

estimating the structural shocks and the state variables using future information, such as for the full

sample.

Instead of using the smooth estimate of, say, zt−2|t−1 in Zt−1|t−1 one may instead use the up-

date estimate zt−2|t−2. From email discussions with Raf Wouters, the latter possibility is used in

Slobodyan and Wouters (2012).

Finally, the Kalman filter of the belief coefficients when t ≤ m is based on setting z0|0 = z−1|0 =

z0|1 = 0, the steady state value, while deterministic variables are included with their time t values.

A.5.3. Smooth Estimates of the State Variables

The Kalman smoother algorithm presented in, for instance, Durbin and Koopman (2012) may be

employed for the state variables. Specifically,

ξt|T = ξt|t−1 + Pt|t−1rt|T , (A.36)

where

rt|T = HtΣ
−1
y,t|t−1

(
yt − yt|t−1

)
+

(
F̃t−1 − K̃t−1H

′
t

)′
rt+1|T , (A.37)

with the initial condition rT+1|T = 0, and where the Kalman gain matrix is

K̃t−1 = F̃t−1Pt|t−1HtΣ
−1
y,t|t−1. (A.38)
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Furthermore, the smoothed state covariance matrix is again

Pt|T = Pt|t−1 − Pt|t−1Nt|TPt|t−1, (A.39)

where

Nt|T = HtΣ
−1
y,t|t−1H

′
t +

(
F̃t−1 − K̃t−1H

′
t

)′
Nt+1|T

(
F̃t−1 − K̃t−1H

′
t

)
, (A.40)

and with the initial condition NT+1|T = 0. Mote that we have chosen to compute the smoother

based on the solution matrices which make use of βt−1|t−1.

Returning to Step (4) of the algorithm in Section A.5.2, equations (A.36)–(A.37) apply to any

t ≤ T so that

ξt−j|t−1 = ξt−j|t−j−1 + Pt−j|t−j−1rt−j|t−1, j = 1, . . . ,m,

where

rt−j|t−1 = Ht−jΣ
−1
y,t−j|t−j−1

(
yt−j − yt−j|t−j−1

)
+

(
F̃t−j−1 − K̃t−j−1Ht−j

)′
rt−j+1|t−1,

where rt|t−1 = 0.

A.5.4. Update and Smooth Estimates of the Measurement Errors and the

Structural Shocks

The update and the smooth estimates of the measurement errors and the structural shocks can be

derived using equations (A.32)–(A.38). To begin with the update estimate of the measurement error

is

wt|t = RΣ−1
y,t|t−1

(
yt − yt|t−1

)
, (A.41)

with covariance matrix

E
[
wt|tw

′
t|t

]
= RΣ−1

y,t|t−1R. (A.42)

Similarly, the update estimate of the structural shocks is

ηt|t = B̃′
t−2HtΣ

−1
y,t|t−1

(
yt − yt|t−1

)
. (A.43)

The timing of the solution matrix B̃t−2 stems from the observation that ξt|t−1 is computed from the

solutions obtained at t − 2 in the algorithm and employed for updating and filtering at t− 1. The

covariance matrix is therefore given by

E
[
ηt|tη

′
t|t

]
= B̃′

t−2HtΣ
−1
y,t|t−1H

′
tB̃t−2. (A.44)

Next, the smooth estimate of the measurement error is

wt|T = yt −A′xt −H ′
tξt|T = RΣ−1

y,t|t−1

(
yt − yt|t−1 −H ′

tPt|t−1F̃
′
t−1rt+1|T

)
, (A.45)

with covariance matrix

E
[
wt|Tw

′
t|T

]
= R

(
Σ−1
y,t|t−1 + K̃ ′

t−1Nt+1|T K̃t−1

)
R. (A.46)
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The smooth estimate of the structural shocks is here

ηt|T = B̃′
t−2rt|T , (A.47)

while its covariance matrix is

E
[
ηt|T η

′
t|T

]
= B̃′

t−2Nt|T B̃t−2. (A.48)
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B. Additional Tables

Table B.1: Linking the vintages of the RTD to the AWM updates.

RTD RTD common AWM AWM AWM RTD euro AWM euro

vintages start date update start date end date area concept area concept

2001Q1–2001Q4 1994Q1 2 1970Q1 1999Q4 12 12

2002Q1–2003Q2 1994Q1 3 1970Q1 2000Q4 12 12

2003Q3–2004Q2 1994Q1 4 1970Q1 2002Q4 12 12

2004Q3–2005Q3 1994Q1 5 1970Q1 2003Q4 12 12

2005Q4–2006Q2 1995Q1 5 1970Q1 2003Q4 12 12

2006Q3–2006Q4 1995Q1 6 1970Q1 2005Q4 12 12

2007Q1–2007Q2 1996Q1 6 1970Q1 2005Q4 12,13 12

2007Q3 1996Q1 7 1970Q1 2006Q4 12,13 13

2007Q4–2008Q1 1996Q1 7 1970Q1 2006Q4 13 13

2008Q2 1995Q1 7 1970Q1 2006Q4 13,15 13

2008Q3–2008Q4 1995Q1 8 1970Q1 2007Q4 15 15

2009Q1–2009Q2 1995Q1 8 1970Q1 2007Q4 16 15

2009Q3–2010Q2 1995Q1 9 1970Q1 2008Q4 16 16

2010Q3–2010Q4 1995Q1 10 1970Q1 2009Q4 16 16

2011Q1 1995Q1 10 1970Q1 2009Q4 16,17 16

2011Q2 1995Q1 10 1970Q1 2009Q4 17 16

2011Q3–2012Q2 1995Q1 11 1970Q1 2010Q4 17 17

2012Q3–2013Q2 1995Q1 12 1970Q1 2011Q4 17 17

2013Q3–2013Q4 1995Q1 13 1970Q1 2012Q4 17 17

2014Q1–2014Q2 2000Q1 13 1970Q1 2012Q4 18 17

2014Q3–2014Q4 2000Q1 14 1970Q1 2013Q4 18 18

2015Q1–2015Q2 2000Q1 14 1970Q1 2013Q4 19 18

2015Q3–2016Q1 2000Q1 15 1970Q1 2014Q4 19 19

2016Q2 1998Q1 15 1970Q1 2014Q4 19 19

2016Q3–2017Q2 1998Q1 16 1970Q1 2015Q4 19 19

2017Q3–2018Q2 1998Q2 17 1970Q1 2016Q4 19 19

2018Q3–2020Q4 1998Q2 18 1970Q1 2017Q4 19 19

Notes: Data from the AWM is always taken from 1980Q1 until the quarter prior to the RTD common start date.
When two RTD euro area concepts are indicated it means that some variables are based on one of them, while
others are based on the other. In all cases, the lower euro area country concept concerns unit labor cost, while the
higher concept is used for the aggregation of the other variables except in 2011Q1 when also the GDP deflator, total
employment and the unemployment rate is based on euro area 16. Unit labor cost is the measure underlying the
calculation of nominal wages as unit labor cost times real GDP divided by total employment. Unemployment has
undergone gradual changes in the definition in December 2000, March and June 2002; see, e.g., European Central Bank
(2001) for details.
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Table B.2: The ragged edge of the euro area RTD: Vintages with missing data for
the variables.

Date y c i π e w r u

Backcast 2001Q1– 2001Q1– 2001Q1– 2001Q1– 2001Q1– 2001Q1– – –

2001Q2 2001Q2 2001Q2 2003Q3 2017Q3 2017Q7

2002Q1 2002Q1 2002Q1

2003Q3 2003Q3

2004Q3 2004Q3 2004Q3

2006Q1 2006Q1 2006Q1

2006Q3 2006Q3 2006Q3

2014Q3– 2014Q3– 2014Q3–

2015Q4 2015Q4 2015Q4

2016Q2 2016Q2 2016Q2

2018Q1 2018Q1

2019Q1 2019Q1 2019Q1 2019Q1

Total 3 of 76 15 of 76 15 of 76 22 of 76 68 of 76 69 of 76 0 of 76 0 of 76

Nowcast 2001Q1– 2001Q1– 2001Q1– 2001Q1– 2001Q1– 2001Q1– – 2005Q1

2019Q4 2019Q4 2019Q4 2019Q4 2019Q4 2019Q4 2005Q3–

2005Q4

2006Q3

2008Q1

Total 76 of 76 76 of 76 76 of 76 76 of 76 76 of 76 76 of 76 0 of 76 5 of 76
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Table B.3: Prior distributions for the structural parameters of the RE and AL
version of the SWU model.

RE AL

parameter density P1 P2 P1 P2

ϕ N 4.0 1.5 4.0 1.5

σc N 1.0c – 1.0 0.25

λ β 0.7 0.1 0.7 0.1

σl N 2.0 0.75 2.0 0.75

ξw β 0.5 0.05 0.5 0.05

ξp β 0.5 0.1 0.5 0.1

ıw β 0.5 0.15 0.5 0.15

ıp β 0.5 0.15 0.5 0.15

φp N 1.25 0.125 1.25 0.125

ψ β 0.5 0.15 0.5 0.15

ρmp β 0.75 0.1 0.75 0.1

rπ N 1.5 0.25 1.5 0.25

ry N 0.125 0.05 0.125 0.05

rΔy N 0.125 0.05 0.125 0.05

ξe β 0.5 0.15 0.5 0.15

υ β 0.2 0.05 0.2 0.05

π̄ Γ 0.625 0.1 0.625 0.1

β̄ Γ 0.25 0.1 0.25 0.1

ē N 0.2 0.05 0.2 0.05

γ̄ N 0.3 0.05 0.3 0.05

α N 0.3 0.05 0.3 0.05

Notes: The columns P1 and P2 refer to the mean and the standard deviation of the normal (N), standardized
beta (β), and gamma (Γ) distributions. The superscript c means that the parameter is calibrated. The parameter
ρmp is the coefficient on the lagged interest rate in the monetary plicy rule.
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Table B.4: Prior distributions for the parameters of the shock processes of the RE
and AL versions of the SWU model and the persistence parameter of
the belief coefficients of the AL model.

RE AL

parameter density P1 P2 P1 P2

ρ β – – 0.25 0.1

ρg β 0.5 0.2 0.5 0.2

ρga β 0.5 0.2 0.5 0.2

ρb β 0.5 0.2 0.5 0.2

ρi β 0.5 0.2 0.5 0.2

ρa β 0.5 0.2 0.5 0.2

ρp β 0.5 0.2 0.0c –

ρw β 0.5 0.2 0.5 0.2

ρr β 0.5 0.2 0.5 0.2

ρs β 0.5 0.2 0.5 0.2

σg U 0 5 0 5

σb U 0 5 0 5

σi U 0 5 0 5

σa U 0 5 0 5

σp U 0 5 0 5

σw U 0 5 0 5

σr U 0 5 0 5

σs U 0 5 0 5

Notes: The columns P1 and P2 refer to the mean and the standard deviation of the standardized beta distribution
and the upper and lower bound of the uniform (U) distribution. The superscript c means that the parameter is
calibrated.
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Table B.5: Posterior estimates of the structural parameter of the euro area RE and
AL versions of the SWU model for the sample 1985Q1–2019Q4.

RE AL

mean mode 5% 95% mean mode 5% 95%

ϕ 5.03 4.86 3.85 6.41 7.50 7.40 6.03 9.03

σc 1.0c 1.0c – – 1.07 1.06 1.04 1.09

λ 0.64 0.65 0.57 0.70 0.87 0.87 0.84 0.89

σl 5.41 5.40 5.16 5.68 5.38 5.32 4.96 5.82

ξw 0.62 0.62 0.54 0.70 0.54 0.54 0.48 0.61

ξp 0.80 0.79 0.76 0.84 0.80 0.80 0.76 0.84

ıw 0.25 0.21 0.12 0.40 0.19 0.18 0.10 0.29

ıp 0.22 0.20 0.09 0.36 0.23 0.22 0.14 0.33

φp 1.54 1.55 1.41 1.67 1.36 1.35 1.23 1.50

ψ 0.52 0.52 0.40 0.64 0.58 0.58 0.37 0.77

ρmp 0.87 0.88 0.84 0.90 0.93 0.93 0.90 0.94

rπ 1.42 1.39 1.19 1.66 1.87 1.86 1.59 2.18

ry 0.19 0.19 0.15 0.24 0.08 0.08 0.04 0.14

rΔy 0.02 0.20 0.00 0.04 0.03 0.03 0.01 0.04

ξe 0.69 0.69 0.65 0.73 0.81 0.81 0.80 0.83

υ 0.16 0.16 0.08 0.25 0.04 0.03 0.02 0.06

π̄ 0.58 0.58 0.46 0.69 0.58 0.57 0.46 0.71

β̄ 0.22 0.21 0.11 0.35 0.24 0.23 0.12 0.40

ē 0.18 0.18 0.17 0.19 0.16 0.16 0.15 0.17

γ̄ 0.14 0.14 0.10 0.18 0.19 0.19 0.16 0.21

α 0.23 0.23 0.20 0.26 0.24 0.24 0.21 0.29

Notes: The columns for each model display the mean, the mode, and the 5% and 95% quantiles, respectively,
from the posterior distributions. The superscript c means that the parameter is calibrated.
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Table B.6: Posterior estimates of the parameters of the shock processes of the euro
area RE and AL versions of the SWU model and the persistence param-
eter of the belief coefficients of the AL model for the sample 1985Q1–
2019Q4.

RE AL

mean mode 5% 95% mean mode 5% 95%

ρ – – – – 0.17 0.15 0.07 0.28

ρg 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.99

ρga 0.25 0.25 0.16 0.36 0.25 0.25 0.16 0.35

ρb 0.92 0.92 0.89 0.95 0.36 0.37 0.23 0.48

ρi 0.15 0.14 0.06 0.27 0.14 0.12 0.04 0.25

ρa 0.98 0.98 0.98 0.99 0.93 0.94 0.91 0.95

ρp 0.19 0.15 0.05 0.35 0.0c 0.0c – –

ρw 0.73 0.77 0.56 0.86 0.85 0.85 0.80 0.89

ρr 0.29 0.29 0.18 0.41 0.33 0.32 0.22 0.44

ρs 0.98 0.98 0.97 0.99 0.98 0.98 0.97 0.99

σg 0.31 0.30 0.28 0.34 0.30 0.30 0.27 0.34

σb 0.05 0.05 0.04 0.06 0.11 0.11 0.08 0.14

σi 0.55 0.55 0.48 0.63 0.26 0.25 0.20 0.33

σa 0.49 0.48 0.41 0.60 0.54 0.52 0.44 0.66

σp 0.24 0.21 0.14 0.38 0.04 0.03 0.03 0.05

σw 0.12 0.09 0.06 0.23 0.06 0.06 0.05 0.07

σr 0.10 0.10 0.09 0.11 0.09 0.09 0.08 0.10

σs 1.02 1.01 0.92 1.14 0.82 0.81 0.72 0.93

Notes: See Table B.5 for details.
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Table B.7: Kolmogorov-Smirnov tests for equality of distributions of the log pre-
dictive likelihood based on the Monte Carlo Integration estimator and
the normal approximation along with p-values for the sample 2001Q1–
2019Q4.

Δy π Δy, π

h RE AL RE AL RE AL

0 0.40 0.32 0.40 0.16 0.40 0.24

1.00 1.00 1.00 1.00 1.00 1.00

1 0.49 0.33 0.33 0.50 0.49 0.41

0.97 1.00 1.00 0.97 0.97 1.00

2 0.33 0.33 0.74 0.25 0.66 0.33

1.00 1.00 0.64 1.00 0.78 1.00

3 0.41 0.41 0.50 0.41 0.41 0.25

1.00 1.00 0.97 1.00 1.00 1.00

4 0.42 0.42 0.42 0.41 0.50 0.42

1.00 1.00 1.00 1.00 0.96 1.00

5 0.67 0.42 0.59 0.42 0.50 0.34

0.76 0.99 0.88 0.99 0.96 1.00

6 0.59 0.42 0.34 0.42 0.42 0.42

0.88 0.99 1.00 0.99 0.99 0.99

7 0.68 0.51 0.34 0.43 0.42 0.51

0.74 0.96 1.00 0.99 0.99 0.96

8 0.69 0.34 0.34 0.77 0.34 0.60

0.73 1.00 1.00 0.59 1.00 0.86

Notes: Real GDP growth is denoted by Δy and GDP deflator inflation by π. The Kolmogorov-
Smirnov test is here computed as

√
Nh/2 · supxi

|F 1
Nh

(xi)− F 2
Nh

(xi)|, where F j
Nh

is the empirical
cumulative distribution function of the log predictive likelihood using estimator j, while Nh is
the number of predictive likelihood values of the h-quarter-ahead forecasts. The mean and the
standard deviation of the Kolmogorov distribution are roughly 0.87 and 0.26, respectively. The
critical values of the test statistic for sizes 10, 5 and 1 percent are about 1.22, 1.36 and 1.63,
which may be calculated from cα =

√−(1/2) log(α/2)), with α being the size of the test and cα

the critical value. The p-value of the test statistic is shown below the test value and has been
computed using a truncation of 1,000 for an expression of its limiting distribution; see, for instance,
Marsaglia, Tsang, and Wang (2003).
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Table B.8: Continuous ranked probability scores of the remaining observed vari-
ables for the full sample 2001Q1–2019Q4.

Real consumption growth Real investment growth Total employment growth

CRPS cdf-values CRPS cdf-values CRPS cdf-values

h RE AL DM RE AL DM RE AL DM

1 −24.80 −26.27 0.03 −65.07 −69.97 0.01 −10.86 −8.44 1.00

2 −25.28 −26.92 0.08 −67.94 −70.48 0.19 −12.50 −9.90 1.00

3 −23.92 −26.60 0.02 −67.67 −68.88 0.36 −13.12 −10.78 0.99

4 −22.16 −25.93 0.00 −67.10 −67.44 0.46 −12.98 −11.30 0.98

5 −20.15 −25.02 0.00 −66.03 −66.45 0.45 −12.48 −11.47 0.95

6 −18.90 −24.48 0.00 −63.97 −65.14 0.36 −11.81 −11.50 0.82

7 −17.89 −23.81 0.00 −62.25 −64.19 0.24 −11.09 −11.42 0.18

8 −17.35 −23.28 0.01 −61.50 −63.74 0.19 −10.52 −11.34 0.12

Real wage growth Unemployment Short-term nominal interest rate

CRPS cdf-values CRPS cdf-values ES cdf-values

h RE AL DM RE AL DM RE AL DM

1 −21.16 −24.17 0.00 −13.84 −13.30 0.94 −16.14 −14.07 1.00

2 −22.44 −24.70 0.00 −21.00 −18.82 0.98 −30.10 −25.16 1.00

3 −22.58 −24.40 0.05 −29.03 −24.77 0.98 −42.74 −34.86 0.99

4 −21.74 −23.43 0.14 −36.66 −30.32 0.98 −54.15 −43.09 0.98

5 −20.56 −23.06 0.08 −43.44 −35.32 0.98 −65.53 −51.33 0.98

6 −19.37 −22.61 0.03 −49.34 −39.87 0.98 −76.01 −58.46 0.98

7 −18.16 −22.33 0.00 −54.26 −43.81 0.98 −85.66 −64.35 0.99

8 −16.99 −22.12 0.00 −58.12 −46.96 0.99 −94.60 −69.45 0.99

Notes: The cdf-values from the Diebold-Mariano (DM) test for the null hypothesis of equal CRPS are calculated
as in Harvey, Leybourne, and Newbold (1997), equation (9), with minus the CRPS values replacing the mean-
squared forecast errors. The cdf-values shown above are taken from the Student’s t-distribution with Nh − 1

degrees of freedom, with Nh being the number of h-quarter-ahead forecasts, Nh = 76 − h. A cdf-value close to
zero suggests that the predictions of the RE model are better in a CRPS sense than those of the AL model, and
a value close to one that the reverse case is supported.
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C. Additional Figures

Figure C.1: The observed variables from the full sample, 1985Q1–2019Q4.
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Figure C.2: Prediction errors of real GDP growth covering the vintages 2001Q1–
2019Q4.
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Figure C.3: Prediction errors of GDP deflator inflation covering the vintages
2001Q1–2019Q4.
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Figure C.4: Recursive estimates of the average log scores of the real GDP growth
density forecasts covering the vintages 2001Q1–2019Q4.
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Figure C.5: Recursive estimates of the average log scores of the inflation density
forecasts covering the vintages 2001Q1–2019Q4.
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Figure C.6: Recursive estimates of the average continuous ranked probability scores
of the real GDP growth distributional forecasts covering the vintages
2001Q1–2019Q4.
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Figure C.7: Recursive estimates of the average continuous ranked probability scores
of the inflation distributional forecasts covering the vintages 2001Q1–
2019Q4.
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Figure C.8: Histograms of the estimated πT+h|T values for the marginal real GDP
growth density forecasts at the nowcast (h = 0) and one-quarter-ahead
(h = 1) horizons for 2001Q1–2019Q4.
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Notes: The horizontal axis shows the 10 bins while the vertical axis shows the occurence frequency for the
estimated π’s. If these variables are uniformly distributed for a model, then the occurence in large samples is
0.10 for all bins.

– 32 –



Figure C.9: Histograms of the estimated πT+h|T values for the marginal GDP defla-
tor inflation density forecasts at the nowcast (h = 0) and one-quarter-
ahead (h = 1) horizons for 2001Q1–2019Q4.
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